0
|
1 /* Loop manipulation code for GNU compiler.
|
|
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009 Free Software
|
|
3 Foundation, Inc.
|
|
4
|
|
5 This file is part of GCC.
|
|
6
|
|
7 GCC is free software; you can redistribute it and/or modify it under
|
|
8 the terms of the GNU General Public License as published by the Free
|
|
9 Software Foundation; either version 3, or (at your option) any later
|
|
10 version.
|
|
11
|
|
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with GCC; see the file COPYING3. If not see
|
|
19 <http://www.gnu.org/licenses/>. */
|
|
20
|
|
21 #include "config.h"
|
|
22 #include "system.h"
|
|
23 #include "coretypes.h"
|
|
24 #include "tm.h"
|
|
25 #include "rtl.h"
|
|
26 #include "hard-reg-set.h"
|
|
27 #include "obstack.h"
|
|
28 #include "basic-block.h"
|
|
29 #include "cfgloop.h"
|
|
30 #include "cfglayout.h"
|
|
31 #include "cfghooks.h"
|
|
32 #include "output.h"
|
|
33 #include "tree-flow.h"
|
|
34
|
|
35 static void duplicate_subloops (struct loop *, struct loop *);
|
|
36 static void copy_loops_to (struct loop **, int,
|
|
37 struct loop *);
|
|
38 static void loop_redirect_edge (edge, basic_block);
|
|
39 static void remove_bbs (basic_block *, int);
|
|
40 static bool rpe_enum_p (const_basic_block, const void *);
|
|
41 static int find_path (edge, basic_block **);
|
|
42 static void fix_loop_placements (struct loop *, bool *);
|
|
43 static bool fix_bb_placement (basic_block);
|
|
44 static void fix_bb_placements (basic_block, bool *);
|
|
45 static void unloop (struct loop *, bool *);
|
|
46
|
|
47 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
|
|
48
|
|
49 /* Checks whether basic block BB is dominated by DATA. */
|
|
50 static bool
|
|
51 rpe_enum_p (const_basic_block bb, const void *data)
|
|
52 {
|
|
53 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
|
|
54 }
|
|
55
|
|
56 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
|
|
57
|
|
58 static void
|
|
59 remove_bbs (basic_block *bbs, int nbbs)
|
|
60 {
|
|
61 int i;
|
|
62
|
|
63 for (i = 0; i < nbbs; i++)
|
|
64 delete_basic_block (bbs[i]);
|
|
65 }
|
|
66
|
|
67 /* Find path -- i.e. the basic blocks dominated by edge E and put them
|
|
68 into array BBS, that will be allocated large enough to contain them.
|
|
69 E->dest must have exactly one predecessor for this to work (it is
|
|
70 easy to achieve and we do not put it here because we do not want to
|
|
71 alter anything by this function). The number of basic blocks in the
|
|
72 path is returned. */
|
|
73 static int
|
|
74 find_path (edge e, basic_block **bbs)
|
|
75 {
|
|
76 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
|
|
77
|
|
78 /* Find bbs in the path. */
|
|
79 *bbs = XCNEWVEC (basic_block, n_basic_blocks);
|
|
80 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
|
|
81 n_basic_blocks, e->dest);
|
|
82 }
|
|
83
|
|
84 /* Fix placement of basic block BB inside loop hierarchy --
|
|
85 Let L be a loop to that BB belongs. Then every successor of BB must either
|
|
86 1) belong to some superloop of loop L, or
|
|
87 2) be a header of loop K such that K->outer is superloop of L
|
|
88 Returns true if we had to move BB into other loop to enforce this condition,
|
|
89 false if the placement of BB was already correct (provided that placements
|
|
90 of its successors are correct). */
|
|
91 static bool
|
|
92 fix_bb_placement (basic_block bb)
|
|
93 {
|
|
94 edge e;
|
|
95 edge_iterator ei;
|
|
96 struct loop *loop = current_loops->tree_root, *act;
|
|
97
|
|
98 FOR_EACH_EDGE (e, ei, bb->succs)
|
|
99 {
|
|
100 if (e->dest == EXIT_BLOCK_PTR)
|
|
101 continue;
|
|
102
|
|
103 act = e->dest->loop_father;
|
|
104 if (act->header == e->dest)
|
|
105 act = loop_outer (act);
|
|
106
|
|
107 if (flow_loop_nested_p (loop, act))
|
|
108 loop = act;
|
|
109 }
|
|
110
|
|
111 if (loop == bb->loop_father)
|
|
112 return false;
|
|
113
|
|
114 remove_bb_from_loops (bb);
|
|
115 add_bb_to_loop (bb, loop);
|
|
116
|
|
117 return true;
|
|
118 }
|
|
119
|
|
120 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
|
|
121 of LOOP to that leads at least one exit edge of LOOP, and set it
|
|
122 as the immediate superloop of LOOP. Return true if the immediate superloop
|
|
123 of LOOP changed. */
|
|
124
|
|
125 static bool
|
|
126 fix_loop_placement (struct loop *loop)
|
|
127 {
|
|
128 unsigned i;
|
|
129 edge e;
|
|
130 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
|
|
131 struct loop *father = current_loops->tree_root, *act;
|
|
132 bool ret = false;
|
|
133
|
|
134 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
|
|
135 {
|
|
136 act = find_common_loop (loop, e->dest->loop_father);
|
|
137 if (flow_loop_nested_p (father, act))
|
|
138 father = act;
|
|
139 }
|
|
140
|
|
141 if (father != loop_outer (loop))
|
|
142 {
|
|
143 for (act = loop_outer (loop); act != father; act = loop_outer (act))
|
|
144 act->num_nodes -= loop->num_nodes;
|
|
145 flow_loop_tree_node_remove (loop);
|
|
146 flow_loop_tree_node_add (father, loop);
|
|
147
|
|
148 /* The exit edges of LOOP no longer exits its original immediate
|
|
149 superloops; remove them from the appropriate exit lists. */
|
|
150 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
|
|
151 rescan_loop_exit (e, false, false);
|
|
152
|
|
153 ret = true;
|
|
154 }
|
|
155
|
|
156 VEC_free (edge, heap, exits);
|
|
157 return ret;
|
|
158 }
|
|
159
|
|
160 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
|
|
161 enforce condition condition stated in description of fix_bb_placement. We
|
|
162 start from basic block FROM that had some of its successors removed, so that
|
|
163 his placement no longer has to be correct, and iteratively fix placement of
|
|
164 its predecessors that may change if placement of FROM changed. Also fix
|
|
165 placement of subloops of FROM->loop_father, that might also be altered due
|
|
166 to this change; the condition for them is similar, except that instead of
|
|
167 successors we consider edges coming out of the loops.
|
|
168
|
|
169 If the changes may invalidate the information about irreducible regions,
|
|
170 IRRED_INVALIDATED is set to true. */
|
|
171
|
|
172 static void
|
|
173 fix_bb_placements (basic_block from,
|
|
174 bool *irred_invalidated)
|
|
175 {
|
|
176 sbitmap in_queue;
|
|
177 basic_block *queue, *qtop, *qbeg, *qend;
|
|
178 struct loop *base_loop;
|
|
179 edge e;
|
|
180
|
|
181 /* We pass through blocks back-reachable from FROM, testing whether some
|
|
182 of their successors moved to outer loop. It may be necessary to
|
|
183 iterate several times, but it is finite, as we stop unless we move
|
|
184 the basic block up the loop structure. The whole story is a bit
|
|
185 more complicated due to presence of subloops, those are moved using
|
|
186 fix_loop_placement. */
|
|
187
|
|
188 base_loop = from->loop_father;
|
|
189 if (base_loop == current_loops->tree_root)
|
|
190 return;
|
|
191
|
|
192 in_queue = sbitmap_alloc (last_basic_block);
|
|
193 sbitmap_zero (in_queue);
|
|
194 SET_BIT (in_queue, from->index);
|
|
195 /* Prevent us from going out of the base_loop. */
|
|
196 SET_BIT (in_queue, base_loop->header->index);
|
|
197
|
|
198 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
|
|
199 qtop = queue + base_loop->num_nodes + 1;
|
|
200 qbeg = queue;
|
|
201 qend = queue + 1;
|
|
202 *qbeg = from;
|
|
203
|
|
204 while (qbeg != qend)
|
|
205 {
|
|
206 edge_iterator ei;
|
|
207 from = *qbeg;
|
|
208 qbeg++;
|
|
209 if (qbeg == qtop)
|
|
210 qbeg = queue;
|
|
211 RESET_BIT (in_queue, from->index);
|
|
212
|
|
213 if (from->loop_father->header == from)
|
|
214 {
|
|
215 /* Subloop header, maybe move the loop upward. */
|
|
216 if (!fix_loop_placement (from->loop_father))
|
|
217 continue;
|
|
218 }
|
|
219 else
|
|
220 {
|
|
221 /* Ordinary basic block. */
|
|
222 if (!fix_bb_placement (from))
|
|
223 continue;
|
|
224 }
|
|
225
|
|
226 FOR_EACH_EDGE (e, ei, from->succs)
|
|
227 {
|
|
228 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
|
|
229 *irred_invalidated = true;
|
|
230 }
|
|
231
|
|
232 /* Something has changed, insert predecessors into queue. */
|
|
233 FOR_EACH_EDGE (e, ei, from->preds)
|
|
234 {
|
|
235 basic_block pred = e->src;
|
|
236 struct loop *nca;
|
|
237
|
|
238 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
|
|
239 *irred_invalidated = true;
|
|
240
|
|
241 if (TEST_BIT (in_queue, pred->index))
|
|
242 continue;
|
|
243
|
|
244 /* If it is subloop, then it either was not moved, or
|
|
245 the path up the loop tree from base_loop do not contain
|
|
246 it. */
|
|
247 nca = find_common_loop (pred->loop_father, base_loop);
|
|
248 if (pred->loop_father != base_loop
|
|
249 && (nca == base_loop
|
|
250 || nca != pred->loop_father))
|
|
251 pred = pred->loop_father->header;
|
|
252 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
|
|
253 {
|
|
254 /* No point in processing it. */
|
|
255 continue;
|
|
256 }
|
|
257
|
|
258 if (TEST_BIT (in_queue, pred->index))
|
|
259 continue;
|
|
260
|
|
261 /* Schedule the basic block. */
|
|
262 *qend = pred;
|
|
263 qend++;
|
|
264 if (qend == qtop)
|
|
265 qend = queue;
|
|
266 SET_BIT (in_queue, pred->index);
|
|
267 }
|
|
268 }
|
|
269 free (in_queue);
|
|
270 free (queue);
|
|
271 }
|
|
272
|
|
273 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
|
|
274 and update loop structures and dominators. Return true if we were able
|
|
275 to remove the path, false otherwise (and nothing is affected then). */
|
|
276 bool
|
|
277 remove_path (edge e)
|
|
278 {
|
|
279 edge ae;
|
|
280 basic_block *rem_bbs, *bord_bbs, from, bb;
|
|
281 VEC (basic_block, heap) *dom_bbs;
|
|
282 int i, nrem, n_bord_bbs, nreml;
|
|
283 sbitmap seen;
|
|
284 bool irred_invalidated = false;
|
|
285 struct loop **deleted_loop;
|
|
286
|
|
287 if (!can_remove_branch_p (e))
|
|
288 return false;
|
|
289
|
|
290 /* Keep track of whether we need to update information about irreducible
|
|
291 regions. This is the case if the removed area is a part of the
|
|
292 irreducible region, or if the set of basic blocks that belong to a loop
|
|
293 that is inside an irreducible region is changed, or if such a loop is
|
|
294 removed. */
|
|
295 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
|
|
296 irred_invalidated = true;
|
|
297
|
|
298 /* We need to check whether basic blocks are dominated by the edge
|
|
299 e, but we only have basic block dominators. This is easy to
|
|
300 fix -- when e->dest has exactly one predecessor, this corresponds
|
|
301 to blocks dominated by e->dest, if not, split the edge. */
|
|
302 if (!single_pred_p (e->dest))
|
|
303 e = single_pred_edge (split_edge (e));
|
|
304
|
|
305 /* It may happen that by removing path we remove one or more loops
|
|
306 we belong to. In this case first unloop the loops, then proceed
|
|
307 normally. We may assume that e->dest is not a header of any loop,
|
|
308 as it now has exactly one predecessor. */
|
|
309 while (loop_outer (e->src->loop_father)
|
|
310 && dominated_by_p (CDI_DOMINATORS,
|
|
311 e->src->loop_father->latch, e->dest))
|
|
312 unloop (e->src->loop_father, &irred_invalidated);
|
|
313
|
|
314 /* Identify the path. */
|
|
315 nrem = find_path (e, &rem_bbs);
|
|
316
|
|
317 n_bord_bbs = 0;
|
|
318 bord_bbs = XCNEWVEC (basic_block, n_basic_blocks);
|
|
319 seen = sbitmap_alloc (last_basic_block);
|
|
320 sbitmap_zero (seen);
|
|
321
|
|
322 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
|
|
323 for (i = 0; i < nrem; i++)
|
|
324 SET_BIT (seen, rem_bbs[i]->index);
|
|
325 for (i = 0; i < nrem; i++)
|
|
326 {
|
|
327 edge_iterator ei;
|
|
328 bb = rem_bbs[i];
|
|
329 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
|
|
330 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
|
|
331 {
|
|
332 SET_BIT (seen, ae->dest->index);
|
|
333 bord_bbs[n_bord_bbs++] = ae->dest;
|
|
334
|
|
335 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
|
|
336 irred_invalidated = true;
|
|
337 }
|
|
338 }
|
|
339
|
|
340 /* Remove the path. */
|
|
341 from = e->src;
|
|
342 remove_branch (e);
|
|
343 dom_bbs = NULL;
|
|
344
|
|
345 /* Cancel loops contained in the path. */
|
|
346 deleted_loop = XNEWVEC (struct loop *, nrem);
|
|
347 nreml = 0;
|
|
348 for (i = 0; i < nrem; i++)
|
|
349 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
|
|
350 deleted_loop[nreml++] = rem_bbs[i]->loop_father;
|
|
351
|
|
352 for (i = 0; i < nreml; i++)
|
|
353 cancel_loop_tree (deleted_loop[i]);
|
|
354 free (deleted_loop);
|
|
355
|
|
356 remove_bbs (rem_bbs, nrem);
|
|
357 free (rem_bbs);
|
|
358
|
|
359 /* Find blocks whose dominators may be affected. */
|
|
360 sbitmap_zero (seen);
|
|
361 for (i = 0; i < n_bord_bbs; i++)
|
|
362 {
|
|
363 basic_block ldom;
|
|
364
|
|
365 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
|
|
366 if (TEST_BIT (seen, bb->index))
|
|
367 continue;
|
|
368 SET_BIT (seen, bb->index);
|
|
369
|
|
370 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
|
|
371 ldom;
|
|
372 ldom = next_dom_son (CDI_DOMINATORS, ldom))
|
|
373 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
|
|
374 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
|
|
375 }
|
|
376
|
|
377 free (seen);
|
|
378
|
|
379 /* Recount dominators. */
|
|
380 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
|
|
381 VEC_free (basic_block, heap, dom_bbs);
|
|
382 free (bord_bbs);
|
|
383
|
|
384 /* Fix placements of basic blocks inside loops and the placement of
|
|
385 loops in the loop tree. */
|
|
386 fix_bb_placements (from, &irred_invalidated);
|
|
387 fix_loop_placements (from->loop_father, &irred_invalidated);
|
|
388
|
|
389 if (irred_invalidated
|
|
390 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
|
|
391 mark_irreducible_loops ();
|
|
392
|
|
393 return true;
|
|
394 }
|
|
395
|
|
396 /* Creates place for a new LOOP in loops structure. */
|
|
397
|
|
398 static void
|
|
399 place_new_loop (struct loop *loop)
|
|
400 {
|
|
401 loop->num = number_of_loops ();
|
|
402 VEC_safe_push (loop_p, gc, current_loops->larray, loop);
|
|
403 }
|
|
404
|
|
405 /* Given LOOP structure with filled header and latch, find the body of the
|
|
406 corresponding loop and add it to loops tree. Insert the LOOP as a son of
|
|
407 outer. */
|
|
408
|
|
409 void
|
|
410 add_loop (struct loop *loop, struct loop *outer)
|
|
411 {
|
|
412 basic_block *bbs;
|
|
413 int i, n;
|
|
414 struct loop *subloop;
|
|
415 edge e;
|
|
416 edge_iterator ei;
|
|
417
|
|
418 /* Add it to loop structure. */
|
|
419 place_new_loop (loop);
|
|
420 flow_loop_tree_node_add (outer, loop);
|
|
421
|
|
422 /* Find its nodes. */
|
|
423 bbs = XNEWVEC (basic_block, n_basic_blocks);
|
|
424 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
|
|
425
|
|
426 for (i = 0; i < n; i++)
|
|
427 {
|
|
428 if (bbs[i]->loop_father == outer)
|
|
429 {
|
|
430 remove_bb_from_loops (bbs[i]);
|
|
431 add_bb_to_loop (bbs[i], loop);
|
|
432 continue;
|
|
433 }
|
|
434
|
|
435 loop->num_nodes++;
|
|
436
|
|
437 /* If we find a direct subloop of OUTER, move it to LOOP. */
|
|
438 subloop = bbs[i]->loop_father;
|
|
439 if (loop_outer (subloop) == outer
|
|
440 && subloop->header == bbs[i])
|
|
441 {
|
|
442 flow_loop_tree_node_remove (subloop);
|
|
443 flow_loop_tree_node_add (loop, subloop);
|
|
444 }
|
|
445 }
|
|
446
|
|
447 /* Update the information about loop exit edges. */
|
|
448 for (i = 0; i < n; i++)
|
|
449 {
|
|
450 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
|
|
451 {
|
|
452 rescan_loop_exit (e, false, false);
|
|
453 }
|
|
454 }
|
|
455
|
|
456 free (bbs);
|
|
457 }
|
|
458
|
|
459 /* Multiply all frequencies in LOOP by NUM/DEN. */
|
|
460 void
|
|
461 scale_loop_frequencies (struct loop *loop, int num, int den)
|
|
462 {
|
|
463 basic_block *bbs;
|
|
464
|
|
465 bbs = get_loop_body (loop);
|
|
466 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
|
|
467 free (bbs);
|
|
468 }
|
|
469
|
|
470 /* Recompute dominance information for basic blocks outside LOOP. */
|
|
471
|
|
472 static void
|
|
473 update_dominators_in_loop (struct loop *loop)
|
|
474 {
|
|
475 VEC (basic_block, heap) *dom_bbs = NULL;
|
|
476 sbitmap seen;
|
|
477 basic_block *body;
|
|
478 unsigned i;
|
|
479
|
|
480 seen = sbitmap_alloc (last_basic_block);
|
|
481 sbitmap_zero (seen);
|
|
482 body = get_loop_body (loop);
|
|
483
|
|
484 for (i = 0; i < loop->num_nodes; i++)
|
|
485 SET_BIT (seen, body[i]->index);
|
|
486
|
|
487 for (i = 0; i < loop->num_nodes; i++)
|
|
488 {
|
|
489 basic_block ldom;
|
|
490
|
|
491 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
|
|
492 ldom;
|
|
493 ldom = next_dom_son (CDI_DOMINATORS, ldom))
|
|
494 if (!TEST_BIT (seen, ldom->index))
|
|
495 {
|
|
496 SET_BIT (seen, ldom->index);
|
|
497 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
|
|
498 }
|
|
499 }
|
|
500
|
|
501 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
|
|
502 free (body);
|
|
503 free (seen);
|
|
504 VEC_free (basic_block, heap, dom_bbs);
|
|
505 }
|
|
506
|
|
507 /* Creates an if region as shown above. CONDITION is used to create
|
|
508 the test for the if.
|
|
509
|
|
510 |
|
|
511 | ------------- -------------
|
|
512 | | pred_bb | | pred_bb |
|
|
513 | ------------- -------------
|
|
514 | | |
|
|
515 | | | ENTRY_EDGE
|
|
516 | | ENTRY_EDGE V
|
|
517 | | ====> -------------
|
|
518 | | | cond_bb |
|
|
519 | | | CONDITION |
|
|
520 | | -------------
|
|
521 | V / \
|
|
522 | ------------- e_false / \ e_true
|
|
523 | | succ_bb | V V
|
|
524 | ------------- ----------- -----------
|
|
525 | | false_bb | | true_bb |
|
|
526 | ----------- -----------
|
|
527 | \ /
|
|
528 | \ /
|
|
529 | V V
|
|
530 | -------------
|
|
531 | | join_bb |
|
|
532 | -------------
|
|
533 | | exit_edge (result)
|
|
534 | V
|
|
535 | -----------
|
|
536 | | succ_bb |
|
|
537 | -----------
|
|
538 |
|
|
539 */
|
|
540
|
|
541 edge
|
|
542 create_empty_if_region_on_edge (edge entry_edge, tree condition)
|
|
543 {
|
|
544
|
|
545 basic_block succ_bb, cond_bb, true_bb, false_bb, join_bb;
|
|
546 edge e_true, e_false, exit_edge;
|
|
547 gimple cond_stmt;
|
|
548 tree simple_cond;
|
|
549 gimple_stmt_iterator gsi;
|
|
550
|
|
551 succ_bb = entry_edge->dest;
|
|
552 cond_bb = split_edge (entry_edge);
|
|
553
|
|
554 /* Insert condition in cond_bb. */
|
|
555 gsi = gsi_last_bb (cond_bb);
|
|
556 simple_cond =
|
|
557 force_gimple_operand_gsi (&gsi, condition, true, NULL,
|
|
558 false, GSI_NEW_STMT);
|
|
559 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
|
|
560 gsi = gsi_last_bb (cond_bb);
|
|
561 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
|
|
562
|
|
563 join_bb = split_edge (single_succ_edge (cond_bb));
|
|
564
|
|
565 e_true = single_succ_edge (cond_bb);
|
|
566 true_bb = split_edge (e_true);
|
|
567
|
|
568 e_false = make_edge (cond_bb, join_bb, 0);
|
|
569 false_bb = split_edge (e_false);
|
|
570
|
|
571 e_true->flags &= ~EDGE_FALLTHRU;
|
|
572 e_true->flags |= EDGE_TRUE_VALUE;
|
|
573 e_false->flags &= ~EDGE_FALLTHRU;
|
|
574 e_false->flags |= EDGE_FALSE_VALUE;
|
|
575
|
|
576 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
|
|
577 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
|
|
578 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
|
|
579 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
|
|
580
|
|
581 exit_edge = single_succ_edge (join_bb);
|
|
582
|
|
583 if (single_pred_p (exit_edge->dest))
|
|
584 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
|
|
585
|
|
586 return exit_edge;
|
|
587 }
|
|
588
|
|
589 /* create_empty_loop_on_edge
|
|
590 |
|
|
591 | ------------- ------------------------
|
|
592 | | pred_bb | | pred_bb |
|
|
593 | ------------- | IV_0 = INITIAL_VALUE |
|
|
594 | | ------------------------
|
|
595 | | ______ | ENTRY_EDGE
|
|
596 | | ENTRY_EDGE / V V
|
|
597 | | ====> | -----------------------------
|
|
598 | | | | IV_BEFORE = phi (IV_0, IV) |
|
|
599 | | | | loop_header |
|
|
600 | V | | IV_BEFORE <= UPPER_BOUND |
|
|
601 | ------------- | -----------------------\-----
|
|
602 | | succ_bb | | | \
|
|
603 | ------------- | | \ exit_e
|
|
604 | | V V---------
|
|
605 | | -------------- | succ_bb |
|
|
606 | | | loop_latch | ----------
|
|
607 | | |IV = IV_BEFORE + STRIDE
|
|
608 | | --------------
|
|
609 | \ /
|
|
610 | \ ___ /
|
|
611
|
|
612 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
|
|
613 that is used before the increment of IV. IV_BEFORE should be used for
|
|
614 adding code to the body that uses the IV. OUTER is the outer loop in
|
|
615 which the new loop should be inserted. */
|
|
616
|
|
617 struct loop *
|
|
618 create_empty_loop_on_edge (edge entry_edge,
|
|
619 tree initial_value,
|
|
620 tree stride, tree upper_bound,
|
|
621 tree iv,
|
|
622 tree *iv_before,
|
|
623 struct loop *outer)
|
|
624 {
|
|
625 basic_block loop_header, loop_latch, succ_bb, pred_bb;
|
|
626 struct loop *loop;
|
|
627 int freq;
|
|
628 gcov_type cnt;
|
|
629 gimple_stmt_iterator gsi;
|
|
630 bool insert_after;
|
|
631 gimple_seq stmts;
|
|
632 gimple cond_expr;
|
|
633 tree exit_test;
|
|
634 edge exit_e;
|
|
635 int prob;
|
|
636 tree upper_bound_gimplified;
|
|
637
|
|
638 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
|
|
639
|
|
640 /* Create header, latch and wire up the loop. */
|
|
641 pred_bb = entry_edge->src;
|
|
642 loop_header = split_edge (entry_edge);
|
|
643 loop_latch = split_edge (single_succ_edge (loop_header));
|
|
644 succ_bb = single_succ (loop_latch);
|
|
645 make_edge (loop_header, succ_bb, 0);
|
|
646 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
|
|
647
|
|
648 /* Set immediate dominator information. */
|
|
649 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
|
|
650 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
|
|
651 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
|
|
652
|
|
653 /* Initialize a loop structure and put it in a loop hierarchy. */
|
|
654 loop = alloc_loop ();
|
|
655 loop->header = loop_header;
|
|
656 loop->latch = loop_latch;
|
|
657 add_loop (loop, outer);
|
|
658
|
|
659 /* TODO: Fix frequencies and counts. */
|
|
660 freq = EDGE_FREQUENCY (entry_edge);
|
|
661 cnt = entry_edge->count;
|
|
662
|
|
663 prob = REG_BR_PROB_BASE / 2;
|
|
664
|
|
665 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
|
|
666
|
|
667 /* Update dominators. */
|
|
668 update_dominators_in_loop (loop);
|
|
669
|
|
670 /* Construct IV code in loop. */
|
|
671 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
|
|
672 if (stmts)
|
|
673 {
|
|
674 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
|
|
675 gsi_commit_edge_inserts ();
|
|
676 }
|
|
677
|
|
678 standard_iv_increment_position (loop, &gsi, &insert_after);
|
|
679 create_iv (initial_value, stride, iv, loop, &gsi, insert_after,
|
|
680 iv_before, NULL);
|
|
681
|
|
682 /* Modify edge flags. */
|
|
683 exit_e = single_exit (loop);
|
|
684 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
|
|
685 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
|
|
686
|
|
687 gsi = gsi_last_bb (exit_e->src);
|
|
688
|
|
689 upper_bound_gimplified =
|
|
690 force_gimple_operand_gsi (&gsi, upper_bound, true, NULL,
|
|
691 false, GSI_NEW_STMT);
|
|
692 gsi = gsi_last_bb (exit_e->src);
|
|
693
|
|
694 cond_expr = gimple_build_cond
|
|
695 (LE_EXPR, *iv_before, upper_bound_gimplified, NULL_TREE, NULL_TREE);
|
|
696
|
|
697 exit_test = gimple_cond_lhs (cond_expr);
|
|
698 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
|
|
699 false, GSI_NEW_STMT);
|
|
700 gimple_cond_set_lhs (cond_expr, exit_test);
|
|
701 gsi = gsi_last_bb (exit_e->src);
|
|
702 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
|
|
703
|
|
704 return loop;
|
|
705 }
|
|
706
|
|
707 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
|
|
708 latch to header and update loop tree and dominators
|
|
709 accordingly. Everything between them plus LATCH_EDGE destination must
|
|
710 be dominated by HEADER_EDGE destination, and back-reachable from
|
|
711 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
|
|
712 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
|
|
713 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
|
|
714 Returns the newly created loop. Frequencies and counts in the new loop
|
|
715 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
|
|
716
|
|
717 struct loop *
|
|
718 loopify (edge latch_edge, edge header_edge,
|
|
719 basic_block switch_bb, edge true_edge, edge false_edge,
|
|
720 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
|
|
721 {
|
|
722 basic_block succ_bb = latch_edge->dest;
|
|
723 basic_block pred_bb = header_edge->src;
|
|
724 struct loop *loop = alloc_loop ();
|
|
725 struct loop *outer = loop_outer (succ_bb->loop_father);
|
|
726 int freq;
|
|
727 gcov_type cnt;
|
|
728 edge e;
|
|
729 edge_iterator ei;
|
|
730
|
|
731 loop->header = header_edge->dest;
|
|
732 loop->latch = latch_edge->src;
|
|
733
|
|
734 freq = EDGE_FREQUENCY (header_edge);
|
|
735 cnt = header_edge->count;
|
|
736
|
|
737 /* Redirect edges. */
|
|
738 loop_redirect_edge (latch_edge, loop->header);
|
|
739 loop_redirect_edge (true_edge, succ_bb);
|
|
740
|
|
741 /* During loop versioning, one of the switch_bb edge is already properly
|
|
742 set. Do not redirect it again unless redirect_all_edges is true. */
|
|
743 if (redirect_all_edges)
|
|
744 {
|
|
745 loop_redirect_edge (header_edge, switch_bb);
|
|
746 loop_redirect_edge (false_edge, loop->header);
|
|
747
|
|
748 /* Update dominators. */
|
|
749 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
|
|
750 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
|
|
751 }
|
|
752
|
|
753 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
|
|
754
|
|
755 /* Compute new loop. */
|
|
756 add_loop (loop, outer);
|
|
757
|
|
758 /* Add switch_bb to appropriate loop. */
|
|
759 if (switch_bb->loop_father)
|
|
760 remove_bb_from_loops (switch_bb);
|
|
761 add_bb_to_loop (switch_bb, outer);
|
|
762
|
|
763 /* Fix frequencies. */
|
|
764 if (redirect_all_edges)
|
|
765 {
|
|
766 switch_bb->frequency = freq;
|
|
767 switch_bb->count = cnt;
|
|
768 FOR_EACH_EDGE (e, ei, switch_bb->succs)
|
|
769 {
|
|
770 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
|
|
771 }
|
|
772 }
|
|
773 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
|
|
774 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
|
|
775 update_dominators_in_loop (loop);
|
|
776
|
|
777 return loop;
|
|
778 }
|
|
779
|
|
780 /* Remove the latch edge of a LOOP and update loops to indicate that
|
|
781 the LOOP was removed. After this function, original loop latch will
|
|
782 have no successor, which caller is expected to fix somehow.
|
|
783
|
|
784 If this may cause the information about irreducible regions to become
|
|
785 invalid, IRRED_INVALIDATED is set to true. */
|
|
786
|
|
787 static void
|
|
788 unloop (struct loop *loop, bool *irred_invalidated)
|
|
789 {
|
|
790 basic_block *body;
|
|
791 struct loop *ploop;
|
|
792 unsigned i, n;
|
|
793 basic_block latch = loop->latch;
|
|
794 bool dummy = false;
|
|
795
|
|
796 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
|
|
797 *irred_invalidated = true;
|
|
798
|
|
799 /* This is relatively straightforward. The dominators are unchanged, as
|
|
800 loop header dominates loop latch, so the only thing we have to care of
|
|
801 is the placement of loops and basic blocks inside the loop tree. We
|
|
802 move them all to the loop->outer, and then let fix_bb_placements do
|
|
803 its work. */
|
|
804
|
|
805 body = get_loop_body (loop);
|
|
806 n = loop->num_nodes;
|
|
807 for (i = 0; i < n; i++)
|
|
808 if (body[i]->loop_father == loop)
|
|
809 {
|
|
810 remove_bb_from_loops (body[i]);
|
|
811 add_bb_to_loop (body[i], loop_outer (loop));
|
|
812 }
|
|
813 free(body);
|
|
814
|
|
815 while (loop->inner)
|
|
816 {
|
|
817 ploop = loop->inner;
|
|
818 flow_loop_tree_node_remove (ploop);
|
|
819 flow_loop_tree_node_add (loop_outer (loop), ploop);
|
|
820 }
|
|
821
|
|
822 /* Remove the loop and free its data. */
|
|
823 delete_loop (loop);
|
|
824
|
|
825 remove_edge (single_succ_edge (latch));
|
|
826
|
|
827 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
|
|
828 there is an irreducible region inside the cancelled loop, the flags will
|
|
829 be still correct. */
|
|
830 fix_bb_placements (latch, &dummy);
|
|
831 }
|
|
832
|
|
833 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
|
|
834 condition stated in description of fix_loop_placement holds for them.
|
|
835 It is used in case when we removed some edges coming out of LOOP, which
|
|
836 may cause the right placement of LOOP inside loop tree to change.
|
|
837
|
|
838 IRRED_INVALIDATED is set to true if a change in the loop structures might
|
|
839 invalidate the information about irreducible regions. */
|
|
840
|
|
841 static void
|
|
842 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
|
|
843 {
|
|
844 struct loop *outer;
|
|
845
|
|
846 while (loop_outer (loop))
|
|
847 {
|
|
848 outer = loop_outer (loop);
|
|
849 if (!fix_loop_placement (loop))
|
|
850 break;
|
|
851
|
|
852 /* Changing the placement of a loop in the loop tree may alter the
|
|
853 validity of condition 2) of the description of fix_bb_placement
|
|
854 for its preheader, because the successor is the header and belongs
|
|
855 to the loop. So call fix_bb_placements to fix up the placement
|
|
856 of the preheader and (possibly) of its predecessors. */
|
|
857 fix_bb_placements (loop_preheader_edge (loop)->src,
|
|
858 irred_invalidated);
|
|
859 loop = outer;
|
|
860 }
|
|
861 }
|
|
862
|
|
863 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
|
|
864 created loop into loops structure. */
|
|
865 struct loop *
|
|
866 duplicate_loop (struct loop *loop, struct loop *target)
|
|
867 {
|
|
868 struct loop *cloop;
|
|
869 cloop = alloc_loop ();
|
|
870 place_new_loop (cloop);
|
|
871
|
|
872 /* Mark the new loop as copy of LOOP. */
|
|
873 set_loop_copy (loop, cloop);
|
|
874
|
|
875 /* Add it to target. */
|
|
876 flow_loop_tree_node_add (target, cloop);
|
|
877
|
|
878 return cloop;
|
|
879 }
|
|
880
|
|
881 /* Copies structure of subloops of LOOP into TARGET loop, placing
|
|
882 newly created loops into loop tree. */
|
|
883 static void
|
|
884 duplicate_subloops (struct loop *loop, struct loop *target)
|
|
885 {
|
|
886 struct loop *aloop, *cloop;
|
|
887
|
|
888 for (aloop = loop->inner; aloop; aloop = aloop->next)
|
|
889 {
|
|
890 cloop = duplicate_loop (aloop, target);
|
|
891 duplicate_subloops (aloop, cloop);
|
|
892 }
|
|
893 }
|
|
894
|
|
895 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
|
|
896 into TARGET loop, placing newly created loops into loop tree. */
|
|
897 static void
|
|
898 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
|
|
899 {
|
|
900 struct loop *aloop;
|
|
901 int i;
|
|
902
|
|
903 for (i = 0; i < n; i++)
|
|
904 {
|
|
905 aloop = duplicate_loop (copied_loops[i], target);
|
|
906 duplicate_subloops (copied_loops[i], aloop);
|
|
907 }
|
|
908 }
|
|
909
|
|
910 /* Redirects edge E to basic block DEST. */
|
|
911 static void
|
|
912 loop_redirect_edge (edge e, basic_block dest)
|
|
913 {
|
|
914 if (e->dest == dest)
|
|
915 return;
|
|
916
|
|
917 redirect_edge_and_branch_force (e, dest);
|
|
918 }
|
|
919
|
|
920 /* Check whether LOOP's body can be duplicated. */
|
|
921 bool
|
|
922 can_duplicate_loop_p (const struct loop *loop)
|
|
923 {
|
|
924 int ret;
|
|
925 basic_block *bbs = get_loop_body (loop);
|
|
926
|
|
927 ret = can_copy_bbs_p (bbs, loop->num_nodes);
|
|
928 free (bbs);
|
|
929
|
|
930 return ret;
|
|
931 }
|
|
932
|
|
933 /* Sets probability and count of edge E to zero. The probability and count
|
|
934 is redistributed evenly to the remaining edges coming from E->src. */
|
|
935
|
|
936 static void
|
|
937 set_zero_probability (edge e)
|
|
938 {
|
|
939 basic_block bb = e->src;
|
|
940 edge_iterator ei;
|
|
941 edge ae, last = NULL;
|
|
942 unsigned n = EDGE_COUNT (bb->succs);
|
|
943 gcov_type cnt = e->count, cnt1;
|
|
944 unsigned prob = e->probability, prob1;
|
|
945
|
|
946 gcc_assert (n > 1);
|
|
947 cnt1 = cnt / (n - 1);
|
|
948 prob1 = prob / (n - 1);
|
|
949
|
|
950 FOR_EACH_EDGE (ae, ei, bb->succs)
|
|
951 {
|
|
952 if (ae == e)
|
|
953 continue;
|
|
954
|
|
955 ae->probability += prob1;
|
|
956 ae->count += cnt1;
|
|
957 last = ae;
|
|
958 }
|
|
959
|
|
960 /* Move the rest to one of the edges. */
|
|
961 last->probability += prob % (n - 1);
|
|
962 last->count += cnt % (n - 1);
|
|
963
|
|
964 e->probability = 0;
|
|
965 e->count = 0;
|
|
966 }
|
|
967
|
|
968 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
|
|
969 loop structure and dominators. E's destination must be LOOP header for
|
|
970 this to work, i.e. it must be entry or latch edge of this loop; these are
|
|
971 unique, as the loops must have preheaders for this function to work
|
|
972 correctly (in case E is latch, the function unrolls the loop, if E is entry
|
|
973 edge, it peels the loop). Store edges created by copying ORIG edge from
|
|
974 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
|
|
975 original LOOP body, the other copies are numbered in order given by control
|
|
976 flow through them) into TO_REMOVE array. Returns false if duplication is
|
|
977 impossible. */
|
|
978
|
|
979 bool
|
|
980 duplicate_loop_to_header_edge (struct loop *loop, edge e,
|
|
981 unsigned int ndupl, sbitmap wont_exit,
|
|
982 edge orig, VEC (edge, heap) **to_remove,
|
|
983 int flags)
|
|
984 {
|
|
985 struct loop *target, *aloop;
|
|
986 struct loop **orig_loops;
|
|
987 unsigned n_orig_loops;
|
|
988 basic_block header = loop->header, latch = loop->latch;
|
|
989 basic_block *new_bbs, *bbs, *first_active;
|
|
990 basic_block new_bb, bb, first_active_latch = NULL;
|
|
991 edge ae, latch_edge;
|
|
992 edge spec_edges[2], new_spec_edges[2];
|
|
993 #define SE_LATCH 0
|
|
994 #define SE_ORIG 1
|
|
995 unsigned i, j, n;
|
|
996 int is_latch = (latch == e->src);
|
|
997 int scale_act = 0, *scale_step = NULL, scale_main = 0;
|
|
998 int scale_after_exit = 0;
|
|
999 int p, freq_in, freq_le, freq_out_orig;
|
|
1000 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
|
|
1001 int add_irreducible_flag;
|
|
1002 basic_block place_after;
|
|
1003 bitmap bbs_to_scale = NULL;
|
|
1004 bitmap_iterator bi;
|
|
1005
|
|
1006 gcc_assert (e->dest == loop->header);
|
|
1007 gcc_assert (ndupl > 0);
|
|
1008
|
|
1009 if (orig)
|
|
1010 {
|
|
1011 /* Orig must be edge out of the loop. */
|
|
1012 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
|
|
1013 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
|
|
1014 }
|
|
1015
|
|
1016 n = loop->num_nodes;
|
|
1017 bbs = get_loop_body_in_dom_order (loop);
|
|
1018 gcc_assert (bbs[0] == loop->header);
|
|
1019 gcc_assert (bbs[n - 1] == loop->latch);
|
|
1020
|
|
1021 /* Check whether duplication is possible. */
|
|
1022 if (!can_copy_bbs_p (bbs, loop->num_nodes))
|
|
1023 {
|
|
1024 free (bbs);
|
|
1025 return false;
|
|
1026 }
|
|
1027 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
|
|
1028
|
|
1029 /* In case we are doing loop peeling and the loop is in the middle of
|
|
1030 irreducible region, the peeled copies will be inside it too. */
|
|
1031 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
|
|
1032 gcc_assert (!is_latch || !add_irreducible_flag);
|
|
1033
|
|
1034 /* Find edge from latch. */
|
|
1035 latch_edge = loop_latch_edge (loop);
|
|
1036
|
|
1037 if (flags & DLTHE_FLAG_UPDATE_FREQ)
|
|
1038 {
|
|
1039 /* Calculate coefficients by that we have to scale frequencies
|
|
1040 of duplicated loop bodies. */
|
|
1041 freq_in = header->frequency;
|
|
1042 freq_le = EDGE_FREQUENCY (latch_edge);
|
|
1043 if (freq_in == 0)
|
|
1044 freq_in = 1;
|
|
1045 if (freq_in < freq_le)
|
|
1046 freq_in = freq_le;
|
|
1047 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
|
|
1048 if (freq_out_orig > freq_in - freq_le)
|
|
1049 freq_out_orig = freq_in - freq_le;
|
|
1050 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
|
|
1051 prob_pass_wont_exit =
|
|
1052 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
|
|
1053
|
|
1054 if (orig
|
|
1055 && REG_BR_PROB_BASE - orig->probability != 0)
|
|
1056 {
|
|
1057 /* The blocks that are dominated by a removed exit edge ORIG have
|
|
1058 frequencies scaled by this. */
|
|
1059 scale_after_exit = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE,
|
|
1060 REG_BR_PROB_BASE - orig->probability);
|
|
1061 bbs_to_scale = BITMAP_ALLOC (NULL);
|
|
1062 for (i = 0; i < n; i++)
|
|
1063 {
|
|
1064 if (bbs[i] != orig->src
|
|
1065 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
|
|
1066 bitmap_set_bit (bbs_to_scale, i);
|
|
1067 }
|
|
1068 }
|
|
1069
|
|
1070 scale_step = XNEWVEC (int, ndupl);
|
|
1071
|
|
1072 for (i = 1; i <= ndupl; i++)
|
|
1073 scale_step[i - 1] = TEST_BIT (wont_exit, i)
|
|
1074 ? prob_pass_wont_exit
|
|
1075 : prob_pass_thru;
|
|
1076
|
|
1077 /* Complete peeling is special as the probability of exit in last
|
|
1078 copy becomes 1. */
|
|
1079 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
|
|
1080 {
|
|
1081 int wanted_freq = EDGE_FREQUENCY (e);
|
|
1082
|
|
1083 if (wanted_freq > freq_in)
|
|
1084 wanted_freq = freq_in;
|
|
1085
|
|
1086 gcc_assert (!is_latch);
|
|
1087 /* First copy has frequency of incoming edge. Each subsequent
|
|
1088 frequency should be reduced by prob_pass_wont_exit. Caller
|
|
1089 should've managed the flags so all except for original loop
|
|
1090 has won't exist set. */
|
|
1091 scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
|
|
1092 /* Now simulate the duplication adjustments and compute header
|
|
1093 frequency of the last copy. */
|
|
1094 for (i = 0; i < ndupl; i++)
|
|
1095 wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE);
|
|
1096 scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
|
|
1097 }
|
|
1098 else if (is_latch)
|
|
1099 {
|
|
1100 prob_pass_main = TEST_BIT (wont_exit, 0)
|
|
1101 ? prob_pass_wont_exit
|
|
1102 : prob_pass_thru;
|
|
1103 p = prob_pass_main;
|
|
1104 scale_main = REG_BR_PROB_BASE;
|
|
1105 for (i = 0; i < ndupl; i++)
|
|
1106 {
|
|
1107 scale_main += p;
|
|
1108 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
|
|
1109 }
|
|
1110 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
|
|
1111 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
|
|
1112 }
|
|
1113 else
|
|
1114 {
|
|
1115 scale_main = REG_BR_PROB_BASE;
|
|
1116 for (i = 0; i < ndupl; i++)
|
|
1117 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
|
|
1118 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
|
|
1119 }
|
|
1120 for (i = 0; i < ndupl; i++)
|
|
1121 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
|
|
1122 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
|
|
1123 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
|
|
1124 }
|
|
1125
|
|
1126 /* Loop the new bbs will belong to. */
|
|
1127 target = e->src->loop_father;
|
|
1128
|
|
1129 /* Original loops. */
|
|
1130 n_orig_loops = 0;
|
|
1131 for (aloop = loop->inner; aloop; aloop = aloop->next)
|
|
1132 n_orig_loops++;
|
|
1133 orig_loops = XCNEWVEC (struct loop *, n_orig_loops);
|
|
1134 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
|
|
1135 orig_loops[i] = aloop;
|
|
1136
|
|
1137 set_loop_copy (loop, target);
|
|
1138
|
|
1139 first_active = XNEWVEC (basic_block, n);
|
|
1140 if (is_latch)
|
|
1141 {
|
|
1142 memcpy (first_active, bbs, n * sizeof (basic_block));
|
|
1143 first_active_latch = latch;
|
|
1144 }
|
|
1145
|
|
1146 spec_edges[SE_ORIG] = orig;
|
|
1147 spec_edges[SE_LATCH] = latch_edge;
|
|
1148
|
|
1149 place_after = e->src;
|
|
1150 for (j = 0; j < ndupl; j++)
|
|
1151 {
|
|
1152 /* Copy loops. */
|
|
1153 copy_loops_to (orig_loops, n_orig_loops, target);
|
|
1154
|
|
1155 /* Copy bbs. */
|
|
1156 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
|
|
1157 place_after);
|
|
1158 place_after = new_spec_edges[SE_LATCH]->src;
|
|
1159
|
|
1160 if (flags & DLTHE_RECORD_COPY_NUMBER)
|
|
1161 for (i = 0; i < n; i++)
|
|
1162 {
|
|
1163 gcc_assert (!new_bbs[i]->aux);
|
|
1164 new_bbs[i]->aux = (void *)(size_t)(j + 1);
|
|
1165 }
|
|
1166
|
|
1167 /* Note whether the blocks and edges belong to an irreducible loop. */
|
|
1168 if (add_irreducible_flag)
|
|
1169 {
|
|
1170 for (i = 0; i < n; i++)
|
|
1171 new_bbs[i]->flags |= BB_DUPLICATED;
|
|
1172 for (i = 0; i < n; i++)
|
|
1173 {
|
|
1174 edge_iterator ei;
|
|
1175 new_bb = new_bbs[i];
|
|
1176 if (new_bb->loop_father == target)
|
|
1177 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
|
|
1178
|
|
1179 FOR_EACH_EDGE (ae, ei, new_bb->succs)
|
|
1180 if ((ae->dest->flags & BB_DUPLICATED)
|
|
1181 && (ae->src->loop_father == target
|
|
1182 || ae->dest->loop_father == target))
|
|
1183 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
|
|
1184 }
|
|
1185 for (i = 0; i < n; i++)
|
|
1186 new_bbs[i]->flags &= ~BB_DUPLICATED;
|
|
1187 }
|
|
1188
|
|
1189 /* Redirect the special edges. */
|
|
1190 if (is_latch)
|
|
1191 {
|
|
1192 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
|
|
1193 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
|
|
1194 loop->header);
|
|
1195 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
|
|
1196 latch = loop->latch = new_bbs[n - 1];
|
|
1197 e = latch_edge = new_spec_edges[SE_LATCH];
|
|
1198 }
|
|
1199 else
|
|
1200 {
|
|
1201 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
|
|
1202 loop->header);
|
|
1203 redirect_edge_and_branch_force (e, new_bbs[0]);
|
|
1204 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
|
|
1205 e = new_spec_edges[SE_LATCH];
|
|
1206 }
|
|
1207
|
|
1208 /* Record exit edge in this copy. */
|
|
1209 if (orig && TEST_BIT (wont_exit, j + 1))
|
|
1210 {
|
|
1211 if (to_remove)
|
|
1212 VEC_safe_push (edge, heap, *to_remove, new_spec_edges[SE_ORIG]);
|
|
1213 set_zero_probability (new_spec_edges[SE_ORIG]);
|
|
1214
|
|
1215 /* Scale the frequencies of the blocks dominated by the exit. */
|
|
1216 if (bbs_to_scale)
|
|
1217 {
|
|
1218 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
|
|
1219 {
|
|
1220 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
|
|
1221 REG_BR_PROB_BASE);
|
|
1222 }
|
|
1223 }
|
|
1224 }
|
|
1225
|
|
1226 /* Record the first copy in the control flow order if it is not
|
|
1227 the original loop (i.e. in case of peeling). */
|
|
1228 if (!first_active_latch)
|
|
1229 {
|
|
1230 memcpy (first_active, new_bbs, n * sizeof (basic_block));
|
|
1231 first_active_latch = new_bbs[n - 1];
|
|
1232 }
|
|
1233
|
|
1234 /* Set counts and frequencies. */
|
|
1235 if (flags & DLTHE_FLAG_UPDATE_FREQ)
|
|
1236 {
|
|
1237 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
|
|
1238 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
|
|
1239 }
|
|
1240 }
|
|
1241 free (new_bbs);
|
|
1242 free (orig_loops);
|
|
1243
|
|
1244 /* Record the exit edge in the original loop body, and update the frequencies. */
|
|
1245 if (orig && TEST_BIT (wont_exit, 0))
|
|
1246 {
|
|
1247 if (to_remove)
|
|
1248 VEC_safe_push (edge, heap, *to_remove, orig);
|
|
1249 set_zero_probability (orig);
|
|
1250
|
|
1251 /* Scale the frequencies of the blocks dominated by the exit. */
|
|
1252 if (bbs_to_scale)
|
|
1253 {
|
|
1254 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
|
|
1255 {
|
|
1256 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
|
|
1257 REG_BR_PROB_BASE);
|
|
1258 }
|
|
1259 }
|
|
1260 }
|
|
1261
|
|
1262 /* Update the original loop. */
|
|
1263 if (!is_latch)
|
|
1264 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
|
|
1265 if (flags & DLTHE_FLAG_UPDATE_FREQ)
|
|
1266 {
|
|
1267 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
|
|
1268 free (scale_step);
|
|
1269 }
|
|
1270
|
|
1271 /* Update dominators of outer blocks if affected. */
|
|
1272 for (i = 0; i < n; i++)
|
|
1273 {
|
|
1274 basic_block dominated, dom_bb;
|
|
1275 VEC (basic_block, heap) *dom_bbs;
|
|
1276 unsigned j;
|
|
1277
|
|
1278 bb = bbs[i];
|
|
1279 bb->aux = 0;
|
|
1280
|
|
1281 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
|
|
1282 for (j = 0; VEC_iterate (basic_block, dom_bbs, j, dominated); j++)
|
|
1283 {
|
|
1284 if (flow_bb_inside_loop_p (loop, dominated))
|
|
1285 continue;
|
|
1286 dom_bb = nearest_common_dominator (
|
|
1287 CDI_DOMINATORS, first_active[i], first_active_latch);
|
|
1288 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
|
|
1289 }
|
|
1290 VEC_free (basic_block, heap, dom_bbs);
|
|
1291 }
|
|
1292 free (first_active);
|
|
1293
|
|
1294 free (bbs);
|
|
1295 BITMAP_FREE (bbs_to_scale);
|
|
1296
|
|
1297 return true;
|
|
1298 }
|
|
1299
|
|
1300 /* A callback for make_forwarder block, to redirect all edges except for
|
|
1301 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
|
|
1302 whether to redirect it. */
|
|
1303
|
|
1304 edge mfb_kj_edge;
|
|
1305 bool
|
|
1306 mfb_keep_just (edge e)
|
|
1307 {
|
|
1308 return e != mfb_kj_edge;
|
|
1309 }
|
|
1310
|
|
1311 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
|
|
1312
|
|
1313 static bool
|
|
1314 has_preds_from_loop (basic_block block, struct loop *loop)
|
|
1315 {
|
|
1316 edge e;
|
|
1317 edge_iterator ei;
|
|
1318
|
|
1319 FOR_EACH_EDGE (e, ei, block->preds)
|
|
1320 if (e->src->loop_father == loop)
|
|
1321 return true;
|
|
1322 return false;
|
|
1323 }
|
|
1324
|
|
1325 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
|
|
1326 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
|
|
1327 entry; otherwise we also force preheader block to have only one successor.
|
|
1328 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
|
|
1329 to be a fallthru predecessor to the loop header and to have only
|
|
1330 predecessors from outside of the loop.
|
|
1331 The function also updates dominators. */
|
|
1332
|
|
1333 basic_block
|
|
1334 create_preheader (struct loop *loop, int flags)
|
|
1335 {
|
|
1336 edge e, fallthru;
|
|
1337 basic_block dummy;
|
|
1338 int nentry = 0;
|
|
1339 bool irred = false;
|
|
1340 bool latch_edge_was_fallthru;
|
|
1341 edge one_succ_pred = NULL, single_entry = NULL;
|
|
1342 edge_iterator ei;
|
|
1343
|
|
1344 FOR_EACH_EDGE (e, ei, loop->header->preds)
|
|
1345 {
|
|
1346 if (e->src == loop->latch)
|
|
1347 continue;
|
|
1348 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
|
|
1349 nentry++;
|
|
1350 single_entry = e;
|
|
1351 if (single_succ_p (e->src))
|
|
1352 one_succ_pred = e;
|
|
1353 }
|
|
1354 gcc_assert (nentry);
|
|
1355 if (nentry == 1)
|
|
1356 {
|
|
1357 bool need_forwarder_block = false;
|
|
1358
|
|
1359 /* We do not allow entry block to be the loop preheader, since we
|
|
1360 cannot emit code there. */
|
|
1361 if (single_entry->src == ENTRY_BLOCK_PTR)
|
|
1362 need_forwarder_block = true;
|
|
1363 else
|
|
1364 {
|
|
1365 /* If we want simple preheaders, also force the preheader to have
|
|
1366 just a single successor. */
|
|
1367 if ((flags & CP_SIMPLE_PREHEADERS)
|
|
1368 && !single_succ_p (single_entry->src))
|
|
1369 need_forwarder_block = true;
|
|
1370 /* If we want fallthru preheaders, also create forwarder block when
|
|
1371 preheader ends with a jump or has predecessors from loop. */
|
|
1372 else if ((flags & CP_FALLTHRU_PREHEADERS)
|
|
1373 && (JUMP_P (BB_END (single_entry->src))
|
|
1374 || has_preds_from_loop (single_entry->src, loop)))
|
|
1375 need_forwarder_block = true;
|
|
1376 }
|
|
1377 if (! need_forwarder_block)
|
|
1378 return NULL;
|
|
1379 }
|
|
1380
|
|
1381 mfb_kj_edge = loop_latch_edge (loop);
|
|
1382 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
|
|
1383 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
|
|
1384 dummy = fallthru->src;
|
|
1385 loop->header = fallthru->dest;
|
|
1386
|
|
1387 /* Try to be clever in placing the newly created preheader. The idea is to
|
|
1388 avoid breaking any "fallthruness" relationship between blocks.
|
|
1389
|
|
1390 The preheader was created just before the header and all incoming edges
|
|
1391 to the header were redirected to the preheader, except the latch edge.
|
|
1392 So the only problematic case is when this latch edge was a fallthru
|
|
1393 edge: it is not anymore after the preheader creation so we have broken
|
|
1394 the fallthruness. We're therefore going to look for a better place. */
|
|
1395 if (latch_edge_was_fallthru)
|
|
1396 {
|
|
1397 if (one_succ_pred)
|
|
1398 e = one_succ_pred;
|
|
1399 else
|
|
1400 e = EDGE_PRED (dummy, 0);
|
|
1401
|
|
1402 move_block_after (dummy, e->src);
|
|
1403 }
|
|
1404
|
|
1405 if (irred)
|
|
1406 {
|
|
1407 dummy->flags |= BB_IRREDUCIBLE_LOOP;
|
|
1408 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
|
|
1409 }
|
|
1410
|
|
1411 if (dump_file)
|
|
1412 fprintf (dump_file, "Created preheader block for loop %i\n",
|
|
1413 loop->num);
|
|
1414
|
|
1415 if (flags & CP_FALLTHRU_PREHEADERS)
|
|
1416 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
|
|
1417 && !JUMP_P (BB_END (dummy)));
|
|
1418
|
|
1419 return dummy;
|
|
1420 }
|
|
1421
|
|
1422 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
|
|
1423
|
|
1424 void
|
|
1425 create_preheaders (int flags)
|
|
1426 {
|
|
1427 loop_iterator li;
|
|
1428 struct loop *loop;
|
|
1429
|
|
1430 if (!current_loops)
|
|
1431 return;
|
|
1432
|
|
1433 FOR_EACH_LOOP (li, loop, 0)
|
|
1434 create_preheader (loop, flags);
|
|
1435 loops_state_set (LOOPS_HAVE_PREHEADERS);
|
|
1436 }
|
|
1437
|
|
1438 /* Forces all loop latches to have only single successor. */
|
|
1439
|
|
1440 void
|
|
1441 force_single_succ_latches (void)
|
|
1442 {
|
|
1443 loop_iterator li;
|
|
1444 struct loop *loop;
|
|
1445 edge e;
|
|
1446
|
|
1447 FOR_EACH_LOOP (li, loop, 0)
|
|
1448 {
|
|
1449 if (loop->latch != loop->header && single_succ_p (loop->latch))
|
|
1450 continue;
|
|
1451
|
|
1452 e = find_edge (loop->latch, loop->header);
|
|
1453
|
|
1454 split_edge (e);
|
|
1455 }
|
|
1456 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
|
|
1457 }
|
|
1458
|
|
1459 /* This function is called from loop_version. It splits the entry edge
|
|
1460 of the loop we want to version, adds the versioning condition, and
|
|
1461 adjust the edges to the two versions of the loop appropriately.
|
|
1462 e is an incoming edge. Returns the basic block containing the
|
|
1463 condition.
|
|
1464
|
|
1465 --- edge e ---- > [second_head]
|
|
1466
|
|
1467 Split it and insert new conditional expression and adjust edges.
|
|
1468
|
|
1469 --- edge e ---> [cond expr] ---> [first_head]
|
|
1470 |
|
|
1471 +---------> [second_head]
|
|
1472
|
|
1473 THEN_PROB is the probability of then branch of the condition. */
|
|
1474
|
|
1475 static basic_block
|
|
1476 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
|
|
1477 edge e, void *cond_expr, unsigned then_prob)
|
|
1478 {
|
|
1479 basic_block new_head = NULL;
|
|
1480 edge e1;
|
|
1481
|
|
1482 gcc_assert (e->dest == second_head);
|
|
1483
|
|
1484 /* Split edge 'e'. This will create a new basic block, where we can
|
|
1485 insert conditional expr. */
|
|
1486 new_head = split_edge (e);
|
|
1487
|
|
1488 lv_add_condition_to_bb (first_head, second_head, new_head,
|
|
1489 cond_expr);
|
|
1490
|
|
1491 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
|
|
1492 e = single_succ_edge (new_head);
|
|
1493 e1 = make_edge (new_head, first_head,
|
|
1494 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
|
|
1495 e1->probability = then_prob;
|
|
1496 e->probability = REG_BR_PROB_BASE - then_prob;
|
|
1497 e1->count = RDIV (e->count * e1->probability, REG_BR_PROB_BASE);
|
|
1498 e->count = RDIV (e->count * e->probability, REG_BR_PROB_BASE);
|
|
1499
|
|
1500 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
|
|
1501 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
|
|
1502
|
|
1503 /* Adjust loop header phi nodes. */
|
|
1504 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
|
|
1505
|
|
1506 return new_head;
|
|
1507 }
|
|
1508
|
|
1509 /* Main entry point for Loop Versioning transformation.
|
|
1510
|
|
1511 This transformation given a condition and a loop, creates
|
|
1512 -if (condition) { loop_copy1 } else { loop_copy2 },
|
|
1513 where loop_copy1 is the loop transformed in one way, and loop_copy2
|
|
1514 is the loop transformed in another way (or unchanged). 'condition'
|
|
1515 may be a run time test for things that were not resolved by static
|
|
1516 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
|
|
1517
|
|
1518 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
|
|
1519 is the ratio by that the frequencies in the original loop should
|
|
1520 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
|
|
1521 new loop should be scaled.
|
|
1522
|
|
1523 If PLACE_AFTER is true, we place the new loop after LOOP in the
|
|
1524 instruction stream, otherwise it is placed before LOOP. */
|
|
1525
|
|
1526 struct loop *
|
|
1527 loop_version (struct loop *loop,
|
|
1528 void *cond_expr, basic_block *condition_bb,
|
|
1529 unsigned then_prob, unsigned then_scale, unsigned else_scale,
|
|
1530 bool place_after)
|
|
1531 {
|
|
1532 basic_block first_head, second_head;
|
|
1533 edge entry, latch_edge, true_edge, false_edge;
|
|
1534 int irred_flag;
|
|
1535 struct loop *nloop;
|
|
1536 basic_block cond_bb;
|
|
1537
|
|
1538 /* Record entry and latch edges for the loop */
|
|
1539 entry = loop_preheader_edge (loop);
|
|
1540 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
|
|
1541 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
|
|
1542
|
|
1543 /* Note down head of loop as first_head. */
|
|
1544 first_head = entry->dest;
|
|
1545
|
|
1546 /* Duplicate loop. */
|
|
1547 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
|
|
1548 NULL, NULL, NULL, 0))
|
|
1549 return NULL;
|
|
1550
|
|
1551 /* After duplication entry edge now points to new loop head block.
|
|
1552 Note down new head as second_head. */
|
|
1553 second_head = entry->dest;
|
|
1554
|
|
1555 /* Split loop entry edge and insert new block with cond expr. */
|
|
1556 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
|
|
1557 entry, cond_expr, then_prob);
|
|
1558 if (condition_bb)
|
|
1559 *condition_bb = cond_bb;
|
|
1560
|
|
1561 if (!cond_bb)
|
|
1562 {
|
|
1563 entry->flags |= irred_flag;
|
|
1564 return NULL;
|
|
1565 }
|
|
1566
|
|
1567 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
|
|
1568
|
|
1569 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
|
|
1570 nloop = loopify (latch_edge,
|
|
1571 single_pred_edge (get_bb_copy (loop->header)),
|
|
1572 cond_bb, true_edge, false_edge,
|
|
1573 false /* Do not redirect all edges. */,
|
|
1574 then_scale, else_scale);
|
|
1575
|
|
1576 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
|
|
1577 lv_flush_pending_stmts (latch_edge);
|
|
1578
|
|
1579 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
|
|
1580 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
|
|
1581 lv_flush_pending_stmts (false_edge);
|
|
1582 /* Adjust irreducible flag. */
|
|
1583 if (irred_flag)
|
|
1584 {
|
|
1585 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
|
|
1586 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
|
|
1587 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
|
|
1588 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
|
|
1589 }
|
|
1590
|
|
1591 if (place_after)
|
|
1592 {
|
|
1593 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
|
|
1594 unsigned i;
|
|
1595
|
|
1596 after = loop->latch;
|
|
1597
|
|
1598 for (i = 0; i < nloop->num_nodes; i++)
|
|
1599 {
|
|
1600 move_block_after (bbs[i], after);
|
|
1601 after = bbs[i];
|
|
1602 }
|
|
1603 free (bbs);
|
|
1604 }
|
|
1605
|
|
1606 /* At this point condition_bb is loop preheader with two successors,
|
|
1607 first_head and second_head. Make sure that loop preheader has only
|
|
1608 one successor. */
|
|
1609 split_edge (loop_preheader_edge (loop));
|
|
1610 split_edge (loop_preheader_edge (nloop));
|
|
1611
|
|
1612 return nloop;
|
|
1613 }
|
|
1614
|
|
1615 /* The structure of loops might have changed. Some loops might get removed
|
|
1616 (and their headers and latches were set to NULL), loop exists might get
|
|
1617 removed (thus the loop nesting may be wrong), and some blocks and edges
|
|
1618 were changed (so the information about bb --> loop mapping does not have
|
|
1619 to be correct). But still for the remaining loops the header dominates
|
|
1620 the latch, and loops did not get new subloops (new loops might possibly
|
|
1621 get created, but we are not interested in them). Fix up the mess.
|
|
1622
|
|
1623 If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
|
|
1624 marked in it. */
|
|
1625
|
|
1626 void
|
|
1627 fix_loop_structure (bitmap changed_bbs)
|
|
1628 {
|
|
1629 basic_block bb;
|
|
1630 struct loop *loop, *ploop;
|
|
1631 loop_iterator li;
|
|
1632 bool record_exits = false;
|
|
1633 struct loop **superloop = XNEWVEC (struct loop *, number_of_loops ());
|
|
1634
|
|
1635 /* Remove the old bb -> loop mapping. Remember the depth of the blocks in
|
|
1636 the loop hierarchy, so that we can recognize blocks whose loop nesting
|
|
1637 relationship has changed. */
|
|
1638 FOR_EACH_BB (bb)
|
|
1639 {
|
|
1640 if (changed_bbs)
|
|
1641 bb->aux = (void *) (size_t) loop_depth (bb->loop_father);
|
|
1642 bb->loop_father = current_loops->tree_root;
|
|
1643 }
|
|
1644
|
|
1645 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
|
|
1646 {
|
|
1647 release_recorded_exits ();
|
|
1648 record_exits = true;
|
|
1649 }
|
|
1650
|
|
1651 /* Remove the dead loops from structures. We start from the innermost
|
|
1652 loops, so that when we remove the loops, we know that the loops inside
|
|
1653 are preserved, and do not waste time relinking loops that will be
|
|
1654 removed later. */
|
|
1655 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
|
|
1656 {
|
|
1657 if (loop->header)
|
|
1658 continue;
|
|
1659
|
|
1660 while (loop->inner)
|
|
1661 {
|
|
1662 ploop = loop->inner;
|
|
1663 flow_loop_tree_node_remove (ploop);
|
|
1664 flow_loop_tree_node_add (loop_outer (loop), ploop);
|
|
1665 }
|
|
1666
|
|
1667 /* Remove the loop and free its data. */
|
|
1668 delete_loop (loop);
|
|
1669 }
|
|
1670
|
|
1671 /* Rescan the bodies of loops, starting from the outermost ones. We assume
|
|
1672 that no optimization interchanges the order of the loops, i.e., it cannot
|
|
1673 happen that L1 was superloop of L2 before and it is subloop of L2 now
|
|
1674 (without explicitly updating loop information). At the same time, we also
|
|
1675 determine the new loop structure. */
|
|
1676 current_loops->tree_root->num_nodes = n_basic_blocks;
|
|
1677 FOR_EACH_LOOP (li, loop, 0)
|
|
1678 {
|
|
1679 superloop[loop->num] = loop->header->loop_father;
|
|
1680 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
|
|
1681 }
|
|
1682
|
|
1683 /* Now fix the loop nesting. */
|
|
1684 FOR_EACH_LOOP (li, loop, 0)
|
|
1685 {
|
|
1686 ploop = superloop[loop->num];
|
|
1687 if (ploop != loop_outer (loop))
|
|
1688 {
|
|
1689 flow_loop_tree_node_remove (loop);
|
|
1690 flow_loop_tree_node_add (ploop, loop);
|
|
1691 }
|
|
1692 }
|
|
1693 free (superloop);
|
|
1694
|
|
1695 /* Mark the blocks whose loop has changed. */
|
|
1696 if (changed_bbs)
|
|
1697 {
|
|
1698 FOR_EACH_BB (bb)
|
|
1699 {
|
|
1700 if ((void *) (size_t) loop_depth (bb->loop_father) != bb->aux)
|
|
1701 bitmap_set_bit (changed_bbs, bb->index);
|
|
1702
|
|
1703 bb->aux = NULL;
|
|
1704 }
|
|
1705 }
|
|
1706
|
|
1707 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
|
|
1708 create_preheaders (CP_SIMPLE_PREHEADERS);
|
|
1709
|
|
1710 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
|
|
1711 force_single_succ_latches ();
|
|
1712
|
|
1713 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
|
|
1714 mark_irreducible_loops ();
|
|
1715
|
|
1716 if (record_exits)
|
|
1717 record_loop_exits ();
|
|
1718
|
|
1719 #ifdef ENABLE_CHECKING
|
|
1720 verify_loop_structure ();
|
|
1721 #endif
|
|
1722 }
|