0
|
1 /* Definitions of target machine for GNU compiler. NEC V850 series
|
|
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
|
|
3 2007, 2008 Free Software Foundation, Inc.
|
|
4 Contributed by Jeff Law (law@cygnus.com).
|
|
5
|
|
6 This file is part of GCC.
|
|
7
|
|
8 GCC is free software; you can redistribute it and/or modify
|
|
9 it under the terms of the GNU General Public License as published by
|
|
10 the Free Software Foundation; either version 3, or (at your option)
|
|
11 any later version.
|
|
12
|
|
13 GCC is distributed in the hope that it will be useful,
|
|
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
16 GNU General Public License for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with GCC; see the file COPYING3. If not see
|
|
20 <http://www.gnu.org/licenses/>. */
|
|
21
|
|
22 #ifndef GCC_V850_H
|
|
23 #define GCC_V850_H
|
|
24
|
|
25 /* These are defined in svr4.h but we want to override them. */
|
|
26 #undef LIB_SPEC
|
|
27 #undef ENDFILE_SPEC
|
|
28 #undef LINK_SPEC
|
|
29 #undef STARTFILE_SPEC
|
|
30 #undef ASM_SPEC
|
|
31
|
|
32 #define TARGET_CPU_generic 1
|
|
33 #define TARGET_CPU_v850e 2
|
|
34 #define TARGET_CPU_v850e1 3
|
|
35
|
|
36 #ifndef TARGET_CPU_DEFAULT
|
|
37 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
|
|
38 #endif
|
|
39
|
|
40 #define MASK_DEFAULT MASK_V850
|
|
41 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}"
|
|
42 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}"
|
|
43 #define TARGET_VERSION fprintf (stderr, " (NEC V850)");
|
|
44
|
|
45 /* Choose which processor will be the default.
|
|
46 We must pass a -mv850xx option to the assembler if no explicit -mv* option
|
|
47 is given, because the assembler's processor default may not be correct. */
|
|
48 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
|
|
49 #undef MASK_DEFAULT
|
|
50 #define MASK_DEFAULT MASK_V850E
|
|
51 #undef SUBTARGET_ASM_SPEC
|
|
52 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e}"
|
|
53 #undef SUBTARGET_CPP_SPEC
|
|
54 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e__}"
|
|
55 #undef TARGET_VERSION
|
|
56 #define TARGET_VERSION fprintf (stderr, " (NEC V850E)");
|
|
57 #endif
|
|
58
|
|
59 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
|
|
60 #undef MASK_DEFAULT
|
|
61 #define MASK_DEFAULT MASK_V850E /* No practical difference. */
|
|
62 #undef SUBTARGET_ASM_SPEC
|
|
63 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e1}"
|
|
64 #undef SUBTARGET_CPP_SPEC
|
|
65 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
|
|
66 #undef TARGET_VERSION
|
|
67 #define TARGET_VERSION fprintf (stderr, " (NEC V850E1)");
|
|
68 #endif
|
|
69
|
|
70 #define ASM_SPEC "%{mv*:-mv%*}"
|
|
71 #define CPP_SPEC "%{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)"
|
|
72
|
|
73 #define EXTRA_SPECS \
|
|
74 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
|
|
75 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
|
|
76
|
|
77 /* Names to predefine in the preprocessor for this target machine. */
|
|
78 #define TARGET_CPU_CPP_BUILTINS() do { \
|
|
79 builtin_define( "__v851__" ); \
|
|
80 builtin_define( "__v850" ); \
|
|
81 builtin_assert( "machine=v850" ); \
|
|
82 builtin_assert( "cpu=v850" ); \
|
|
83 if (TARGET_EP) \
|
|
84 builtin_define ("__EP__"); \
|
|
85 } while(0)
|
|
86
|
|
87 #define MASK_CPU (MASK_V850 | MASK_V850E)
|
|
88
|
|
89 /* Information about the various small memory areas. */
|
|
90 struct small_memory_info {
|
|
91 const char *name;
|
|
92 long max;
|
|
93 long physical_max;
|
|
94 };
|
|
95
|
|
96 enum small_memory_type {
|
|
97 /* tiny data area, using EP as base register */
|
|
98 SMALL_MEMORY_TDA = 0,
|
|
99 /* small data area using dp as base register */
|
|
100 SMALL_MEMORY_SDA,
|
|
101 /* zero data area using r0 as base register */
|
|
102 SMALL_MEMORY_ZDA,
|
|
103 SMALL_MEMORY_max
|
|
104 };
|
|
105
|
|
106 extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
|
|
107
|
|
108 /* Show we can debug even without a frame pointer. */
|
|
109 #define CAN_DEBUG_WITHOUT_FP
|
|
110
|
|
111 /* Some machines may desire to change what optimizations are
|
|
112 performed for various optimization levels. This macro, if
|
|
113 defined, is executed once just after the optimization level is
|
|
114 determined and before the remainder of the command options have
|
|
115 been parsed. Values set in this macro are used as the default
|
|
116 values for the other command line options.
|
|
117
|
|
118 LEVEL is the optimization level specified; 2 if `-O2' is
|
|
119 specified, 1 if `-O' is specified, and 0 if neither is specified.
|
|
120
|
|
121 SIZE is nonzero if `-Os' is specified, 0 otherwise.
|
|
122
|
|
123 You should not use this macro to change options that are not
|
|
124 machine-specific. These should uniformly selected by the same
|
|
125 optimization level on all supported machines. Use this macro to
|
|
126 enable machine-specific optimizations.
|
|
127
|
|
128 *Do not examine `write_symbols' in this macro!* The debugging
|
|
129 options are not supposed to alter the generated code. */
|
|
130
|
|
131 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
|
|
132 { \
|
|
133 target_flags |= MASK_STRICT_ALIGN; \
|
|
134 if (LEVEL) \
|
|
135 /* Note - we no longer enable MASK_EP when optimizing. This is \
|
|
136 because of a hardware bug which stops the SLD and SST instructions\
|
|
137 from correctly detecting some hazards. If the user is sure that \
|
|
138 their hardware is fixed or that their program will not encounter \
|
|
139 the conditions that trigger the bug then they can enable -mep by \
|
|
140 hand. */ \
|
|
141 target_flags |= MASK_PROLOG_FUNCTION; \
|
|
142 }
|
|
143
|
|
144
|
|
145 /* Target machine storage layout */
|
|
146
|
|
147 /* Define this if most significant bit is lowest numbered
|
|
148 in instructions that operate on numbered bit-fields.
|
|
149 This is not true on the NEC V850. */
|
|
150 #define BITS_BIG_ENDIAN 0
|
|
151
|
|
152 /* Define this if most significant byte of a word is the lowest numbered. */
|
|
153 /* This is not true on the NEC V850. */
|
|
154 #define BYTES_BIG_ENDIAN 0
|
|
155
|
|
156 /* Define this if most significant word of a multiword number is lowest
|
|
157 numbered.
|
|
158 This is not true on the NEC V850. */
|
|
159 #define WORDS_BIG_ENDIAN 0
|
|
160
|
|
161 /* Width of a word, in units (bytes). */
|
|
162 #define UNITS_PER_WORD 4
|
|
163
|
|
164 /* Define this macro if it is advisable to hold scalars in registers
|
|
165 in a wider mode than that declared by the program. In such cases,
|
|
166 the value is constrained to be within the bounds of the declared
|
|
167 type, but kept valid in the wider mode. The signedness of the
|
|
168 extension may differ from that of the type.
|
|
169
|
|
170 Some simple experiments have shown that leaving UNSIGNEDP alone
|
|
171 generates the best overall code. */
|
|
172
|
|
173 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
|
|
174 if (GET_MODE_CLASS (MODE) == MODE_INT \
|
|
175 && GET_MODE_SIZE (MODE) < 4) \
|
|
176 { (MODE) = SImode; }
|
|
177
|
|
178 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
|
179 #define PARM_BOUNDARY 32
|
|
180
|
|
181 /* The stack goes in 32-bit lumps. */
|
|
182 #define STACK_BOUNDARY 32
|
|
183
|
|
184 /* Allocation boundary (in *bits*) for the code of a function.
|
|
185 16 is the minimum boundary; 32 would give better performance. */
|
|
186 #define FUNCTION_BOUNDARY 16
|
|
187
|
|
188 /* No data type wants to be aligned rounder than this. */
|
|
189 #define BIGGEST_ALIGNMENT 32
|
|
190
|
|
191 /* Alignment of field after `int : 0' in a structure. */
|
|
192 #define EMPTY_FIELD_BOUNDARY 32
|
|
193
|
|
194 /* No structure field wants to be aligned rounder than this. */
|
|
195 #define BIGGEST_FIELD_ALIGNMENT 32
|
|
196
|
|
197 /* Define this if move instructions will actually fail to work
|
|
198 when given unaligned data. */
|
|
199 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
|
|
200
|
|
201 /* Define this as 1 if `char' should by default be signed; else as 0.
|
|
202
|
|
203 On the NEC V850, loads do sign extension, so make this default. */
|
|
204 #define DEFAULT_SIGNED_CHAR 1
|
|
205
|
|
206 /* Standard register usage. */
|
|
207
|
|
208 /* Number of actual hardware registers.
|
|
209 The hardware registers are assigned numbers for the compiler
|
|
210 from 0 to just below FIRST_PSEUDO_REGISTER.
|
|
211
|
|
212 All registers that the compiler knows about must be given numbers,
|
|
213 even those that are not normally considered general registers. */
|
|
214
|
|
215 #define FIRST_PSEUDO_REGISTER 34
|
|
216
|
|
217 /* 1 for registers that have pervasive standard uses
|
|
218 and are not available for the register allocator. */
|
|
219
|
|
220 #define FIXED_REGISTERS \
|
|
221 { 1, 1, 0, 1, 1, 0, 0, 0, \
|
|
222 0, 0, 0, 0, 0, 0, 0, 0, \
|
|
223 0, 0, 0, 0, 0, 0, 0, 0, \
|
|
224 0, 0, 0, 0, 0, 0, 1, 0, \
|
|
225 1, 1}
|
|
226
|
|
227 /* 1 for registers not available across function calls.
|
|
228 These must include the FIXED_REGISTERS and also any
|
|
229 registers that can be used without being saved.
|
|
230 The latter must include the registers where values are returned
|
|
231 and the register where structure-value addresses are passed.
|
|
232 Aside from that, you can include as many other registers as you
|
|
233 like. */
|
|
234
|
|
235 #define CALL_USED_REGISTERS \
|
|
236 { 1, 1, 0, 1, 1, 1, 1, 1, \
|
|
237 1, 1, 1, 1, 1, 1, 1, 1, \
|
|
238 1, 1, 1, 1, 0, 0, 0, 0, \
|
|
239 0, 0, 0, 0, 0, 0, 1, 1, \
|
|
240 1, 1}
|
|
241
|
|
242 /* List the order in which to allocate registers. Each register must be
|
|
243 listed once, even those in FIXED_REGISTERS.
|
|
244
|
|
245 On the 850, we make the return registers first, then all of the volatile
|
|
246 registers, then the saved registers in reverse order to better save the
|
|
247 registers with an out of line function, and finally the fixed
|
|
248 registers. */
|
|
249
|
|
250 #define REG_ALLOC_ORDER \
|
|
251 { \
|
|
252 10, 11, /* return registers */ \
|
|
253 12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
|
|
254 6, 7, 8, 9, 31, /* argument registers */ \
|
|
255 29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
|
|
256 21, 20, 2, \
|
|
257 0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \
|
|
258 }
|
|
259
|
|
260 /* If TARGET_APP_REGS is not defined then add r2 and r5 to
|
|
261 the pool of fixed registers. See PR 14505. */
|
|
262 #define CONDITIONAL_REGISTER_USAGE \
|
|
263 { \
|
|
264 if (!TARGET_APP_REGS) \
|
|
265 { \
|
|
266 fixed_regs[2] = 1; call_used_regs[2] = 1; \
|
|
267 fixed_regs[5] = 1; call_used_regs[5] = 1; \
|
|
268 } \
|
|
269 }
|
|
270
|
|
271 /* Return number of consecutive hard regs needed starting at reg REGNO
|
|
272 to hold something of mode MODE.
|
|
273
|
|
274 This is ordinarily the length in words of a value of mode MODE
|
|
275 but can be less for certain modes in special long registers. */
|
|
276
|
|
277 #define HARD_REGNO_NREGS(REGNO, MODE) \
|
|
278 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
|
279
|
|
280 /* Value is 1 if hard register REGNO can hold a value of machine-mode
|
|
281 MODE. */
|
|
282
|
|
283 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
|
284 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
|
|
285
|
|
286 /* Value is 1 if it is a good idea to tie two pseudo registers
|
|
287 when one has mode MODE1 and one has mode MODE2.
|
|
288 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
|
289 for any hard reg, then this must be 0 for correct output. */
|
|
290 #define MODES_TIEABLE_P(MODE1, MODE2) \
|
|
291 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
|
|
292
|
|
293
|
|
294 /* Define the classes of registers for register constraints in the
|
|
295 machine description. Also define ranges of constants.
|
|
296
|
|
297 One of the classes must always be named ALL_REGS and include all hard regs.
|
|
298 If there is more than one class, another class must be named NO_REGS
|
|
299 and contain no registers.
|
|
300
|
|
301 The name GENERAL_REGS must be the name of a class (or an alias for
|
|
302 another name such as ALL_REGS). This is the class of registers
|
|
303 that is allowed by "g" or "r" in a register constraint.
|
|
304 Also, registers outside this class are allocated only when
|
|
305 instructions express preferences for them.
|
|
306
|
|
307 The classes must be numbered in nondecreasing order; that is,
|
|
308 a larger-numbered class must never be contained completely
|
|
309 in a smaller-numbered class.
|
|
310
|
|
311 For any two classes, it is very desirable that there be another
|
|
312 class that represents their union. */
|
|
313
|
|
314 enum reg_class
|
|
315 {
|
|
316 NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
|
|
317 };
|
|
318
|
|
319 #define N_REG_CLASSES (int) LIM_REG_CLASSES
|
|
320
|
|
321 #define IRA_COVER_CLASSES \
|
|
322 { \
|
|
323 GENERAL_REGS, LIM_REG_CLASSES \
|
|
324 }
|
|
325
|
|
326 /* Give names of register classes as strings for dump file. */
|
|
327
|
|
328 #define REG_CLASS_NAMES \
|
|
329 { "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
|
|
330
|
|
331 /* Define which registers fit in which classes.
|
|
332 This is an initializer for a vector of HARD_REG_SET
|
|
333 of length N_REG_CLASSES. */
|
|
334
|
|
335 #define REG_CLASS_CONTENTS \
|
|
336 { \
|
|
337 { 0x00000000 }, /* NO_REGS */ \
|
|
338 { 0xffffffff }, /* GENERAL_REGS */ \
|
|
339 { 0xffffffff }, /* ALL_REGS */ \
|
|
340 }
|
|
341
|
|
342 /* The same information, inverted:
|
|
343 Return the class number of the smallest class containing
|
|
344 reg number REGNO. This could be a conditional expression
|
|
345 or could index an array. */
|
|
346
|
|
347 #define REGNO_REG_CLASS(REGNO) GENERAL_REGS
|
|
348
|
|
349 /* The class value for index registers, and the one for base regs. */
|
|
350
|
|
351 #define INDEX_REG_CLASS NO_REGS
|
|
352 #define BASE_REG_CLASS GENERAL_REGS
|
|
353
|
|
354 /* Get reg_class from a letter such as appears in the machine description. */
|
|
355
|
|
356 #define REG_CLASS_FROM_LETTER(C) (NO_REGS)
|
|
357
|
|
358 /* Macros to check register numbers against specific register classes. */
|
|
359
|
|
360 /* These assume that REGNO is a hard or pseudo reg number.
|
|
361 They give nonzero only if REGNO is a hard reg of the suitable class
|
|
362 or a pseudo reg currently allocated to a suitable hard reg.
|
|
363 Since they use reg_renumber, they are safe only once reg_renumber
|
|
364 has been allocated, which happens in local-alloc.c. */
|
|
365
|
|
366 #define REGNO_OK_FOR_BASE_P(regno) \
|
|
367 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
|
|
368
|
|
369 #define REGNO_OK_FOR_INDEX_P(regno) 0
|
|
370
|
|
371 /* Given an rtx X being reloaded into a reg required to be
|
|
372 in class CLASS, return the class of reg to actually use.
|
|
373 In general this is just CLASS; but on some machines
|
|
374 in some cases it is preferable to use a more restrictive class. */
|
|
375
|
|
376 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
|
|
377
|
|
378 /* Return the maximum number of consecutive registers
|
|
379 needed to represent mode MODE in a register of class CLASS. */
|
|
380
|
|
381 #define CLASS_MAX_NREGS(CLASS, MODE) \
|
|
382 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
|
383
|
|
384 /* The letters I, J, K, L, M, N, O, P in a register constraint string
|
|
385 can be used to stand for particular ranges of immediate operands.
|
|
386 This macro defines what the ranges are.
|
|
387 C is the letter, and VALUE is a constant value.
|
|
388 Return 1 if VALUE is in the range specified by C. */
|
|
389
|
|
390 #define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
|
|
391 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
|
|
392 /* zero */
|
|
393 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
|
|
394 /* 5-bit signed immediate */
|
|
395 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
|
|
396 /* 16-bit signed immediate */
|
|
397 #define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
|
|
398 /* valid constant for movhi instruction. */
|
|
399 #define CONST_OK_FOR_L(VALUE) \
|
|
400 (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
|
|
401 && CONST_OK_FOR_I ((VALUE & 0xffff)))
|
|
402 /* 16-bit unsigned immediate */
|
|
403 #define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
|
|
404 /* 5-bit unsigned immediate in shift instructions */
|
|
405 #define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
|
|
406 /* 9-bit signed immediate for word multiply instruction. */
|
|
407 #define CONST_OK_FOR_O(VALUE) ((unsigned) (VALUE) + 0x100 < 0x200)
|
|
408
|
|
409 #define CONST_OK_FOR_P(VALUE) 0
|
|
410
|
|
411 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
|
412 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
|
|
413 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
|
|
414 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
|
|
415 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
|
|
416 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
|
|
417 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
|
|
418 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
|
|
419 (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
|
|
420 0)
|
|
421
|
|
422 /* Similar, but for floating constants, and defining letters G and H.
|
|
423 Here VALUE is the CONST_DOUBLE rtx itself.
|
|
424
|
|
425 `G' is a zero of some form. */
|
|
426
|
|
427 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
|
|
428 ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
|
|
429 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
|
|
430 || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \
|
|
431 && CONST_DOUBLE_LOW (VALUE) == 0 \
|
|
432 && CONST_DOUBLE_HIGH (VALUE) == 0))
|
|
433
|
|
434 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
|
|
435
|
|
436 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
|
437 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
|
|
438 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
|
|
439 : 0)
|
|
440
|
|
441
|
|
442 /* Stack layout; function entry, exit and calling. */
|
|
443
|
|
444 /* Define this if pushing a word on the stack
|
|
445 makes the stack pointer a smaller address. */
|
|
446
|
|
447 #define STACK_GROWS_DOWNWARD
|
|
448
|
|
449 /* Define this to nonzero if the nominal address of the stack frame
|
|
450 is at the high-address end of the local variables;
|
|
451 that is, each additional local variable allocated
|
|
452 goes at a more negative offset in the frame. */
|
|
453
|
|
454 #define FRAME_GROWS_DOWNWARD 1
|
|
455
|
|
456 /* Offset within stack frame to start allocating local variables at.
|
|
457 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
|
458 first local allocated. Otherwise, it is the offset to the BEGINNING
|
|
459 of the first local allocated. */
|
|
460
|
|
461 #define STARTING_FRAME_OFFSET 0
|
|
462
|
|
463 /* Offset of first parameter from the argument pointer register value. */
|
|
464 /* Is equal to the size of the saved fp + pc, even if an fp isn't
|
|
465 saved since the value is used before we know. */
|
|
466
|
|
467 #define FIRST_PARM_OFFSET(FNDECL) 0
|
|
468
|
|
469 /* Specify the registers used for certain standard purposes.
|
|
470 The values of these macros are register numbers. */
|
|
471
|
|
472 /* Register to use for pushing function arguments. */
|
|
473 #define STACK_POINTER_REGNUM 3
|
|
474
|
|
475 /* Base register for access to local variables of the function. */
|
|
476 #define FRAME_POINTER_REGNUM 32
|
|
477
|
|
478 /* Register containing return address from latest function call. */
|
|
479 #define LINK_POINTER_REGNUM 31
|
|
480
|
|
481 /* On some machines the offset between the frame pointer and starting
|
|
482 offset of the automatic variables is not known until after register
|
|
483 allocation has been done (for example, because the saved registers
|
|
484 are between these two locations). On those machines, define
|
|
485 `FRAME_POINTER_REGNUM' the number of a special, fixed register to
|
|
486 be used internally until the offset is known, and define
|
|
487 `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
|
|
488 used for the frame pointer.
|
|
489
|
|
490 You should define this macro only in the very rare circumstances
|
|
491 when it is not possible to calculate the offset between the frame
|
|
492 pointer and the automatic variables until after register
|
|
493 allocation has been completed. When this macro is defined, you
|
|
494 must also indicate in your definition of `ELIMINABLE_REGS' how to
|
|
495 eliminate `FRAME_POINTER_REGNUM' into either
|
|
496 `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
|
|
497
|
|
498 Do not define this macro if it would be the same as
|
|
499 `FRAME_POINTER_REGNUM'. */
|
|
500 #undef HARD_FRAME_POINTER_REGNUM
|
|
501 #define HARD_FRAME_POINTER_REGNUM 29
|
|
502
|
|
503 /* Base register for access to arguments of the function. */
|
|
504 #define ARG_POINTER_REGNUM 33
|
|
505
|
|
506 /* Register in which static-chain is passed to a function. */
|
|
507 #define STATIC_CHAIN_REGNUM 20
|
|
508
|
|
509 /* Value should be nonzero if functions must have frame pointers.
|
|
510 Zero means the frame pointer need not be set up (and parms
|
|
511 may be accessed via the stack pointer) in functions that seem suitable.
|
|
512 This is computed in `reload', in reload1.c. */
|
|
513 #define FRAME_POINTER_REQUIRED 0
|
|
514
|
|
515 /* If defined, this macro specifies a table of register pairs used to
|
|
516 eliminate unneeded registers that point into the stack frame. If
|
|
517 it is not defined, the only elimination attempted by the compiler
|
|
518 is to replace references to the frame pointer with references to
|
|
519 the stack pointer.
|
|
520
|
|
521 The definition of this macro is a list of structure
|
|
522 initializations, each of which specifies an original and
|
|
523 replacement register.
|
|
524
|
|
525 On some machines, the position of the argument pointer is not
|
|
526 known until the compilation is completed. In such a case, a
|
|
527 separate hard register must be used for the argument pointer.
|
|
528 This register can be eliminated by replacing it with either the
|
|
529 frame pointer or the argument pointer, depending on whether or not
|
|
530 the frame pointer has been eliminated.
|
|
531
|
|
532 In this case, you might specify:
|
|
533 #define ELIMINABLE_REGS \
|
|
534 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
|
535 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
|
|
536 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
|
|
537
|
|
538 Note that the elimination of the argument pointer with the stack
|
|
539 pointer is specified first since that is the preferred elimination. */
|
|
540
|
|
541 #define ELIMINABLE_REGS \
|
|
542 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
|
|
543 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
|
|
544 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
|
|
545 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
|
|
546
|
|
547 /* A C expression that returns nonzero if the compiler is allowed to
|
|
548 try to replace register number FROM-REG with register number
|
|
549 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
|
|
550 defined, and will usually be the constant 1, since most of the
|
|
551 cases preventing register elimination are things that the compiler
|
|
552 already knows about. */
|
|
553
|
|
554 #define CAN_ELIMINATE(FROM, TO) \
|
|
555 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
|
|
556
|
|
557 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
|
|
558 specifies the initial difference between the specified pair of
|
|
559 registers. This macro must be defined if `ELIMINABLE_REGS' is
|
|
560 defined. */
|
|
561
|
|
562 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
|
563 { \
|
|
564 if ((FROM) == FRAME_POINTER_REGNUM) \
|
|
565 (OFFSET) = get_frame_size () + crtl->outgoing_args_size; \
|
|
566 else if ((FROM) == ARG_POINTER_REGNUM) \
|
|
567 (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
|
|
568 else \
|
|
569 gcc_unreachable (); \
|
|
570 }
|
|
571
|
|
572 /* Keep the stack pointer constant throughout the function. */
|
|
573 #define ACCUMULATE_OUTGOING_ARGS 1
|
|
574
|
|
575 /* Value is the number of bytes of arguments automatically
|
|
576 popped when returning from a subroutine call.
|
|
577 FUNDECL is the declaration node of the function (as a tree),
|
|
578 FUNTYPE is the data type of the function (as a tree),
|
|
579 or for a library call it is an identifier node for the subroutine name.
|
|
580 SIZE is the number of bytes of arguments passed on the stack. */
|
|
581
|
|
582 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
|
|
583
|
|
584 #define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
|
|
585
|
|
586 /* Define a data type for recording info about an argument list
|
|
587 during the scan of that argument list. This data type should
|
|
588 hold all necessary information about the function itself
|
|
589 and about the args processed so far, enough to enable macros
|
|
590 such as FUNCTION_ARG to determine where the next arg should go. */
|
|
591
|
|
592 #define CUMULATIVE_ARGS struct cum_arg
|
|
593 struct cum_arg { int nbytes; int anonymous_args; };
|
|
594
|
|
595 /* Define where to put the arguments to a function.
|
|
596 Value is zero to push the argument on the stack,
|
|
597 or a hard register in which to store the argument.
|
|
598
|
|
599 MODE is the argument's machine mode.
|
|
600 TYPE is the data type of the argument (as a tree).
|
|
601 This is null for libcalls where that information may
|
|
602 not be available.
|
|
603 CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
|
604 the preceding args and about the function being called.
|
|
605 NAMED is nonzero if this argument is a named parameter
|
|
606 (otherwise it is an extra parameter matching an ellipsis). */
|
|
607
|
|
608 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
|
609 function_arg (&CUM, MODE, TYPE, NAMED)
|
|
610
|
|
611 /* Initialize a variable CUM of type CUMULATIVE_ARGS
|
|
612 for a call to a function whose data type is FNTYPE.
|
|
613 For a library call, FNTYPE is 0. */
|
|
614
|
|
615 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
|
|
616 ((CUM).nbytes = 0, (CUM).anonymous_args = 0)
|
|
617
|
|
618 /* Update the data in CUM to advance over an argument
|
|
619 of mode MODE and data type TYPE.
|
|
620 (TYPE is null for libcalls where that information may not be available.) */
|
|
621
|
|
622 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
|
623 ((CUM).nbytes += ((MODE) != BLKmode \
|
|
624 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
|
|
625 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
|
|
626
|
|
627 /* When a parameter is passed in a register, stack space is still
|
|
628 allocated for it. */
|
|
629 #define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
|
|
630
|
|
631 /* Define this if the above stack space is to be considered part of the
|
|
632 space allocated by the caller. */
|
|
633 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
|
|
634
|
|
635 /* 1 if N is a possible register number for function argument passing. */
|
|
636
|
|
637 #define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
|
|
638
|
|
639 /* Define how to find the value returned by a function.
|
|
640 VALTYPE is the data type of the value (as a tree).
|
|
641 If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
|
642 otherwise, FUNC is 0. */
|
|
643
|
|
644 #define FUNCTION_VALUE(VALTYPE, FUNC) \
|
|
645 gen_rtx_REG (TYPE_MODE (VALTYPE), 10)
|
|
646
|
|
647 /* Define how to find the value returned by a library function
|
|
648 assuming the value has mode MODE. */
|
|
649
|
|
650 #define LIBCALL_VALUE(MODE) \
|
|
651 gen_rtx_REG (MODE, 10)
|
|
652
|
|
653 /* 1 if N is a possible register number for a function value. */
|
|
654
|
|
655 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
|
|
656
|
|
657 #define DEFAULT_PCC_STRUCT_RETURN 0
|
|
658
|
|
659 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
|
660 the stack pointer does not matter. The value is tested only in
|
|
661 functions that have frame pointers.
|
|
662 No definition is equivalent to always zero. */
|
|
663
|
|
664 #define EXIT_IGNORE_STACK 1
|
|
665
|
|
666 /* Define this macro as a C expression that is nonzero for registers
|
|
667 used by the epilogue or the `return' pattern. */
|
|
668
|
|
669 #define EPILOGUE_USES(REGNO) \
|
|
670 (reload_completed && (REGNO) == LINK_POINTER_REGNUM)
|
|
671
|
|
672 /* Output assembler code to FILE to increment profiler label # LABELNO
|
|
673 for profiling a function entry. */
|
|
674
|
|
675 #define FUNCTION_PROFILER(FILE, LABELNO) ;
|
|
676
|
|
677 #define TRAMPOLINE_TEMPLATE(FILE) \
|
|
678 do { \
|
|
679 fprintf (FILE, "\tjarl .+4,r12\n"); \
|
|
680 fprintf (FILE, "\tld.w 12[r12],r20\n"); \
|
|
681 fprintf (FILE, "\tld.w 16[r12],r12\n"); \
|
|
682 fprintf (FILE, "\tjmp [r12]\n"); \
|
|
683 fprintf (FILE, "\tnop\n"); \
|
|
684 fprintf (FILE, "\t.long 0\n"); \
|
|
685 fprintf (FILE, "\t.long 0\n"); \
|
|
686 } while (0)
|
|
687
|
|
688 /* Length in units of the trampoline for entering a nested function. */
|
|
689
|
|
690 #define TRAMPOLINE_SIZE 24
|
|
691
|
|
692 /* Emit RTL insns to initialize the variable parts of a trampoline.
|
|
693 FNADDR is an RTX for the address of the function's pure code.
|
|
694 CXT is an RTX for the static chain value for the function. */
|
|
695
|
|
696 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
|
697 { \
|
|
698 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 16)), \
|
|
699 (CXT)); \
|
|
700 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 20)), \
|
|
701 (FNADDR)); \
|
|
702 }
|
|
703
|
|
704 /* Addressing modes, and classification of registers for them. */
|
|
705
|
|
706
|
|
707 /* 1 if X is an rtx for a constant that is a valid address. */
|
|
708
|
|
709 /* ??? This seems too exclusive. May get better code by accepting more
|
|
710 possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */
|
|
711
|
|
712 #define CONSTANT_ADDRESS_P(X) \
|
|
713 (GET_CODE (X) == CONST_INT \
|
|
714 && CONST_OK_FOR_K (INTVAL (X)))
|
|
715
|
|
716 /* Maximum number of registers that can appear in a valid memory address. */
|
|
717
|
|
718 #define MAX_REGS_PER_ADDRESS 1
|
|
719
|
|
720 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
|
721 and check its validity for a certain class.
|
|
722 We have two alternate definitions for each of them.
|
|
723 The usual definition accepts all pseudo regs; the other rejects
|
|
724 them unless they have been allocated suitable hard regs.
|
|
725 The symbol REG_OK_STRICT causes the latter definition to be used.
|
|
726
|
|
727 Most source files want to accept pseudo regs in the hope that
|
|
728 they will get allocated to the class that the insn wants them to be in.
|
|
729 Source files for reload pass need to be strict.
|
|
730 After reload, it makes no difference, since pseudo regs have
|
|
731 been eliminated by then. */
|
|
732
|
|
733 #ifndef REG_OK_STRICT
|
|
734
|
|
735 /* Nonzero if X is a hard reg that can be used as an index
|
|
736 or if it is a pseudo reg. */
|
|
737 #define REG_OK_FOR_INDEX_P(X) 0
|
|
738 /* Nonzero if X is a hard reg that can be used as a base reg
|
|
739 or if it is a pseudo reg. */
|
|
740 #define REG_OK_FOR_BASE_P(X) 1
|
|
741 #define REG_OK_FOR_INDEX_P_STRICT(X) 0
|
|
742 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
|
743 #define STRICT 0
|
|
744
|
|
745 #else
|
|
746
|
|
747 /* Nonzero if X is a hard reg that can be used as an index. */
|
|
748 #define REG_OK_FOR_INDEX_P(X) 0
|
|
749 /* Nonzero if X is a hard reg that can be used as a base reg. */
|
|
750 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
|
751 #define STRICT 1
|
|
752
|
|
753 #endif
|
|
754
|
|
755 /* A C expression that defines the optional machine-dependent
|
|
756 constraint letters that can be used to segregate specific types of
|
|
757 operands, usually memory references, for the target machine.
|
|
758 Normally this macro will not be defined. If it is required for a
|
|
759 particular target machine, it should return 1 if VALUE corresponds
|
|
760 to the operand type represented by the constraint letter C. If C
|
|
761 is not defined as an extra constraint, the value returned should
|
|
762 be 0 regardless of VALUE.
|
|
763
|
|
764 For example, on the ROMP, load instructions cannot have their
|
|
765 output in r0 if the memory reference contains a symbolic address.
|
|
766 Constraint letter `Q' is defined as representing a memory address
|
|
767 that does *not* contain a symbolic address. An alternative is
|
|
768 specified with a `Q' constraint on the input and `r' on the
|
|
769 output. The next alternative specifies `m' on the input and a
|
|
770 register class that does not include r0 on the output. */
|
|
771
|
|
772 #define EXTRA_CONSTRAINT(OP, C) \
|
|
773 ((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP), FALSE) \
|
|
774 : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \
|
|
775 : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF \
|
|
776 && !SYMBOL_REF_ZDA_P (OP)) \
|
|
777 : (C) == 'T' ? ep_memory_operand (OP, GET_MODE (OP), TRUE) \
|
|
778 : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF \
|
|
779 && SYMBOL_REF_ZDA_P (OP)) \
|
|
780 || (GET_CODE (OP) == CONST \
|
|
781 && GET_CODE (XEXP (OP, 0)) == PLUS \
|
|
782 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
|
|
783 && SYMBOL_REF_ZDA_P (XEXP (XEXP (OP, 0), 0)))) \
|
|
784 : 0)
|
|
785
|
|
786 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
|
787 that is a valid memory address for an instruction.
|
|
788 The MODE argument is the machine mode for the MEM expression
|
|
789 that wants to use this address.
|
|
790
|
|
791 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
|
|
792 except for CONSTANT_ADDRESS_P which is actually
|
|
793 machine-independent. */
|
|
794
|
|
795 /* Accept either REG or SUBREG where a register is valid. */
|
|
796
|
|
797 #define RTX_OK_FOR_BASE_P(X) \
|
|
798 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
|
|
799 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
|
|
800 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
|
|
801
|
|
802 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
|
803 do { \
|
|
804 if (RTX_OK_FOR_BASE_P (X)) \
|
|
805 goto ADDR; \
|
|
806 if (CONSTANT_ADDRESS_P (X) \
|
|
807 && (MODE == QImode || INTVAL (X) % 2 == 0) \
|
|
808 && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0)) \
|
|
809 goto ADDR; \
|
|
810 if (GET_CODE (X) == LO_SUM \
|
|
811 && REG_P (XEXP (X, 0)) \
|
|
812 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
|
|
813 && CONSTANT_P (XEXP (X, 1)) \
|
|
814 && (GET_CODE (XEXP (X, 1)) != CONST_INT \
|
|
815 || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
|
|
816 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \
|
|
817 && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \
|
|
818 goto ADDR; \
|
|
819 if (special_symbolref_operand (X, MODE) \
|
|
820 && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \
|
|
821 goto ADDR; \
|
|
822 if (GET_CODE (X) == PLUS \
|
|
823 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
|
|
824 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
|
|
825 && ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
|
|
826 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1)) \
|
|
827 + (GET_MODE_NUNITS (MODE) * UNITS_PER_WORD)))) \
|
|
828 goto ADDR; \
|
|
829 } while (0)
|
|
830
|
|
831
|
|
832 /* Go to LABEL if ADDR (a legitimate address expression)
|
|
833 has an effect that depends on the machine mode it is used for. */
|
|
834
|
|
835 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
|
|
836
|
|
837 /* Nonzero if the constant value X is a legitimate general operand.
|
|
838 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
|
839
|
|
840 #define LEGITIMATE_CONSTANT_P(X) \
|
|
841 (GET_CODE (X) == CONST_DOUBLE \
|
|
842 || !(GET_CODE (X) == CONST \
|
|
843 && GET_CODE (XEXP (X, 0)) == PLUS \
|
|
844 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
|
|
845 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
|
|
846 && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
|
|
847
|
|
848 /* Tell final.c how to eliminate redundant test instructions. */
|
|
849
|
|
850 /* Here we define machine-dependent flags and fields in cc_status
|
|
851 (see `conditions.h'). No extra ones are needed for the VAX. */
|
|
852
|
|
853 /* Store in cc_status the expressions
|
|
854 that the condition codes will describe
|
|
855 after execution of an instruction whose pattern is EXP.
|
|
856 Do not alter them if the instruction would not alter the cc's. */
|
|
857
|
|
858 #define CC_OVERFLOW_UNUSABLE 0x200
|
|
859 #define CC_NO_CARRY CC_NO_OVERFLOW
|
|
860 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
|
|
861
|
|
862 /* Nonzero if access to memory by bytes or half words is no faster
|
|
863 than accessing full words. */
|
|
864 #define SLOW_BYTE_ACCESS 1
|
|
865
|
|
866 /* According expr.c, a value of around 6 should minimize code size, and
|
|
867 for the V850 series, that's our primary concern. */
|
|
868 #define MOVE_RATIO(speed) 6
|
|
869
|
|
870 /* Indirect calls are expensive, never turn a direct call
|
|
871 into an indirect call. */
|
|
872 #define NO_FUNCTION_CSE
|
|
873
|
|
874 /* The four different data regions on the v850. */
|
|
875 typedef enum
|
|
876 {
|
|
877 DATA_AREA_NORMAL,
|
|
878 DATA_AREA_SDA,
|
|
879 DATA_AREA_TDA,
|
|
880 DATA_AREA_ZDA
|
|
881 } v850_data_area;
|
|
882
|
|
883 #define TEXT_SECTION_ASM_OP "\t.section .text"
|
|
884 #define DATA_SECTION_ASM_OP "\t.section .data"
|
|
885 #define BSS_SECTION_ASM_OP "\t.section .bss"
|
|
886 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
|
|
887 #define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
|
|
888
|
|
889 #define SCOMMON_ASM_OP "\t.scomm\t"
|
|
890 #define ZCOMMON_ASM_OP "\t.zcomm\t"
|
|
891 #define TCOMMON_ASM_OP "\t.tcomm\t"
|
|
892
|
|
893 #define ASM_COMMENT_START "#"
|
|
894
|
|
895 /* Output to assembler file text saying following lines
|
|
896 may contain character constants, extra white space, comments, etc. */
|
|
897
|
|
898 #define ASM_APP_ON "#APP\n"
|
|
899
|
|
900 /* Output to assembler file text saying following lines
|
|
901 no longer contain unusual constructs. */
|
|
902
|
|
903 #define ASM_APP_OFF "#NO_APP\n"
|
|
904
|
|
905 #undef USER_LABEL_PREFIX
|
|
906 #define USER_LABEL_PREFIX "_"
|
|
907
|
|
908 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
|
|
909 if (! v850_output_addr_const_extra (FILE, X)) \
|
|
910 goto FAIL
|
|
911
|
|
912 /* This says how to output the assembler to define a global
|
|
913 uninitialized but not common symbol. */
|
|
914
|
|
915 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
|
|
916 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
|
|
917
|
|
918 #undef ASM_OUTPUT_ALIGNED_BSS
|
|
919 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
|
|
920 v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
|
|
921
|
|
922 /* This says how to output the assembler to define a global
|
|
923 uninitialized, common symbol. */
|
|
924 #undef ASM_OUTPUT_ALIGNED_COMMON
|
|
925 #undef ASM_OUTPUT_COMMON
|
|
926 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
|
|
927 v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
|
|
928
|
|
929 /* This says how to output the assembler to define a local
|
|
930 uninitialized symbol. */
|
|
931 #undef ASM_OUTPUT_ALIGNED_LOCAL
|
|
932 #undef ASM_OUTPUT_LOCAL
|
|
933 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
|
|
934 v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
|
|
935
|
|
936 /* Globalizing directive for a label. */
|
|
937 #define GLOBAL_ASM_OP "\t.global "
|
|
938
|
|
939 #define ASM_PN_FORMAT "%s___%lu"
|
|
940
|
|
941 /* This is how we tell the assembler that two symbols have the same value. */
|
|
942
|
|
943 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
|
|
944 do { assemble_name(FILE, NAME1); \
|
|
945 fputs(" = ", FILE); \
|
|
946 assemble_name(FILE, NAME2); \
|
|
947 fputc('\n', FILE); } while (0)
|
|
948
|
|
949
|
|
950 /* How to refer to registers in assembler output.
|
|
951 This sequence is indexed by compiler's hard-register-number (see above). */
|
|
952
|
|
953 #define REGISTER_NAMES \
|
|
954 { "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
|
|
955 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
|
|
956 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
|
|
957 "r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
|
|
958 ".fp", ".ap"}
|
|
959
|
|
960 #define ADDITIONAL_REGISTER_NAMES \
|
|
961 { { "zero", 0 }, \
|
|
962 { "hp", 2 }, \
|
|
963 { "r3", 3 }, \
|
|
964 { "r4", 4 }, \
|
|
965 { "tp", 5 }, \
|
|
966 { "fp", 29 }, \
|
|
967 { "r30", 30 }, \
|
|
968 { "lp", 31} }
|
|
969
|
|
970 /* Print an instruction operand X on file FILE.
|
|
971 look in v850.c for details */
|
|
972
|
|
973 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
|
|
974
|
|
975 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
|
976 ((CODE) == '.')
|
|
977
|
|
978 /* Print a memory operand whose address is X, on file FILE.
|
|
979 This uses a function in output-vax.c. */
|
|
980
|
|
981 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
|
|
982
|
|
983 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
|
|
984 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
|
|
985
|
|
986 /* This is how to output an element of a case-vector that is absolute. */
|
|
987
|
|
988 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
|
989 fprintf (FILE, "\t%s .L%d\n", \
|
|
990 (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
|
|
991
|
|
992 /* This is how to output an element of a case-vector that is relative. */
|
|
993
|
|
994 /* Disable the shift, which is for the currently disabled "switch"
|
|
995 opcode. Se casesi in v850.md. */
|
|
996 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
|
|
997 fprintf (FILE, "\t%s %s.L%d-.L%d%s\n", \
|
|
998 (TARGET_BIG_SWITCH ? ".long" : ".short"), \
|
|
999 (0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? "(" : ""), \
|
|
1000 VALUE, REL, \
|
|
1001 (0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? ")>>1" : ""))
|
|
1002
|
|
1003 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
|
|
1004 if ((LOG) != 0) \
|
|
1005 fprintf (FILE, "\t.align %d\n", (LOG))
|
|
1006
|
|
1007 /* We don't have to worry about dbx compatibility for the v850. */
|
|
1008 #define DEFAULT_GDB_EXTENSIONS 1
|
|
1009
|
|
1010 /* Use stabs debugging info by default. */
|
|
1011 #undef PREFERRED_DEBUGGING_TYPE
|
|
1012 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
|
|
1013
|
|
1014 /* Specify the machine mode that this machine uses
|
|
1015 for the index in the tablejump instruction. */
|
|
1016 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
|
|
1017
|
|
1018 /* Define as C expression which evaluates to nonzero if the tablejump
|
|
1019 instruction expects the table to contain offsets from the address of the
|
|
1020 table.
|
|
1021 Do not define this if the table should contain absolute addresses. */
|
|
1022 #define CASE_VECTOR_PC_RELATIVE 1
|
|
1023
|
|
1024 /* The switch instruction requires that the jump table immediately follow
|
|
1025 it. */
|
|
1026 #define JUMP_TABLES_IN_TEXT_SECTION 1
|
|
1027
|
|
1028 /* svr4.h defines this assuming that 4 byte alignment is required. */
|
|
1029 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
|
|
1030 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
|
|
1031 ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
|
|
1032
|
|
1033 #define WORD_REGISTER_OPERATIONS
|
|
1034
|
|
1035 /* Byte and short loads sign extend the value to a word. */
|
|
1036 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
|
|
1037
|
|
1038 /* This flag, if defined, says the same insns that convert to a signed fixnum
|
|
1039 also convert validly to an unsigned one. */
|
|
1040 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
|
|
1041
|
|
1042 /* Max number of bytes we can move from memory to memory
|
|
1043 in one reasonably fast instruction. */
|
|
1044 #define MOVE_MAX 4
|
|
1045
|
|
1046 /* Define if shifts truncate the shift count
|
|
1047 which implies one can omit a sign-extension or zero-extension
|
|
1048 of a shift count. */
|
|
1049 #define SHIFT_COUNT_TRUNCATED 1
|
|
1050
|
|
1051 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
|
1052 is done just by pretending it is already truncated. */
|
|
1053 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
|
1054
|
|
1055 /* Specify the machine mode that pointers have.
|
|
1056 After generation of rtl, the compiler makes no further distinction
|
|
1057 between pointers and any other objects of this machine mode. */
|
|
1058 #define Pmode SImode
|
|
1059
|
|
1060 /* A function address in a call instruction
|
|
1061 is a byte address (for indexing purposes)
|
|
1062 so give the MEM rtx a byte's mode. */
|
|
1063 #define FUNCTION_MODE QImode
|
|
1064
|
|
1065 /* Tell compiler we want to support GHS pragmas */
|
|
1066 #define REGISTER_TARGET_PRAGMAS() do { \
|
|
1067 c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt); \
|
|
1068 c_register_pragma ("ghs", "section", ghs_pragma_section); \
|
|
1069 c_register_pragma ("ghs", "starttda", ghs_pragma_starttda); \
|
|
1070 c_register_pragma ("ghs", "startsda", ghs_pragma_startsda); \
|
|
1071 c_register_pragma ("ghs", "startzda", ghs_pragma_startzda); \
|
|
1072 c_register_pragma ("ghs", "endtda", ghs_pragma_endtda); \
|
|
1073 c_register_pragma ("ghs", "endsda", ghs_pragma_endsda); \
|
|
1074 c_register_pragma ("ghs", "endzda", ghs_pragma_endzda); \
|
|
1075 } while (0)
|
|
1076
|
|
1077 /* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
|
|
1078 can appear in the "ghs section" pragma. These names are used to index
|
|
1079 into the GHS_default_section_names[] and GHS_current_section_names[]
|
|
1080 that are defined in v850.c, and so the ordering of each must remain
|
|
1081 consistent.
|
|
1082
|
|
1083 These arrays give the default and current names for each kind of
|
|
1084 section defined by the GHS pragmas. The current names can be changed
|
|
1085 by the "ghs section" pragma. If the current names are null, use
|
|
1086 the default names. Note that the two arrays have different types.
|
|
1087
|
|
1088 For the *normal* section kinds (like .data, .text, etc.) we do not
|
|
1089 want to explicitly force the name of these sections, but would rather
|
|
1090 let the linker (or at least the back end) choose the name of the
|
|
1091 section, UNLESS the user has force a specific name for these section
|
|
1092 kinds. To accomplish this set the name in ghs_default_section_names
|
|
1093 to null. */
|
|
1094
|
|
1095 enum GHS_section_kind
|
|
1096 {
|
|
1097 GHS_SECTION_KIND_DEFAULT,
|
|
1098
|
|
1099 GHS_SECTION_KIND_TEXT,
|
|
1100 GHS_SECTION_KIND_DATA,
|
|
1101 GHS_SECTION_KIND_RODATA,
|
|
1102 GHS_SECTION_KIND_BSS,
|
|
1103 GHS_SECTION_KIND_SDATA,
|
|
1104 GHS_SECTION_KIND_ROSDATA,
|
|
1105 GHS_SECTION_KIND_TDATA,
|
|
1106 GHS_SECTION_KIND_ZDATA,
|
|
1107 GHS_SECTION_KIND_ROZDATA,
|
|
1108
|
|
1109 COUNT_OF_GHS_SECTION_KINDS /* must be last */
|
|
1110 };
|
|
1111
|
|
1112 /* The following code is for handling pragmas supported by the
|
|
1113 v850 compiler produced by Green Hills Software. This is at
|
|
1114 the specific request of a customer. */
|
|
1115
|
|
1116 typedef struct data_area_stack_element
|
|
1117 {
|
|
1118 struct data_area_stack_element * prev;
|
|
1119 v850_data_area data_area; /* Current default data area. */
|
|
1120 } data_area_stack_element;
|
|
1121
|
|
1122 /* Track the current data area set by the
|
|
1123 data area pragma (which can be nested). */
|
|
1124 extern data_area_stack_element * data_area_stack;
|
|
1125
|
|
1126 /* Names of the various data areas used on the v850. */
|
|
1127 extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
|
|
1128 extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
|
|
1129
|
|
1130 /* The assembler op to start the file. */
|
|
1131
|
|
1132 #define FILE_ASM_OP "\t.file\n"
|
|
1133
|
|
1134 /* Enable the register move pass to improve code. */
|
|
1135 #define ENABLE_REGMOVE_PASS
|
|
1136
|
|
1137
|
|
1138 /* Implement ZDA, TDA, and SDA */
|
|
1139
|
|
1140 #define EP_REGNUM 30 /* ep register number */
|
|
1141
|
|
1142 #define SYMBOL_FLAG_ZDA (SYMBOL_FLAG_MACH_DEP << 0)
|
|
1143 #define SYMBOL_FLAG_TDA (SYMBOL_FLAG_MACH_DEP << 1)
|
|
1144 #define SYMBOL_FLAG_SDA (SYMBOL_FLAG_MACH_DEP << 2)
|
|
1145 #define SYMBOL_REF_ZDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
|
|
1146 #define SYMBOL_REF_TDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
|
|
1147 #define SYMBOL_REF_SDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)
|
|
1148
|
|
1149 #define TARGET_ASM_INIT_SECTIONS v850_asm_init_sections
|
|
1150
|
|
1151 #endif /* ! GCC_V850_H */
|