0
|
1 /* Analysis Utilities for Loop Vectorization.
|
|
2 Copyright (C) 2006, 2007, 2008 Free Software Foundation, Inc.
|
|
3 Contributed by Dorit Nuzman <dorit@il.ibm.com>
|
|
4
|
|
5 This file is part of GCC.
|
|
6
|
|
7 GCC is free software; you can redistribute it and/or modify it under
|
|
8 the terms of the GNU General Public License as published by the Free
|
|
9 Software Foundation; either version 3, or (at your option) any later
|
|
10 version.
|
|
11
|
|
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with GCC; see the file COPYING3. If not see
|
|
19 <http://www.gnu.org/licenses/>. */
|
|
20
|
|
21 #include "config.h"
|
|
22 #include "system.h"
|
|
23 #include "coretypes.h"
|
|
24 #include "tm.h"
|
|
25 #include "ggc.h"
|
|
26 #include "tree.h"
|
|
27
|
|
28 #include "target.h"
|
|
29 #include "basic-block.h"
|
|
30 #include "diagnostic.h"
|
|
31 #include "tree-flow.h"
|
|
32 #include "tree-dump.h"
|
|
33 #include "timevar.h"
|
|
34 #include "cfgloop.h"
|
|
35 #include "expr.h"
|
|
36 #include "optabs.h"
|
|
37 #include "params.h"
|
|
38 #include "tree-data-ref.h"
|
|
39 #include "tree-vectorizer.h"
|
|
40 #include "recog.h"
|
|
41 #include "toplev.h"
|
|
42
|
|
43 /* Function prototypes */
|
|
44 static void vect_pattern_recog_1
|
|
45 (gimple (* ) (gimple, tree *, tree *), gimple_stmt_iterator);
|
|
46 static bool widened_name_p (tree, gimple, tree *, gimple *);
|
|
47
|
|
48 /* Pattern recognition functions */
|
|
49 static gimple vect_recog_widen_sum_pattern (gimple, tree *, tree *);
|
|
50 static gimple vect_recog_widen_mult_pattern (gimple, tree *, tree *);
|
|
51 static gimple vect_recog_dot_prod_pattern (gimple, tree *, tree *);
|
|
52 static gimple vect_recog_pow_pattern (gimple, tree *, tree *);
|
|
53 static vect_recog_func_ptr vect_vect_recog_func_ptrs[NUM_PATTERNS] = {
|
|
54 vect_recog_widen_mult_pattern,
|
|
55 vect_recog_widen_sum_pattern,
|
|
56 vect_recog_dot_prod_pattern,
|
|
57 vect_recog_pow_pattern};
|
|
58
|
|
59
|
|
60 /* Function widened_name_p
|
|
61
|
|
62 Check whether NAME, an ssa-name used in USE_STMT,
|
|
63 is a result of a type-promotion, such that:
|
|
64 DEF_STMT: NAME = NOP (name0)
|
|
65 where the type of name0 (HALF_TYPE) is smaller than the type of NAME.
|
|
66 */
|
|
67
|
|
68 static bool
|
|
69 widened_name_p (tree name, gimple use_stmt, tree *half_type, gimple *def_stmt)
|
|
70 {
|
|
71 tree dummy;
|
|
72 gimple dummy_gimple;
|
|
73 loop_vec_info loop_vinfo;
|
|
74 stmt_vec_info stmt_vinfo;
|
|
75 tree type = TREE_TYPE (name);
|
|
76 tree oprnd0;
|
|
77 enum vect_def_type dt;
|
|
78 tree def;
|
|
79
|
|
80 stmt_vinfo = vinfo_for_stmt (use_stmt);
|
|
81 loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
|
82
|
|
83 if (!vect_is_simple_use (name, loop_vinfo, def_stmt, &def, &dt))
|
|
84 return false;
|
|
85
|
|
86 if (dt != vect_loop_def
|
|
87 && dt != vect_invariant_def && dt != vect_constant_def)
|
|
88 return false;
|
|
89
|
|
90 if (! *def_stmt)
|
|
91 return false;
|
|
92
|
|
93 if (!is_gimple_assign (*def_stmt))
|
|
94 return false;
|
|
95
|
|
96 if (gimple_assign_rhs_code (*def_stmt) != NOP_EXPR)
|
|
97 return false;
|
|
98
|
|
99 oprnd0 = gimple_assign_rhs1 (*def_stmt);
|
|
100
|
|
101 *half_type = TREE_TYPE (oprnd0);
|
|
102 if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*half_type)
|
|
103 || (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*half_type))
|
|
104 || (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 2)))
|
|
105 return false;
|
|
106
|
|
107 if (!vect_is_simple_use (oprnd0, loop_vinfo, &dummy_gimple, &dummy, &dt))
|
|
108 return false;
|
|
109
|
|
110 return true;
|
|
111 }
|
|
112
|
|
113 /* Helper to return a new temporary for pattern of TYPE for STMT. If STMT
|
|
114 is NULL, the caller must set SSA_NAME_DEF_STMT for the returned SSA var. */
|
|
115
|
|
116 static tree
|
|
117 vect_recog_temp_ssa_var (tree type, gimple stmt)
|
|
118 {
|
|
119 tree var = create_tmp_var (type, "patt");
|
|
120
|
|
121 add_referenced_var (var);
|
|
122 var = make_ssa_name (var, stmt);
|
|
123 return var;
|
|
124 }
|
|
125
|
|
126 /* Function vect_recog_dot_prod_pattern
|
|
127
|
|
128 Try to find the following pattern:
|
|
129
|
|
130 type x_t, y_t;
|
|
131 TYPE1 prod;
|
|
132 TYPE2 sum = init;
|
|
133 loop:
|
|
134 sum_0 = phi <init, sum_1>
|
|
135 S1 x_t = ...
|
|
136 S2 y_t = ...
|
|
137 S3 x_T = (TYPE1) x_t;
|
|
138 S4 y_T = (TYPE1) y_t;
|
|
139 S5 prod = x_T * y_T;
|
|
140 [S6 prod = (TYPE2) prod; #optional]
|
|
141 S7 sum_1 = prod + sum_0;
|
|
142
|
|
143 where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
|
|
144 same size of 'TYPE1' or bigger. This is a special case of a reduction
|
|
145 computation.
|
|
146
|
|
147 Input:
|
|
148
|
|
149 * LAST_STMT: A stmt from which the pattern search begins. In the example,
|
|
150 when this function is called with S7, the pattern {S3,S4,S5,S6,S7} will be
|
|
151 detected.
|
|
152
|
|
153 Output:
|
|
154
|
|
155 * TYPE_IN: The type of the input arguments to the pattern.
|
|
156
|
|
157 * TYPE_OUT: The type of the output of this pattern.
|
|
158
|
|
159 * Return value: A new stmt that will be used to replace the sequence of
|
|
160 stmts that constitute the pattern. In this case it will be:
|
|
161 WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
|
|
162
|
|
163 Note: The dot-prod idiom is a widening reduction pattern that is
|
|
164 vectorized without preserving all the intermediate results. It
|
|
165 produces only N/2 (widened) results (by summing up pairs of
|
|
166 intermediate results) rather than all N results. Therefore, we
|
|
167 cannot allow this pattern when we want to get all the results and in
|
|
168 the correct order (as is the case when this computation is in an
|
|
169 inner-loop nested in an outer-loop that us being vectorized). */
|
|
170
|
|
171 static gimple
|
|
172 vect_recog_dot_prod_pattern (gimple last_stmt, tree *type_in, tree *type_out)
|
|
173 {
|
|
174 gimple stmt;
|
|
175 tree oprnd0, oprnd1;
|
|
176 tree oprnd00, oprnd01;
|
|
177 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
|
|
178 tree type, half_type;
|
|
179 gimple pattern_stmt;
|
|
180 tree prod_type;
|
|
181 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
|
182 struct loop *loop = LOOP_VINFO_LOOP (loop_info);
|
|
183 tree var, rhs;
|
|
184
|
|
185 if (!is_gimple_assign (last_stmt))
|
|
186 return NULL;
|
|
187
|
|
188 type = gimple_expr_type (last_stmt);
|
|
189
|
|
190 /* Look for the following pattern
|
|
191 DX = (TYPE1) X;
|
|
192 DY = (TYPE1) Y;
|
|
193 DPROD = DX * DY;
|
|
194 DDPROD = (TYPE2) DPROD;
|
|
195 sum_1 = DDPROD + sum_0;
|
|
196 In which
|
|
197 - DX is double the size of X
|
|
198 - DY is double the size of Y
|
|
199 - DX, DY, DPROD all have the same type
|
|
200 - sum is the same size of DPROD or bigger
|
|
201 - sum has been recognized as a reduction variable.
|
|
202
|
|
203 This is equivalent to:
|
|
204 DPROD = X w* Y; #widen mult
|
|
205 sum_1 = DPROD w+ sum_0; #widen summation
|
|
206 or
|
|
207 DPROD = X w* Y; #widen mult
|
|
208 sum_1 = DPROD + sum_0; #summation
|
|
209 */
|
|
210
|
|
211 /* Starting from LAST_STMT, follow the defs of its uses in search
|
|
212 of the above pattern. */
|
|
213
|
|
214 if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
|
|
215 return NULL;
|
|
216
|
|
217 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
|
|
218 {
|
|
219 /* Has been detected as widening-summation? */
|
|
220
|
|
221 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
|
|
222 type = gimple_expr_type (stmt);
|
|
223 if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
|
|
224 return NULL;
|
|
225 oprnd0 = gimple_assign_rhs1 (stmt);
|
|
226 oprnd1 = gimple_assign_rhs2 (stmt);
|
|
227 half_type = TREE_TYPE (oprnd0);
|
|
228 }
|
|
229 else
|
|
230 {
|
|
231 gimple def_stmt;
|
|
232
|
|
233 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
|
|
234 return NULL;
|
|
235 oprnd0 = gimple_assign_rhs1 (last_stmt);
|
|
236 oprnd1 = gimple_assign_rhs2 (last_stmt);
|
|
237 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
|
|
238 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
|
|
239 return NULL;
|
|
240 stmt = last_stmt;
|
|
241
|
|
242 if (widened_name_p (oprnd0, stmt, &half_type, &def_stmt))
|
|
243 {
|
|
244 stmt = def_stmt;
|
|
245 oprnd0 = gimple_assign_rhs1 (stmt);
|
|
246 }
|
|
247 else
|
|
248 half_type = type;
|
|
249 }
|
|
250
|
|
251 /* So far so good. Since last_stmt was detected as a (summation) reduction,
|
|
252 we know that oprnd1 is the reduction variable (defined by a loop-header
|
|
253 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
|
|
254 Left to check that oprnd0 is defined by a (widen_)mult_expr */
|
|
255
|
|
256 prod_type = half_type;
|
|
257 stmt = SSA_NAME_DEF_STMT (oprnd0);
|
|
258 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
|
|
259 inside the loop (in case we are analyzing an outer-loop). */
|
|
260 if (!is_gimple_assign (stmt))
|
|
261 return NULL;
|
|
262 stmt_vinfo = vinfo_for_stmt (stmt);
|
|
263 gcc_assert (stmt_vinfo);
|
|
264 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_loop_def)
|
|
265 return NULL;
|
|
266 if (gimple_assign_rhs_code (stmt) != MULT_EXPR)
|
|
267 return NULL;
|
|
268 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
|
|
269 {
|
|
270 /* Has been detected as a widening multiplication? */
|
|
271
|
|
272 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
|
|
273 if (gimple_assign_rhs_code (stmt) != WIDEN_MULT_EXPR)
|
|
274 return NULL;
|
|
275 stmt_vinfo = vinfo_for_stmt (stmt);
|
|
276 gcc_assert (stmt_vinfo);
|
|
277 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_loop_def);
|
|
278 oprnd00 = gimple_assign_rhs1 (stmt);
|
|
279 oprnd01 = gimple_assign_rhs2 (stmt);
|
|
280 }
|
|
281 else
|
|
282 {
|
|
283 tree half_type0, half_type1;
|
|
284 gimple def_stmt;
|
|
285 tree oprnd0, oprnd1;
|
|
286
|
|
287 oprnd0 = gimple_assign_rhs1 (stmt);
|
|
288 oprnd1 = gimple_assign_rhs2 (stmt);
|
|
289 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0))
|
|
290 != TYPE_MAIN_VARIANT (prod_type)
|
|
291 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1))
|
|
292 != TYPE_MAIN_VARIANT (prod_type))
|
|
293 return NULL;
|
|
294 if (!widened_name_p (oprnd0, stmt, &half_type0, &def_stmt))
|
|
295 return NULL;
|
|
296 oprnd00 = gimple_assign_rhs1 (def_stmt);
|
|
297 if (!widened_name_p (oprnd1, stmt, &half_type1, &def_stmt))
|
|
298 return NULL;
|
|
299 oprnd01 = gimple_assign_rhs1 (def_stmt);
|
|
300 if (TYPE_MAIN_VARIANT (half_type0) != TYPE_MAIN_VARIANT (half_type1))
|
|
301 return NULL;
|
|
302 if (TYPE_PRECISION (prod_type) != TYPE_PRECISION (half_type0) * 2)
|
|
303 return NULL;
|
|
304 }
|
|
305
|
|
306 half_type = TREE_TYPE (oprnd00);
|
|
307 *type_in = half_type;
|
|
308 *type_out = type;
|
|
309
|
|
310 /* Pattern detected. Create a stmt to be used to replace the pattern: */
|
|
311 var = vect_recog_temp_ssa_var (type, NULL);
|
|
312 rhs = build3 (DOT_PROD_EXPR, type, oprnd00, oprnd01, oprnd1),
|
|
313 pattern_stmt = gimple_build_assign (var, rhs);
|
|
314
|
|
315 if (vect_print_dump_info (REPORT_DETAILS))
|
|
316 {
|
|
317 fprintf (vect_dump, "vect_recog_dot_prod_pattern: detected: ");
|
|
318 print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
|
|
319 }
|
|
320
|
|
321 /* We don't allow changing the order of the computation in the inner-loop
|
|
322 when doing outer-loop vectorization. */
|
|
323 if (nested_in_vect_loop_p (loop, last_stmt))
|
|
324 {
|
|
325 if (vect_print_dump_info (REPORT_DETAILS))
|
|
326 fprintf (vect_dump, "vect_recog_dot_prod_pattern: not allowed.");
|
|
327 return NULL;
|
|
328 }
|
|
329
|
|
330 return pattern_stmt;
|
|
331 }
|
|
332
|
|
333 /* Function vect_recog_widen_mult_pattern
|
|
334
|
|
335 Try to find the following pattern:
|
|
336
|
|
337 type a_t, b_t;
|
|
338 TYPE a_T, b_T, prod_T;
|
|
339
|
|
340 S1 a_t = ;
|
|
341 S2 b_t = ;
|
|
342 S3 a_T = (TYPE) a_t;
|
|
343 S4 b_T = (TYPE) b_t;
|
|
344 S5 prod_T = a_T * b_T;
|
|
345
|
|
346 where type 'TYPE' is at least double the size of type 'type'.
|
|
347
|
|
348 Input:
|
|
349
|
|
350 * LAST_STMT: A stmt from which the pattern search begins. In the example,
|
|
351 when this function is called with S5, the pattern {S3,S4,S5} is be detected.
|
|
352
|
|
353 Output:
|
|
354
|
|
355 * TYPE_IN: The type of the input arguments to the pattern.
|
|
356
|
|
357 * TYPE_OUT: The type of the output of this pattern.
|
|
358
|
|
359 * Return value: A new stmt that will be used to replace the sequence of
|
|
360 stmts that constitute the pattern. In this case it will be:
|
|
361 WIDEN_MULT <a_t, b_t>
|
|
362 */
|
|
363
|
|
364 static gimple
|
|
365 vect_recog_widen_mult_pattern (gimple last_stmt,
|
|
366 tree *type_in,
|
|
367 tree *type_out)
|
|
368 {
|
|
369 gimple def_stmt0, def_stmt1;
|
|
370 tree oprnd0, oprnd1;
|
|
371 tree type, half_type0, half_type1;
|
|
372 gimple pattern_stmt;
|
|
373 tree vectype;
|
|
374 tree dummy;
|
|
375 tree var;
|
|
376 enum tree_code dummy_code;
|
|
377 int dummy_int;
|
|
378 VEC (tree, heap) *dummy_vec;
|
|
379
|
|
380 if (!is_gimple_assign (last_stmt))
|
|
381 return NULL;
|
|
382
|
|
383 type = gimple_expr_type (last_stmt);
|
|
384
|
|
385 /* Starting from LAST_STMT, follow the defs of its uses in search
|
|
386 of the above pattern. */
|
|
387
|
|
388 if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
|
|
389 return NULL;
|
|
390
|
|
391 oprnd0 = gimple_assign_rhs1 (last_stmt);
|
|
392 oprnd1 = gimple_assign_rhs2 (last_stmt);
|
|
393 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
|
|
394 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
|
|
395 return NULL;
|
|
396
|
|
397 /* Check argument 0 */
|
|
398 if (!widened_name_p (oprnd0, last_stmt, &half_type0, &def_stmt0))
|
|
399 return NULL;
|
|
400 oprnd0 = gimple_assign_rhs1 (def_stmt0);
|
|
401
|
|
402 /* Check argument 1 */
|
|
403 if (!widened_name_p (oprnd1, last_stmt, &half_type1, &def_stmt1))
|
|
404 return NULL;
|
|
405 oprnd1 = gimple_assign_rhs1 (def_stmt1);
|
|
406
|
|
407 if (TYPE_MAIN_VARIANT (half_type0) != TYPE_MAIN_VARIANT (half_type1))
|
|
408 return NULL;
|
|
409
|
|
410 /* Pattern detected. */
|
|
411 if (vect_print_dump_info (REPORT_DETAILS))
|
|
412 fprintf (vect_dump, "vect_recog_widen_mult_pattern: detected: ");
|
|
413
|
|
414 /* Check target support */
|
|
415 vectype = get_vectype_for_scalar_type (half_type0);
|
|
416 if (!vectype
|
|
417 || !supportable_widening_operation (WIDEN_MULT_EXPR, last_stmt, vectype,
|
|
418 &dummy, &dummy, &dummy_code,
|
|
419 &dummy_code, &dummy_int, &dummy_vec))
|
|
420 return NULL;
|
|
421
|
|
422 *type_in = vectype;
|
|
423 *type_out = NULL_TREE;
|
|
424
|
|
425 /* Pattern supported. Create a stmt to be used to replace the pattern: */
|
|
426 var = vect_recog_temp_ssa_var (type, NULL);
|
|
427 pattern_stmt = gimple_build_assign_with_ops (WIDEN_MULT_EXPR, var, oprnd0,
|
|
428 oprnd1);
|
|
429 SSA_NAME_DEF_STMT (var) = pattern_stmt;
|
|
430
|
|
431 if (vect_print_dump_info (REPORT_DETAILS))
|
|
432 print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
|
|
433
|
|
434 return pattern_stmt;
|
|
435 }
|
|
436
|
|
437
|
|
438 /* Function vect_recog_pow_pattern
|
|
439
|
|
440 Try to find the following pattern:
|
|
441
|
|
442 x = POW (y, N);
|
|
443
|
|
444 with POW being one of pow, powf, powi, powif and N being
|
|
445 either 2 or 0.5.
|
|
446
|
|
447 Input:
|
|
448
|
|
449 * LAST_STMT: A stmt from which the pattern search begins.
|
|
450
|
|
451 Output:
|
|
452
|
|
453 * TYPE_IN: The type of the input arguments to the pattern.
|
|
454
|
|
455 * TYPE_OUT: The type of the output of this pattern.
|
|
456
|
|
457 * Return value: A new stmt that will be used to replace the sequence of
|
|
458 stmts that constitute the pattern. In this case it will be:
|
|
459 x = x * x
|
|
460 or
|
|
461 x = sqrt (x)
|
|
462 */
|
|
463
|
|
464 static gimple
|
|
465 vect_recog_pow_pattern (gimple last_stmt, tree *type_in, tree *type_out)
|
|
466 {
|
|
467 tree type;
|
|
468 tree fn, base, exp = NULL;
|
|
469 gimple stmt;
|
|
470 tree var;
|
|
471
|
|
472 if (!is_gimple_call (last_stmt) || gimple_call_lhs (last_stmt) == NULL)
|
|
473 return NULL;
|
|
474
|
|
475 type = gimple_expr_type (last_stmt);
|
|
476
|
|
477 fn = gimple_call_fndecl (last_stmt);
|
|
478 switch (DECL_FUNCTION_CODE (fn))
|
|
479 {
|
|
480 case BUILT_IN_POWIF:
|
|
481 case BUILT_IN_POWI:
|
|
482 case BUILT_IN_POWF:
|
|
483 case BUILT_IN_POW:
|
|
484 base = gimple_call_arg (last_stmt, 0);
|
|
485 exp = gimple_call_arg (last_stmt, 1);
|
|
486 if (TREE_CODE (exp) != REAL_CST
|
|
487 && TREE_CODE (exp) != INTEGER_CST)
|
|
488 return NULL;
|
|
489 break;
|
|
490
|
|
491 default:
|
|
492 return NULL;
|
|
493 }
|
|
494
|
|
495 /* We now have a pow or powi builtin function call with a constant
|
|
496 exponent. */
|
|
497
|
|
498 *type_out = NULL_TREE;
|
|
499
|
|
500 /* Catch squaring. */
|
|
501 if ((host_integerp (exp, 0)
|
|
502 && tree_low_cst (exp, 0) == 2)
|
|
503 || (TREE_CODE (exp) == REAL_CST
|
|
504 && REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconst2)))
|
|
505 {
|
|
506 *type_in = TREE_TYPE (base);
|
|
507
|
|
508 var = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
|
|
509 stmt = gimple_build_assign_with_ops (MULT_EXPR, var, base, base);
|
|
510 SSA_NAME_DEF_STMT (var) = stmt;
|
|
511 return stmt;
|
|
512 }
|
|
513
|
|
514 /* Catch square root. */
|
|
515 if (TREE_CODE (exp) == REAL_CST
|
|
516 && REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconsthalf))
|
|
517 {
|
|
518 tree newfn = mathfn_built_in (TREE_TYPE (base), BUILT_IN_SQRT);
|
|
519 *type_in = get_vectype_for_scalar_type (TREE_TYPE (base));
|
|
520 if (*type_in)
|
|
521 {
|
|
522 gimple stmt = gimple_build_call (newfn, 1, base);
|
|
523 if (vectorizable_function (stmt, *type_in, *type_in)
|
|
524 != NULL_TREE)
|
|
525 {
|
|
526 var = vect_recog_temp_ssa_var (TREE_TYPE (base), stmt);
|
|
527 gimple_call_set_lhs (stmt, var);
|
|
528 return stmt;
|
|
529 }
|
|
530 }
|
|
531 }
|
|
532
|
|
533 return NULL;
|
|
534 }
|
|
535
|
|
536
|
|
537 /* Function vect_recog_widen_sum_pattern
|
|
538
|
|
539 Try to find the following pattern:
|
|
540
|
|
541 type x_t;
|
|
542 TYPE x_T, sum = init;
|
|
543 loop:
|
|
544 sum_0 = phi <init, sum_1>
|
|
545 S1 x_t = *p;
|
|
546 S2 x_T = (TYPE) x_t;
|
|
547 S3 sum_1 = x_T + sum_0;
|
|
548
|
|
549 where type 'TYPE' is at least double the size of type 'type', i.e - we're
|
|
550 summing elements of type 'type' into an accumulator of type 'TYPE'. This is
|
|
551 a special case of a reduction computation.
|
|
552
|
|
553 Input:
|
|
554
|
|
555 * LAST_STMT: A stmt from which the pattern search begins. In the example,
|
|
556 when this function is called with S3, the pattern {S2,S3} will be detected.
|
|
557
|
|
558 Output:
|
|
559
|
|
560 * TYPE_IN: The type of the input arguments to the pattern.
|
|
561
|
|
562 * TYPE_OUT: The type of the output of this pattern.
|
|
563
|
|
564 * Return value: A new stmt that will be used to replace the sequence of
|
|
565 stmts that constitute the pattern. In this case it will be:
|
|
566 WIDEN_SUM <x_t, sum_0>
|
|
567
|
|
568 Note: The widening-sum idiom is a widening reduction pattern that is
|
|
569 vectorized without preserving all the intermediate results. It
|
|
570 produces only N/2 (widened) results (by summing up pairs of
|
|
571 intermediate results) rather than all N results. Therefore, we
|
|
572 cannot allow this pattern when we want to get all the results and in
|
|
573 the correct order (as is the case when this computation is in an
|
|
574 inner-loop nested in an outer-loop that us being vectorized). */
|
|
575
|
|
576 static gimple
|
|
577 vect_recog_widen_sum_pattern (gimple last_stmt, tree *type_in, tree *type_out)
|
|
578 {
|
|
579 gimple stmt;
|
|
580 tree oprnd0, oprnd1;
|
|
581 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
|
|
582 tree type, half_type;
|
|
583 gimple pattern_stmt;
|
|
584 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
|
|
585 struct loop *loop = LOOP_VINFO_LOOP (loop_info);
|
|
586 tree var;
|
|
587
|
|
588 if (!is_gimple_assign (last_stmt))
|
|
589 return NULL;
|
|
590
|
|
591 type = gimple_expr_type (last_stmt);
|
|
592
|
|
593 /* Look for the following pattern
|
|
594 DX = (TYPE) X;
|
|
595 sum_1 = DX + sum_0;
|
|
596 In which DX is at least double the size of X, and sum_1 has been
|
|
597 recognized as a reduction variable.
|
|
598 */
|
|
599
|
|
600 /* Starting from LAST_STMT, follow the defs of its uses in search
|
|
601 of the above pattern. */
|
|
602
|
|
603 if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
|
|
604 return NULL;
|
|
605
|
|
606 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
|
|
607 return NULL;
|
|
608
|
|
609 oprnd0 = gimple_assign_rhs1 (last_stmt);
|
|
610 oprnd1 = gimple_assign_rhs2 (last_stmt);
|
|
611 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
|
|
612 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
|
|
613 return NULL;
|
|
614
|
|
615 /* So far so good. Since last_stmt was detected as a (summation) reduction,
|
|
616 we know that oprnd1 is the reduction variable (defined by a loop-header
|
|
617 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
|
|
618 Left to check that oprnd0 is defined by a cast from type 'type' to type
|
|
619 'TYPE'. */
|
|
620
|
|
621 if (!widened_name_p (oprnd0, last_stmt, &half_type, &stmt))
|
|
622 return NULL;
|
|
623
|
|
624 oprnd0 = gimple_assign_rhs1 (stmt);
|
|
625 *type_in = half_type;
|
|
626 *type_out = type;
|
|
627
|
|
628 /* Pattern detected. Create a stmt to be used to replace the pattern: */
|
|
629 var = vect_recog_temp_ssa_var (type, NULL);
|
|
630 pattern_stmt = gimple_build_assign_with_ops (WIDEN_SUM_EXPR, var,
|
|
631 oprnd0, oprnd1);
|
|
632 SSA_NAME_DEF_STMT (var) = pattern_stmt;
|
|
633
|
|
634 if (vect_print_dump_info (REPORT_DETAILS))
|
|
635 {
|
|
636 fprintf (vect_dump, "vect_recog_widen_sum_pattern: detected: ");
|
|
637 print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
|
|
638 }
|
|
639
|
|
640 /* We don't allow changing the order of the computation in the inner-loop
|
|
641 when doing outer-loop vectorization. */
|
|
642 if (nested_in_vect_loop_p (loop, last_stmt))
|
|
643 {
|
|
644 if (vect_print_dump_info (REPORT_DETAILS))
|
|
645 fprintf (vect_dump, "vect_recog_widen_sum_pattern: not allowed.");
|
|
646 return NULL;
|
|
647 }
|
|
648
|
|
649 return pattern_stmt;
|
|
650 }
|
|
651
|
|
652
|
|
653 /* Function vect_pattern_recog_1
|
|
654
|
|
655 Input:
|
|
656 PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
|
|
657 computation pattern.
|
|
658 STMT: A stmt from which the pattern search should start.
|
|
659
|
|
660 If PATTERN_RECOG_FUNC successfully detected the pattern, it creates an
|
|
661 expression that computes the same functionality and can be used to
|
|
662 replace the sequence of stmts that are involved in the pattern.
|
|
663
|
|
664 Output:
|
|
665 This function checks if the expression returned by PATTERN_RECOG_FUNC is
|
|
666 supported in vector form by the target. We use 'TYPE_IN' to obtain the
|
|
667 relevant vector type. If 'TYPE_IN' is already a vector type, then this
|
|
668 indicates that target support had already been checked by PATTERN_RECOG_FUNC.
|
|
669 If 'TYPE_OUT' is also returned by PATTERN_RECOG_FUNC, we check that it fits
|
|
670 to the available target pattern.
|
|
671
|
|
672 This function also does some bookkeeping, as explained in the documentation
|
|
673 for vect_recog_pattern. */
|
|
674
|
|
675 static void
|
|
676 vect_pattern_recog_1 (
|
|
677 gimple (* vect_recog_func) (gimple, tree *, tree *),
|
|
678 gimple_stmt_iterator si)
|
|
679 {
|
|
680 gimple stmt = gsi_stmt (si), pattern_stmt;
|
|
681 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
|
|
682 stmt_vec_info pattern_stmt_info;
|
|
683 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
|
|
684 tree pattern_vectype;
|
|
685 tree type_in, type_out;
|
|
686 enum tree_code code;
|
|
687
|
|
688 pattern_stmt = (* vect_recog_func) (stmt, &type_in, &type_out);
|
|
689 if (!pattern_stmt)
|
|
690 return;
|
|
691
|
|
692 if (VECTOR_MODE_P (TYPE_MODE (type_in)))
|
|
693 {
|
|
694 /* No need to check target support (already checked by the pattern
|
|
695 recognition function). */
|
|
696 pattern_vectype = type_in;
|
|
697 }
|
|
698 else
|
|
699 {
|
|
700 enum tree_code vec_mode;
|
|
701 enum insn_code icode;
|
|
702 optab optab;
|
|
703
|
|
704 /* Check target support */
|
|
705 pattern_vectype = get_vectype_for_scalar_type (type_in);
|
|
706 if (!pattern_vectype)
|
|
707 return;
|
|
708
|
|
709 if (is_gimple_assign (pattern_stmt))
|
|
710 code = gimple_assign_rhs_code (pattern_stmt);
|
|
711 else
|
|
712 {
|
|
713 gcc_assert (is_gimple_call (pattern_stmt));
|
|
714 code = CALL_EXPR;
|
|
715 }
|
|
716
|
|
717 optab = optab_for_tree_code (code, pattern_vectype, optab_default);
|
|
718 vec_mode = TYPE_MODE (pattern_vectype);
|
|
719 if (!optab
|
|
720 || (icode = optab_handler (optab, vec_mode)->insn_code) ==
|
|
721 CODE_FOR_nothing
|
|
722 || (type_out
|
|
723 && (!get_vectype_for_scalar_type (type_out)
|
|
724 || (insn_data[icode].operand[0].mode !=
|
|
725 TYPE_MODE (get_vectype_for_scalar_type (type_out))))))
|
|
726 return;
|
|
727 }
|
|
728
|
|
729 /* Found a vectorizable pattern. */
|
|
730 if (vect_print_dump_info (REPORT_DETAILS))
|
|
731 {
|
|
732 fprintf (vect_dump, "pattern recognized: ");
|
|
733 print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
|
|
734 }
|
|
735
|
|
736 /* Mark the stmts that are involved in the pattern. */
|
|
737 gsi_insert_before (&si, pattern_stmt, GSI_SAME_STMT);
|
|
738 set_vinfo_for_stmt (pattern_stmt,
|
|
739 new_stmt_vec_info (pattern_stmt, loop_vinfo));
|
|
740 pattern_stmt_info = vinfo_for_stmt (pattern_stmt);
|
|
741
|
|
742 STMT_VINFO_RELATED_STMT (pattern_stmt_info) = stmt;
|
|
743 STMT_VINFO_DEF_TYPE (pattern_stmt_info) = STMT_VINFO_DEF_TYPE (stmt_info);
|
|
744 STMT_VINFO_VECTYPE (pattern_stmt_info) = pattern_vectype;
|
|
745 STMT_VINFO_IN_PATTERN_P (stmt_info) = true;
|
|
746 STMT_VINFO_RELATED_STMT (stmt_info) = pattern_stmt;
|
|
747
|
|
748 return;
|
|
749 }
|
|
750
|
|
751
|
|
752 /* Function vect_pattern_recog
|
|
753
|
|
754 Input:
|
|
755 LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
|
|
756 computation idioms.
|
|
757
|
|
758 Output - for each computation idiom that is detected we insert a new stmt
|
|
759 that provides the same functionality and that can be vectorized. We
|
|
760 also record some information in the struct_stmt_info of the relevant
|
|
761 stmts, as explained below:
|
|
762
|
|
763 At the entry to this function we have the following stmts, with the
|
|
764 following initial value in the STMT_VINFO fields:
|
|
765
|
|
766 stmt in_pattern_p related_stmt vec_stmt
|
|
767 S1: a_i = .... - - -
|
|
768 S2: a_2 = ..use(a_i).. - - -
|
|
769 S3: a_1 = ..use(a_2).. - - -
|
|
770 S4: a_0 = ..use(a_1).. - - -
|
|
771 S5: ... = ..use(a_0).. - - -
|
|
772
|
|
773 Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
|
|
774 represented by a single stmt. We then:
|
|
775 - create a new stmt S6 that will replace the pattern.
|
|
776 - insert the new stmt S6 before the last stmt in the pattern
|
|
777 - fill in the STMT_VINFO fields as follows:
|
|
778
|
|
779 in_pattern_p related_stmt vec_stmt
|
|
780 S1: a_i = .... - - -
|
|
781 S2: a_2 = ..use(a_i).. - - -
|
|
782 S3: a_1 = ..use(a_2).. - - -
|
|
783 > S6: a_new = .... - S4 -
|
|
784 S4: a_0 = ..use(a_1).. true S6 -
|
|
785 S5: ... = ..use(a_0).. - - -
|
|
786
|
|
787 (the last stmt in the pattern (S4) and the new pattern stmt (S6) point
|
|
788 to each other through the RELATED_STMT field).
|
|
789
|
|
790 S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
|
|
791 of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
|
|
792 remain irrelevant unless used by stmts other than S4.
|
|
793
|
|
794 If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
|
|
795 (because they are marked as irrelevant). It will vectorize S6, and record
|
|
796 a pointer to the new vector stmt VS6 both from S6 (as usual), and also
|
|
797 from S4. We do that so that when we get to vectorizing stmts that use the
|
|
798 def of S4 (like S5 that uses a_0), we'll know where to take the relevant
|
|
799 vector-def from. S4 will be skipped, and S5 will be vectorized as usual:
|
|
800
|
|
801 in_pattern_p related_stmt vec_stmt
|
|
802 S1: a_i = .... - - -
|
|
803 S2: a_2 = ..use(a_i).. - - -
|
|
804 S3: a_1 = ..use(a_2).. - - -
|
|
805 > VS6: va_new = .... - - -
|
|
806 S6: a_new = .... - S4 VS6
|
|
807 S4: a_0 = ..use(a_1).. true S6 VS6
|
|
808 > VS5: ... = ..vuse(va_new).. - - -
|
|
809 S5: ... = ..use(a_0).. - - -
|
|
810
|
|
811 DCE could then get rid of {S1,S2,S3,S4,S5,S6} (if their defs are not used
|
|
812 elsewhere), and we'll end up with:
|
|
813
|
|
814 VS6: va_new = ....
|
|
815 VS5: ... = ..vuse(va_new)..
|
|
816
|
|
817 If vectorization does not succeed, DCE will clean S6 away (its def is
|
|
818 not used), and we'll end up with the original sequence.
|
|
819 */
|
|
820
|
|
821 void
|
|
822 vect_pattern_recog (loop_vec_info loop_vinfo)
|
|
823 {
|
|
824 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
|
|
825 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
|
|
826 unsigned int nbbs = loop->num_nodes;
|
|
827 gimple_stmt_iterator si;
|
|
828 gimple stmt;
|
|
829 unsigned int i, j;
|
|
830 gimple (* vect_recog_func_ptr) (gimple, tree *, tree *);
|
|
831
|
|
832 if (vect_print_dump_info (REPORT_DETAILS))
|
|
833 fprintf (vect_dump, "=== vect_pattern_recog ===");
|
|
834
|
|
835 /* Scan through the loop stmts, applying the pattern recognition
|
|
836 functions starting at each stmt visited: */
|
|
837 for (i = 0; i < nbbs; i++)
|
|
838 {
|
|
839 basic_block bb = bbs[i];
|
|
840 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
|
841 {
|
|
842 stmt = gsi_stmt (si);
|
|
843
|
|
844 /* Scan over all generic vect_recog_xxx_pattern functions. */
|
|
845 for (j = 0; j < NUM_PATTERNS; j++)
|
|
846 {
|
|
847 vect_recog_func_ptr = vect_vect_recog_func_ptrs[j];
|
|
848 vect_pattern_recog_1 (vect_recog_func_ptr, si);
|
|
849 }
|
|
850 }
|
|
851 }
|
|
852 }
|