0
|
1 /* Lambda matrix and vector interface.
|
|
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
|
|
3 Free Software Foundation, Inc.
|
|
4 Contributed by Daniel Berlin <dberlin@dberlin.org>
|
|
5
|
|
6 This file is part of GCC.
|
|
7
|
|
8 GCC is free software; you can redistribute it and/or modify it under
|
|
9 the terms of the GNU General Public License as published by the Free
|
|
10 Software Foundation; either version 3, or (at your option) any later
|
|
11 version.
|
|
12
|
|
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with GCC; see the file COPYING3. If not see
|
|
20 <http://www.gnu.org/licenses/>. */
|
|
21
|
|
22 #ifndef LAMBDA_H
|
|
23 #define LAMBDA_H
|
|
24
|
|
25 #include "vec.h"
|
|
26
|
|
27 /* An integer vector. A vector formally consists of an element of a vector
|
|
28 space. A vector space is a set that is closed under vector addition
|
|
29 and scalar multiplication. In this vector space, an element is a list of
|
|
30 integers. */
|
|
31 typedef int *lambda_vector;
|
|
32 DEF_VEC_P(lambda_vector);
|
|
33 DEF_VEC_ALLOC_P(lambda_vector,heap);
|
|
34 DEF_VEC_ALLOC_P(lambda_vector,gc);
|
|
35
|
|
36 typedef VEC(lambda_vector, heap) *lambda_vector_vec_p;
|
|
37 DEF_VEC_P (lambda_vector_vec_p);
|
|
38 DEF_VEC_ALLOC_P (lambda_vector_vec_p, heap);
|
|
39
|
|
40 /* An integer matrix. A matrix consists of m vectors of length n (IE
|
|
41 all vectors are the same length). */
|
|
42 typedef lambda_vector *lambda_matrix;
|
|
43
|
|
44 DEF_VEC_P (lambda_matrix);
|
|
45 DEF_VEC_ALLOC_P (lambda_matrix, heap);
|
|
46
|
|
47 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
|
|
48 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
|
|
49 represents the denominator for every element in the matrix. */
|
|
50 typedef struct lambda_trans_matrix_s
|
|
51 {
|
|
52 lambda_matrix matrix;
|
|
53 int rowsize;
|
|
54 int colsize;
|
|
55 int denominator;
|
|
56 } *lambda_trans_matrix;
|
|
57 #define LTM_MATRIX(T) ((T)->matrix)
|
|
58 #define LTM_ROWSIZE(T) ((T)->rowsize)
|
|
59 #define LTM_COLSIZE(T) ((T)->colsize)
|
|
60 #define LTM_DENOMINATOR(T) ((T)->denominator)
|
|
61
|
|
62 /* A vector representing a statement in the body of a loop.
|
|
63 The COEFFICIENTS vector contains a coefficient for each induction variable
|
|
64 in the loop nest containing the statement.
|
|
65 The DENOMINATOR represents the denominator for each coefficient in the
|
|
66 COEFFICIENT vector.
|
|
67
|
|
68 This structure is used during code generation in order to rewrite the old
|
|
69 induction variable uses in a statement in terms of the newly created
|
|
70 induction variables. */
|
|
71 typedef struct lambda_body_vector_s
|
|
72 {
|
|
73 lambda_vector coefficients;
|
|
74 int size;
|
|
75 int denominator;
|
|
76 } *lambda_body_vector;
|
|
77 #define LBV_COEFFICIENTS(T) ((T)->coefficients)
|
|
78 #define LBV_SIZE(T) ((T)->size)
|
|
79 #define LBV_DENOMINATOR(T) ((T)->denominator)
|
|
80
|
|
81 /* Piecewise linear expression.
|
|
82 This structure represents a linear expression with terms for the invariants
|
|
83 and induction variables of a loop.
|
|
84 COEFFICIENTS is a vector of coefficients for the induction variables, one
|
|
85 per loop in the loop nest.
|
|
86 CONSTANT is the constant portion of the linear expression
|
|
87 INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
|
|
88 one per invariant.
|
|
89 DENOMINATOR is the denominator for all of the coefficients and constants in
|
|
90 the expression.
|
|
91 The linear expressions can be linked together using the NEXT field, in
|
|
92 order to represent MAX or MIN of a group of linear expressions. */
|
|
93 typedef struct lambda_linear_expression_s
|
|
94 {
|
|
95 lambda_vector coefficients;
|
|
96 int constant;
|
|
97 lambda_vector invariant_coefficients;
|
|
98 int denominator;
|
|
99 struct lambda_linear_expression_s *next;
|
|
100 } *lambda_linear_expression;
|
|
101
|
|
102 #define LLE_COEFFICIENTS(T) ((T)->coefficients)
|
|
103 #define LLE_CONSTANT(T) ((T)->constant)
|
|
104 #define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
|
|
105 #define LLE_DENOMINATOR(T) ((T)->denominator)
|
|
106 #define LLE_NEXT(T) ((T)->next)
|
|
107
|
|
108 struct obstack;
|
|
109
|
|
110 lambda_linear_expression lambda_linear_expression_new (int, int,
|
|
111 struct obstack *);
|
|
112 void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
|
|
113 int, char);
|
|
114
|
|
115 /* Loop structure. Our loop structure consists of a constant representing the
|
|
116 STEP of the loop, a set of linear expressions representing the LOWER_BOUND
|
|
117 of the loop, a set of linear expressions representing the UPPER_BOUND of
|
|
118 the loop, and a set of linear expressions representing the LINEAR_OFFSET of
|
|
119 the loop. The linear offset is a set of linear expressions that are
|
|
120 applied to *both* the lower bound, and the upper bound. */
|
|
121 typedef struct lambda_loop_s
|
|
122 {
|
|
123 lambda_linear_expression lower_bound;
|
|
124 lambda_linear_expression upper_bound;
|
|
125 lambda_linear_expression linear_offset;
|
|
126 int step;
|
|
127 } *lambda_loop;
|
|
128
|
|
129 #define LL_LOWER_BOUND(T) ((T)->lower_bound)
|
|
130 #define LL_UPPER_BOUND(T) ((T)->upper_bound)
|
|
131 #define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
|
|
132 #define LL_STEP(T) ((T)->step)
|
|
133
|
|
134 /* Loop nest structure.
|
|
135 The loop nest structure consists of a set of loop structures (defined
|
|
136 above) in LOOPS, along with an integer representing the DEPTH of the loop,
|
|
137 and an integer representing the number of INVARIANTS in the loop. Both of
|
|
138 these integers are used to size the associated coefficient vectors in the
|
|
139 linear expression structures. */
|
|
140 typedef struct lambda_loopnest_s
|
|
141 {
|
|
142 lambda_loop *loops;
|
|
143 int depth;
|
|
144 int invariants;
|
|
145 } *lambda_loopnest;
|
|
146
|
|
147 #define LN_LOOPS(T) ((T)->loops)
|
|
148 #define LN_DEPTH(T) ((T)->depth)
|
|
149 #define LN_INVARIANTS(T) ((T)->invariants)
|
|
150
|
|
151 lambda_loopnest lambda_loopnest_new (int, int, struct obstack *);
|
|
152 lambda_loopnest lambda_loopnest_transform (lambda_loopnest,
|
|
153 lambda_trans_matrix,
|
|
154 struct obstack *);
|
|
155 struct loop;
|
|
156 bool perfect_nest_p (struct loop *);
|
|
157 void print_lambda_loopnest (FILE *, lambda_loopnest, char);
|
|
158
|
|
159 #define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s))
|
|
160
|
|
161 void print_lambda_loop (FILE *, lambda_loop, int, int, char);
|
|
162
|
|
163 lambda_matrix lambda_matrix_new (int, int);
|
|
164
|
|
165 void lambda_matrix_id (lambda_matrix, int);
|
|
166 bool lambda_matrix_id_p (lambda_matrix, int);
|
|
167 void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
|
|
168 void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
|
|
169 void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
|
|
170 void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
|
|
171 int);
|
|
172 void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
|
|
173 lambda_matrix, int, int);
|
|
174 void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
|
|
175 int, int, int);
|
|
176 void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
|
|
177 void lambda_matrix_row_exchange (lambda_matrix, int, int);
|
|
178 void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
|
|
179 void lambda_matrix_row_negate (lambda_matrix mat, int, int);
|
|
180 void lambda_matrix_row_mc (lambda_matrix, int, int, int);
|
|
181 void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
|
|
182 void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
|
|
183 void lambda_matrix_col_negate (lambda_matrix, int, int);
|
|
184 void lambda_matrix_col_mc (lambda_matrix, int, int, int);
|
|
185 int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int);
|
|
186 void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
|
|
187 void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
|
|
188 void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
|
|
189 int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
|
|
190 void lambda_matrix_project_to_null (lambda_matrix, int, int, int,
|
|
191 lambda_vector);
|
|
192 void print_lambda_matrix (FILE *, lambda_matrix, int, int);
|
|
193
|
|
194 lambda_trans_matrix lambda_trans_matrix_new (int, int);
|
|
195 bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
|
|
196 bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
|
|
197 int lambda_trans_matrix_rank (lambda_trans_matrix);
|
|
198 lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
|
|
199 lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
|
|
200 lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix);
|
|
201 void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
|
|
202 void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector,
|
|
203 lambda_vector);
|
|
204 bool lambda_trans_matrix_id_p (lambda_trans_matrix);
|
|
205
|
|
206 lambda_body_vector lambda_body_vector_new (int, struct obstack *);
|
|
207 lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
|
|
208 lambda_body_vector,
|
|
209 struct obstack *);
|
|
210 void print_lambda_body_vector (FILE *, lambda_body_vector);
|
|
211 lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loop *,
|
|
212 VEC(tree,heap) **,
|
|
213 VEC(tree,heap) **,
|
|
214 struct obstack *);
|
|
215 void lambda_loopnest_to_gcc_loopnest (struct loop *,
|
|
216 VEC(tree,heap) *, VEC(tree,heap) *,
|
|
217 VEC(gimple,heap) **,
|
|
218 lambda_loopnest, lambda_trans_matrix,
|
|
219 struct obstack *);
|
|
220 void remove_iv (gimple);
|
|
221 tree find_induction_var_from_exit_cond (struct loop *);
|
|
222
|
|
223 static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
|
|
224 static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
|
|
225 static inline void lambda_vector_add (lambda_vector, lambda_vector,
|
|
226 lambda_vector, int);
|
|
227 static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
|
|
228 lambda_vector, int);
|
|
229 static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
|
|
230 static inline bool lambda_vector_zerop (lambda_vector, int);
|
|
231 static inline void lambda_vector_clear (lambda_vector, int);
|
|
232 static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
|
|
233 static inline int lambda_vector_min_nz (lambda_vector, int, int);
|
|
234 static inline int lambda_vector_first_nz (lambda_vector, int, int);
|
|
235 static inline void print_lambda_vector (FILE *, lambda_vector, int);
|
|
236
|
|
237 /* Allocate a new vector of given SIZE. */
|
|
238
|
|
239 static inline lambda_vector
|
|
240 lambda_vector_new (int size)
|
|
241 {
|
|
242 return GGC_CNEWVEC (int, size);
|
|
243 }
|
|
244
|
|
245
|
|
246
|
|
247 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
|
|
248 and store the result in VEC2. */
|
|
249
|
|
250 static inline void
|
|
251 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
|
|
252 int size, int const1)
|
|
253 {
|
|
254 int i;
|
|
255
|
|
256 if (const1 == 0)
|
|
257 lambda_vector_clear (vec2, size);
|
|
258 else
|
|
259 for (i = 0; i < size; i++)
|
|
260 vec2[i] = const1 * vec1[i];
|
|
261 }
|
|
262
|
|
263 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
|
|
264
|
|
265 static inline void
|
|
266 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
|
|
267 int size)
|
|
268 {
|
|
269 lambda_vector_mult_const (vec1, vec2, size, -1);
|
|
270 }
|
|
271
|
|
272 /* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE. */
|
|
273
|
|
274 static inline void
|
|
275 lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
|
|
276 lambda_vector vec3, int size)
|
|
277 {
|
|
278 int i;
|
|
279 for (i = 0; i < size; i++)
|
|
280 vec3[i] = vec1[i] + vec2[i];
|
|
281 }
|
|
282
|
|
283 /* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2. All vectors have length SIZE. */
|
|
284
|
|
285 static inline void
|
|
286 lambda_vector_add_mc (lambda_vector vec1, int const1,
|
|
287 lambda_vector vec2, int const2,
|
|
288 lambda_vector vec3, int size)
|
|
289 {
|
|
290 int i;
|
|
291 for (i = 0; i < size; i++)
|
|
292 vec3[i] = const1 * vec1[i] + const2 * vec2[i];
|
|
293 }
|
|
294
|
|
295 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
|
|
296
|
|
297 static inline void
|
|
298 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
|
|
299 int size)
|
|
300 {
|
|
301 memcpy (vec2, vec1, size * sizeof (*vec1));
|
|
302 }
|
|
303
|
|
304 /* Return true if vector VEC1 of length SIZE is the zero vector. */
|
|
305
|
|
306 static inline bool
|
|
307 lambda_vector_zerop (lambda_vector vec1, int size)
|
|
308 {
|
|
309 int i;
|
|
310 for (i = 0; i < size; i++)
|
|
311 if (vec1[i] != 0)
|
|
312 return false;
|
|
313 return true;
|
|
314 }
|
|
315
|
|
316 /* Clear out vector VEC1 of length SIZE. */
|
|
317
|
|
318 static inline void
|
|
319 lambda_vector_clear (lambda_vector vec1, int size)
|
|
320 {
|
|
321 memset (vec1, 0, size * sizeof (*vec1));
|
|
322 }
|
|
323
|
|
324 /* Return true if two vectors are equal. */
|
|
325
|
|
326 static inline bool
|
|
327 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
|
|
328 {
|
|
329 int i;
|
|
330 for (i = 0; i < size; i++)
|
|
331 if (vec1[i] != vec2[i])
|
|
332 return false;
|
|
333 return true;
|
|
334 }
|
|
335
|
|
336 /* Return the minimum nonzero element in vector VEC1 between START and N.
|
|
337 We must have START <= N. */
|
|
338
|
|
339 static inline int
|
|
340 lambda_vector_min_nz (lambda_vector vec1, int n, int start)
|
|
341 {
|
|
342 int j;
|
|
343 int min = -1;
|
|
344
|
|
345 gcc_assert (start <= n);
|
|
346 for (j = start; j < n; j++)
|
|
347 {
|
|
348 if (vec1[j])
|
|
349 if (min < 0 || vec1[j] < vec1[min])
|
|
350 min = j;
|
|
351 }
|
|
352 gcc_assert (min >= 0);
|
|
353
|
|
354 return min;
|
|
355 }
|
|
356
|
|
357 /* Return the first nonzero element of vector VEC1 between START and N.
|
|
358 We must have START <= N. Returns N if VEC1 is the zero vector. */
|
|
359
|
|
360 static inline int
|
|
361 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
|
|
362 {
|
|
363 int j = start;
|
|
364 while (j < n && vec1[j] == 0)
|
|
365 j++;
|
|
366 return j;
|
|
367 }
|
|
368
|
|
369
|
|
370 /* Multiply a vector by a matrix. */
|
|
371
|
|
372 static inline void
|
|
373 lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat,
|
|
374 int n, lambda_vector dest)
|
|
375 {
|
|
376 int i, j;
|
|
377 lambda_vector_clear (dest, n);
|
|
378 for (i = 0; i < n; i++)
|
|
379 for (j = 0; j < m; j++)
|
|
380 dest[i] += mat[j][i] * vect[j];
|
|
381 }
|
|
382
|
|
383 /* Compare two vectors returning an integer less than, equal to, or
|
|
384 greater than zero if the first argument is considered to be respectively
|
|
385 less than, equal to, or greater than the second.
|
|
386 We use the lexicographic order. */
|
|
387
|
|
388 static inline int
|
|
389 lambda_vector_compare (lambda_vector vec1, int length1, lambda_vector vec2,
|
|
390 int length2)
|
|
391 {
|
|
392 int min_length;
|
|
393 int i;
|
|
394
|
|
395 if (length1 < length2)
|
|
396 min_length = length1;
|
|
397 else
|
|
398 min_length = length2;
|
|
399
|
|
400 for (i = 0; i < min_length; i++)
|
|
401 if (vec1[i] < vec2[i])
|
|
402 return -1;
|
|
403 else if (vec1[i] > vec2[i])
|
|
404 return 1;
|
|
405 else
|
|
406 continue;
|
|
407
|
|
408 return length1 - length2;
|
|
409 }
|
|
410
|
|
411 /* Print out a vector VEC of length N to OUTFILE. */
|
|
412
|
|
413 static inline void
|
|
414 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
|
|
415 {
|
|
416 int i;
|
|
417
|
|
418 for (i = 0; i < n; i++)
|
|
419 fprintf (outfile, "%3d ", vector[i]);
|
|
420 fprintf (outfile, "\n");
|
|
421 }
|
|
422
|
|
423 /* Compute the greatest common divisor of two numbers using
|
|
424 Euclid's algorithm. */
|
|
425
|
|
426 static inline int
|
|
427 gcd (int a, int b)
|
|
428 {
|
|
429 int x, y, z;
|
|
430
|
|
431 x = abs (a);
|
|
432 y = abs (b);
|
|
433
|
|
434 while (x > 0)
|
|
435 {
|
|
436 z = y % x;
|
|
437 y = x;
|
|
438 x = z;
|
|
439 }
|
|
440
|
|
441 return y;
|
|
442 }
|
|
443
|
|
444 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
|
|
445
|
|
446 static inline int
|
|
447 lambda_vector_gcd (lambda_vector vector, int size)
|
|
448 {
|
|
449 int i;
|
|
450 int gcd1 = 0;
|
|
451
|
|
452 if (size > 0)
|
|
453 {
|
|
454 gcd1 = vector[0];
|
|
455 for (i = 1; i < size; i++)
|
|
456 gcd1 = gcd (gcd1, vector[i]);
|
|
457 }
|
|
458 return gcd1;
|
|
459 }
|
|
460
|
|
461 /* Returns true when the vector V is lexicographically positive, in
|
|
462 other words, when the first nonzero element is positive. */
|
|
463
|
|
464 static inline bool
|
|
465 lambda_vector_lexico_pos (lambda_vector v,
|
|
466 unsigned n)
|
|
467 {
|
|
468 unsigned i;
|
|
469 for (i = 0; i < n; i++)
|
|
470 {
|
|
471 if (v[i] == 0)
|
|
472 continue;
|
|
473 if (v[i] < 0)
|
|
474 return false;
|
|
475 if (v[i] > 0)
|
|
476 return true;
|
|
477 }
|
|
478 return true;
|
|
479 }
|
|
480
|
|
481 /* Given a vector of induction variables IVS, and a vector of
|
|
482 coefficients COEFS, build a tree that is a linear combination of
|
|
483 the induction variables. */
|
|
484
|
|
485 static inline tree
|
|
486 build_linear_expr (tree type, lambda_vector coefs, VEC (tree, heap) *ivs)
|
|
487 {
|
|
488 unsigned i;
|
|
489 tree iv;
|
|
490 tree expr = fold_convert (type, integer_zero_node);
|
|
491
|
|
492 for (i = 0; VEC_iterate (tree, ivs, i, iv); i++)
|
|
493 {
|
|
494 int k = coefs[i];
|
|
495
|
|
496 if (k == 1)
|
|
497 expr = fold_build2 (PLUS_EXPR, type, expr, iv);
|
|
498
|
|
499 else if (k != 0)
|
|
500 expr = fold_build2 (PLUS_EXPR, type, expr,
|
|
501 fold_build2 (MULT_EXPR, type, iv,
|
|
502 build_int_cst (type, k)));
|
|
503 }
|
|
504
|
|
505 return expr;
|
|
506 }
|
|
507
|
|
508 /* Returns the dependence level for a vector DIST of size LENGTH.
|
|
509 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
|
|
510 to the sequence of statements, not carried by any loop. */
|
|
511
|
|
512
|
|
513 static inline unsigned
|
|
514 dependence_level (lambda_vector dist_vect, int length)
|
|
515 {
|
|
516 int i;
|
|
517
|
|
518 for (i = 0; i < length; i++)
|
|
519 if (dist_vect[i] != 0)
|
|
520 return i + 1;
|
|
521
|
|
522 return 0;
|
|
523 }
|
|
524
|
|
525 #endif /* LAMBDA_H */
|