Mercurial > hg > Applications > Lite
view ex.pl @ 10:f2aa38ce0787
add state display.
author | kono |
---|---|
date | Fri, 19 Jan 2001 23:14:00 +0900 |
parents | 1c57a78f1d98 |
children | 0d896bcc1061 |
line wrap: on
line source
/* Copyright (C) 1991, Shinji Kono, Sony Computer Science Laboratory, Inc. The University, Newcastle upton Tyne Everyone is permitted to copy and distribute verbatim copies of this license, but changing it is not allowed. You can also use this wording to make the terms for other programs. send your comments to kono@csl.sony.co.jp $Id$ Examples */ ex(0,(p)). ex(1,((p&q))). ex(2,( (fin(p)&true) <-> '<>'p)). ex(3,( fin(p) <-> '[]'( '<>' p) )). ex(4,(~(true&q))). ex(5,(~(true& ~q))). ex(6,(((true& p),(true& q)))). ex(7,('[]'((p -> '<>' q)))). ex(8,( '<>' '[]'(p))). ex(9,( '[]'( '<>'(p)))). ex(10,((p && p && p && p && p && ~p && p)-> '[]'('<>'(p)))). % weak closure (or finite closure) ex(11,+ (a,@ (b,@ (c,@empty)))). % quantifier ex(12,exists(R,(R,keep(@R = ~R),'[]'((R->p))))). % temporal assignment ex(13,exists(R,(R = p,keep(@R = R),fin(R = p)))). % ex(14, exists(Q,(Q, '[]'((Q -> (((((a,skip) & (b,skip)), @ keep(~Q)) & Q) ;empty)) ))) <-> *(((a,skip) & (b,skip) ; empty)) ). ex(15, while(q,((a,skip) & (b,skip))) <-> exists(C,(C, '[]'( (C -> (((q -> ((a,skip) & (b,skip)), @ keep(~C)) & C), (~q -> empty)) )))) ). ex(16,even(p)<->evenp(p)). % wrong example, but hard to solve % ex(17,(p=>(q=>r)) <-> ((p=>q)=>r)). % ex(18,exists(Q,(p=>Q & Q=>r)) <-> (p=>r)). % dining philosopher % note: unspecified resource increase states % ex ((true & al,skip & al,ar,skip & ar,~al,skip) ;empty) * ex(19,(more, % three philosophers *( ('[]'((~al, ~ar)) & @ (al, ~ar,@ (al,ar, @ (ar,'[]'( ~al)))) ;empty) ) , *( ('[]'((~bl, ~br)) & @ (bl, ~br,@ (bl,br, @ (br,'[]'( ~bl)))) ;empty) ) , *( ('[]'((~cl, ~cr)) & @ (cl, ~cr,@ (cl,cr, @ (cr,'[]'( ~cl)))) ;empty) ) , % shared resources '[]'( ~ ( ar, bl)), '[]'( ~ ( br, cl)), '[]'( ~ ( cr, al)) )). ex(20,(more, % five philosophers *( ('[]'((~al, ~ar)) & @ (al, ~ar,@ (al,ar, @ (ar,'[]'( ~al)))) ;empty) ) , *( ('[]'((~bl, ~br)) & @ (bl, ~br,@ (bl,br, @ (br,'[]'( ~bl)))) ;empty) ) , *( ('[]'((~cl, ~cr)) & @ (cl, ~cr,@ (cl,cr, @ (cr,'[]'( ~cl)))) ;empty) ) , *( ('[]'((~dl, ~dr)) & @ (dl, ~dr,@ (dl,dr, @ (dr,'[]'( ~dl)))) ;empty) ) , *( ('[]'((~el, ~er)) & @ (el, ~er,@ (el,er, @ (er,'[]'( ~el)))) ;empty) ) , % shared resources '[]'( ~ ( ar, bl)), '[]'( ~ ( br, cl)), '[]'( ~ ( cr, dl)), '[]'( ~ ( dr, el)), '[]'( ~ ( er, al)) )):-fail. % too big to verify (sigh...) ex(21,(more, share([ar,bl]),share([br,cl]),share([cr,dl]), share([dr,el]),share([er,al]), *( ((true && '[]'(al) && '[]'((al,ar)) && '[]'(ar));empty) ) , *( ((true && '[]'(bl) && '[]'((bl,br)) && '[]'(br));empty) ) , *( ((true && '[]'(cl) && '[]'((cl,cr)) && '[]'(cr));empty) ) , *( ((true && '[]'(dl) && '[]'((dl,dr)) && '[]'(dr));empty) ) , *( ((true && '[]'(el) && '[]'((el,er)) && '[]'(er));empty) ) , true)):-fail. % too big to verify (sigh...) ex(22,(more, % three philosophers with no iteration ( ('[]'((~al, ~ar)) & @ (al, ~ar,@ (al,ar, @ (ar,'[]'( ~al)))) ;empty) ) , ( ('[]'((~bl, ~br)) & @ (bl, ~br,@ (bl,br, @ (br,'[]'( ~bl)))) ;empty) ) , ( ('[]'((~cl, ~cr)) & @ (cl, ~cr,@ (cl,cr, @ (cr,'[]'( ~cl)))) ;empty) ) , % shared resources '[]'( ~ ( ar, bl)), '[]'( ~ ( br, cl)), '[]'( ~ ( cr, al)) )). % These are not schema. Just check % Linear Time Axioms, valid in ITL ex(100,('[]'((a->b)) -> ('[]'(a) -> '[]'(b)))). % K ex(101,('[]'(((a , '[]'(a))->b));'[]'(((b , '[]'(b))->a)))). % 4 ex(102,('[]'(a)-> '<>'(a))). % D ex(103,('[]'(a)-> '[]'('[]'(a)))). % L ex(104,(('[]'(a)) -> a)). % T ex(105,('[]'('[]'((((a-> '[]'(a)))->a))) -> ((('<>'('[]'(a)))-> '[]'(a))))). % Diodorean discreteness % Linear Time Axioms, not valid in ITL ex(106,('[]'(('[]'(a)->a))-> ((('<>'('[]'(a)))-> '[]'(a))))). % Z discreteness ex(107,('[]'(('[]'(a)->a))-> ('[]'(a)))). % W weak density % Other Axioms, not valid in ITL ex(108,(a-> '[]'('<>'(a)))). % B ex(109,(('<>'a)-> '[]'('<>'(a)))). % 5 ex(110,(more-> (more&more))). % our dense time ex(demo(X),Y) :- demo(X,Y). demo(X) :- number(X),demo(X,ITL),nl,ex(ITL),nl,write(ITL). % length 5 interval demo(1, length(5)). % p is trun at the top of a interval demo(2, (length(5),p)). % @ meas next time. demo(3, (length(5),@p,@ @q,@ @ @r)). % &(chop) devides an interval into to parts demo(4, ((length(2),p)) & (length(3),q)). % there are several ways of division. demo(5, (length(5),(p&q))). % sometime usinng chop demo(6, (length(5),(true & p))). % always: dual of sometime demo(7, (length(5),not(true & not(p)))). % counter intutive theorem demo(8, '<>' '[]'(p) = '[]'('<>'(p))). % shared resource / exclusive condition demo(9, (length(5), '[]'((( ac ,not(bc),not(cc),not(dc)); (not(ac), bc ,not(cc),not(dc)); (not(ac),not(bc), cc ,not(dc)); (not(ac),not(bc),not(cc), dc ))))). % periodical task by Projection demo(10, (more, proj((@ '<>'(q),length(2)),true))). % time sharing taks by Projection demo(11, (more,length(7), proj(true,('[]'(p),length(4))))). % combination of periodical task demo(12, (more, proj(length(2),'[]'(ac)), proj(length(3),'[]'(bc)), proj(length(5),'[]'(cc)))). % periodical task with shared resources demo(13, (more, proj((length(3),@ '<>'(ac)),true), proj((length(5),@ '<>'(bc)),true), proj((length(5),@ '<>'(cc)),true), '[]'((not((ac,bc)),not((bc,cc)),not((cc,ac)))), true)). % combination of periodical taks and aperiodical task with shared resource demo(14, ( ((proj(true,(length(5),'[]'(dc))),length(15) )&true), proj((length(3),@ '<>'(ac)),true), proj((length(5),@ '<>'(bc)),true), proj((length(5),@ '<>'(cc)),true), '[]'((( ac ,not(bc),not(cc),not(dc)); (not(ac), bc ,not(cc),not(dc)); (not(ac),not(bc), cc ,not(dc)); (not(ac),not(bc),not(cc), dc ))), true)). % combination of periodical taks and aperiodical task with shared resource % schedulable case demo(15, ( ((proj(true,(length(4),'[]'(dc))),length(15) )&true), proj((length(3),@ '<>'(ac)),true), proj((length(5),@ '<>'(bc)),true), proj((length(5),@ '<>'(cc)),true), '[]'((( ac ,not(bc),not(cc),not(dc)); (not(ac), bc ,not(cc),not(dc)); (not(ac),not(bc), cc ,not(dc)); (not(ac),not(bc),not(cc), dc ))), true)). % model restriction by share predicate ( a little smaller.... :-) demo(16, ( share([ac,bc,cc,dc]), ((proj(true,(length(4),'[]'(dc))),length(15) )&true), proj((length(3),@ '<>'(ac)),true), proj((length(5),@ '<>'(bc)),true), proj((length(5),@ '<>'(cc)),true), true)). demo(17, ( ((proj(true,(length(5),'[]'(c))),length(15))&true), (proj((length(3),@ '<>'(a)),true)&less(3)), (proj((length(5),@ '<>'(b)),true)&less(5)), '[]'(not((a,b))), '[]'(not((b,c))), '[]'(not((c,a))) )). % Regular variable examples ( doesnot work now....) ex(200,^r). ex(201,true & ^r). % will terminate? ex(202,((^r & ^r),not(^r))). % is non-local? ex(203,(^r,length(4))). % distinguish different state? ex(204,('[a]'(^r))). % non-deterministic? ex(205,('[a]'(^r = length(2)))). % imitate length? ex(206,('[a]'(^r = length(4)),(^r& ^r))). ex(207,('[a]'(^r = (length(4);empty)),* ^r)). ex(208,('[]'(^r = ( a,@ ^r; not(a),c,@ @ ^r; not(a),not(c),b,empty)),^r)). % RE ex(209,('[a]'(^r = ( a,@((^r & @((b,empty)))) ; not(a),b,empty)), ^r)). % CFG % Linear Time Axioms, valid in ITL ex(210,('[]'((^a-> ^b)) -> ('[]'(^a) -> '[]'(^b)))). % K ex(211,('[]'(((^a , '[]'(^a))-> ^b));'[]'(((^b , '[]'(^b))-> ^a)))). % 4 ex(212,('[]'(^a)-> '<>'(^a))). % D ex(213,('[]'(^a)-> '[]'('[]'(^a)))). % L ex(214,(('[]'(^a))-> ^a)). % T % Diodorean discreteness ex(215,('[]'('[]'((((^a-> '[]'(^a)))-> ^a))) -> ((('<>'('[]'(^a)))-> '[]'(^a))))). % Linear Time Axioms, not valid in ITL % Z discreteness ex(216,('[]'(('[]'(^a)-> ^a))-> ((('<>'('[]'(^a)))-> '[]'(^a))))). % W weak density ex(217,('[]'(('[]'(^a)-> ^a))-> ('[]'(^a)))). % Other Axioms, not v^alid in ITL ex(218,(^a-> '[]'('<>'(^a)))). % B ex(219,(('<>' ^a)-> '[]'('<>'(^a)))). % 5 % State Diagram Support ex(300,(((length(2), @ '<>'(q)) proj true), st(ns0) )) :- ensure_loaded(kiss_ex). /* end */