0
|
1 /* High-level loop manipulation functions.
|
|
2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
|
|
3
|
|
4 This file is part of GCC.
|
|
5
|
|
6 GCC is free software; you can redistribute it and/or modify it
|
|
7 under the terms of the GNU General Public License as published by the
|
|
8 Free Software Foundation; either version 3, or (at your option) any
|
|
9 later version.
|
|
10
|
|
11 GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 for more details.
|
|
15
|
|
16 You should have received a copy of the GNU General Public License
|
|
17 along with GCC; see the file COPYING3. If not see
|
|
18 <http://www.gnu.org/licenses/>. */
|
|
19
|
|
20 #include "config.h"
|
|
21 #include "system.h"
|
|
22 #include "coretypes.h"
|
|
23 #include "tm.h"
|
|
24 #include "tree.h"
|
|
25 #include "rtl.h"
|
|
26 #include "tm_p.h"
|
|
27 #include "hard-reg-set.h"
|
|
28 #include "basic-block.h"
|
|
29 #include "output.h"
|
|
30 #include "diagnostic.h"
|
|
31 #include "tree-flow.h"
|
|
32 #include "tree-dump.h"
|
|
33 #include "timevar.h"
|
|
34 #include "cfgloop.h"
|
|
35 #include "tree-pass.h"
|
|
36 #include "cfglayout.h"
|
|
37 #include "tree-scalar-evolution.h"
|
|
38 #include "params.h"
|
|
39 #include "tree-inline.h"
|
|
40
|
|
41 /* Creates an induction variable with value BASE + STEP * iteration in LOOP.
|
|
42 It is expected that neither BASE nor STEP are shared with other expressions
|
|
43 (unless the sharing rules allow this). Use VAR as a base var_decl for it
|
|
44 (if NULL, a new temporary will be created). The increment will occur at
|
|
45 INCR_POS (after it if AFTER is true, before it otherwise). INCR_POS and
|
|
46 AFTER can be computed using standard_iv_increment_position. The ssa versions
|
|
47 of the variable before and after increment will be stored in VAR_BEFORE and
|
|
48 VAR_AFTER (unless they are NULL). */
|
|
49
|
|
50 void
|
|
51 create_iv (tree base, tree step, tree var, struct loop *loop,
|
|
52 gimple_stmt_iterator *incr_pos, bool after,
|
|
53 tree *var_before, tree *var_after)
|
|
54 {
|
|
55 gimple stmt;
|
|
56 tree initial, step1;
|
|
57 gimple_seq stmts;
|
|
58 tree vb, va;
|
|
59 enum tree_code incr_op = PLUS_EXPR;
|
|
60 edge pe = loop_preheader_edge (loop);
|
|
61
|
|
62 if (!var)
|
|
63 {
|
|
64 var = create_tmp_var (TREE_TYPE (base), "ivtmp");
|
|
65 add_referenced_var (var);
|
|
66 }
|
|
67
|
|
68 vb = make_ssa_name (var, NULL);
|
|
69 if (var_before)
|
|
70 *var_before = vb;
|
|
71 va = make_ssa_name (var, NULL);
|
|
72 if (var_after)
|
|
73 *var_after = va;
|
|
74
|
|
75 /* For easier readability of the created code, produce MINUS_EXPRs
|
|
76 when suitable. */
|
|
77 if (TREE_CODE (step) == INTEGER_CST)
|
|
78 {
|
|
79 if (TYPE_UNSIGNED (TREE_TYPE (step)))
|
|
80 {
|
|
81 step1 = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
|
|
82 if (tree_int_cst_lt (step1, step))
|
|
83 {
|
|
84 incr_op = MINUS_EXPR;
|
|
85 step = step1;
|
|
86 }
|
|
87 }
|
|
88 else
|
|
89 {
|
|
90 bool ovf;
|
|
91
|
|
92 if (!tree_expr_nonnegative_warnv_p (step, &ovf)
|
|
93 && may_negate_without_overflow_p (step))
|
|
94 {
|
|
95 incr_op = MINUS_EXPR;
|
|
96 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
|
|
97 }
|
|
98 }
|
|
99 }
|
|
100 if (POINTER_TYPE_P (TREE_TYPE (base)))
|
|
101 {
|
|
102 step = fold_convert (sizetype, step);
|
|
103 if (incr_op == MINUS_EXPR)
|
|
104 step = fold_build1 (NEGATE_EXPR, sizetype, step);
|
|
105 incr_op = POINTER_PLUS_EXPR;
|
|
106 }
|
|
107 /* Gimplify the step if necessary. We put the computations in front of the
|
|
108 loop (i.e. the step should be loop invariant). */
|
|
109 step = force_gimple_operand (step, &stmts, true, NULL_TREE);
|
|
110 if (stmts)
|
|
111 gsi_insert_seq_on_edge_immediate (pe, stmts);
|
|
112
|
|
113 stmt = gimple_build_assign_with_ops (incr_op, va, vb, step);
|
|
114 if (after)
|
|
115 gsi_insert_after (incr_pos, stmt, GSI_NEW_STMT);
|
|
116 else
|
|
117 gsi_insert_before (incr_pos, stmt, GSI_NEW_STMT);
|
|
118
|
|
119 initial = force_gimple_operand (base, &stmts, true, var);
|
|
120 if (stmts)
|
|
121 gsi_insert_seq_on_edge_immediate (pe, stmts);
|
|
122
|
|
123 stmt = create_phi_node (vb, loop->header);
|
|
124 SSA_NAME_DEF_STMT (vb) = stmt;
|
|
125 add_phi_arg (stmt, initial, loop_preheader_edge (loop));
|
|
126 add_phi_arg (stmt, va, loop_latch_edge (loop));
|
|
127 }
|
|
128
|
|
129 /* Add exit phis for the USE on EXIT. */
|
|
130
|
|
131 static void
|
|
132 add_exit_phis_edge (basic_block exit, tree use)
|
|
133 {
|
|
134 gimple phi, def_stmt = SSA_NAME_DEF_STMT (use);
|
|
135 basic_block def_bb = gimple_bb (def_stmt);
|
|
136 struct loop *def_loop;
|
|
137 edge e;
|
|
138 edge_iterator ei;
|
|
139
|
|
140 /* Check that some of the edges entering the EXIT block exits a loop in
|
|
141 that USE is defined. */
|
|
142 FOR_EACH_EDGE (e, ei, exit->preds)
|
|
143 {
|
|
144 def_loop = find_common_loop (def_bb->loop_father, e->src->loop_father);
|
|
145 if (!flow_bb_inside_loop_p (def_loop, e->dest))
|
|
146 break;
|
|
147 }
|
|
148
|
|
149 if (!e)
|
|
150 return;
|
|
151
|
|
152 phi = create_phi_node (use, exit);
|
|
153 create_new_def_for (gimple_phi_result (phi), phi,
|
|
154 gimple_phi_result_ptr (phi));
|
|
155 FOR_EACH_EDGE (e, ei, exit->preds)
|
|
156 add_phi_arg (phi, use, e);
|
|
157 }
|
|
158
|
|
159 /* Add exit phis for VAR that is used in LIVEIN.
|
|
160 Exits of the loops are stored in EXITS. */
|
|
161
|
|
162 static void
|
|
163 add_exit_phis_var (tree var, bitmap livein, bitmap exits)
|
|
164 {
|
|
165 bitmap def;
|
|
166 unsigned index;
|
|
167 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
|
|
168 bitmap_iterator bi;
|
|
169
|
|
170 if (is_gimple_reg (var))
|
|
171 bitmap_clear_bit (livein, def_bb->index);
|
|
172 else
|
|
173 bitmap_set_bit (livein, def_bb->index);
|
|
174
|
|
175 def = BITMAP_ALLOC (NULL);
|
|
176 bitmap_set_bit (def, def_bb->index);
|
|
177 compute_global_livein (livein, def);
|
|
178 BITMAP_FREE (def);
|
|
179
|
|
180 EXECUTE_IF_AND_IN_BITMAP (exits, livein, 0, index, bi)
|
|
181 {
|
|
182 add_exit_phis_edge (BASIC_BLOCK (index), var);
|
|
183 }
|
|
184 }
|
|
185
|
|
186 /* Add exit phis for the names marked in NAMES_TO_RENAME.
|
|
187 Exits of the loops are stored in EXITS. Sets of blocks where the ssa
|
|
188 names are used are stored in USE_BLOCKS. */
|
|
189
|
|
190 static void
|
|
191 add_exit_phis (bitmap names_to_rename, bitmap *use_blocks, bitmap loop_exits)
|
|
192 {
|
|
193 unsigned i;
|
|
194 bitmap_iterator bi;
|
|
195
|
|
196 EXECUTE_IF_SET_IN_BITMAP (names_to_rename, 0, i, bi)
|
|
197 {
|
|
198 add_exit_phis_var (ssa_name (i), use_blocks[i], loop_exits);
|
|
199 }
|
|
200 }
|
|
201
|
|
202 /* Returns a bitmap of all loop exit edge targets. */
|
|
203
|
|
204 static bitmap
|
|
205 get_loops_exits (void)
|
|
206 {
|
|
207 bitmap exits = BITMAP_ALLOC (NULL);
|
|
208 basic_block bb;
|
|
209 edge e;
|
|
210 edge_iterator ei;
|
|
211
|
|
212 FOR_EACH_BB (bb)
|
|
213 {
|
|
214 FOR_EACH_EDGE (e, ei, bb->preds)
|
|
215 if (e->src != ENTRY_BLOCK_PTR
|
|
216 && !flow_bb_inside_loop_p (e->src->loop_father, bb))
|
|
217 {
|
|
218 bitmap_set_bit (exits, bb->index);
|
|
219 break;
|
|
220 }
|
|
221 }
|
|
222
|
|
223 return exits;
|
|
224 }
|
|
225
|
|
226 /* For USE in BB, if it is used outside of the loop it is defined in,
|
|
227 mark it for rewrite. Record basic block BB where it is used
|
|
228 to USE_BLOCKS. Record the ssa name index to NEED_PHIS bitmap. */
|
|
229
|
|
230 static void
|
|
231 find_uses_to_rename_use (basic_block bb, tree use, bitmap *use_blocks,
|
|
232 bitmap need_phis)
|
|
233 {
|
|
234 unsigned ver;
|
|
235 basic_block def_bb;
|
|
236 struct loop *def_loop;
|
|
237
|
|
238 if (TREE_CODE (use) != SSA_NAME)
|
|
239 return;
|
|
240
|
|
241 /* We don't need to keep virtual operands in loop-closed form. */
|
|
242 if (!is_gimple_reg (use))
|
|
243 return;
|
|
244
|
|
245 ver = SSA_NAME_VERSION (use);
|
|
246 def_bb = gimple_bb (SSA_NAME_DEF_STMT (use));
|
|
247 if (!def_bb)
|
|
248 return;
|
|
249 def_loop = def_bb->loop_father;
|
|
250
|
|
251 /* If the definition is not inside a loop, it is not interesting. */
|
|
252 if (!loop_outer (def_loop))
|
|
253 return;
|
|
254
|
|
255 /* If the use is not outside of the loop it is defined in, it is not
|
|
256 interesting. */
|
|
257 if (flow_bb_inside_loop_p (def_loop, bb))
|
|
258 return;
|
|
259
|
|
260 if (!use_blocks[ver])
|
|
261 use_blocks[ver] = BITMAP_ALLOC (NULL);
|
|
262 bitmap_set_bit (use_blocks[ver], bb->index);
|
|
263
|
|
264 bitmap_set_bit (need_phis, ver);
|
|
265 }
|
|
266
|
|
267 /* For uses in STMT, mark names that are used outside of the loop they are
|
|
268 defined to rewrite. Record the set of blocks in that the ssa
|
|
269 names are defined to USE_BLOCKS and the ssa names themselves to
|
|
270 NEED_PHIS. */
|
|
271
|
|
272 static void
|
|
273 find_uses_to_rename_stmt (gimple stmt, bitmap *use_blocks, bitmap need_phis)
|
|
274 {
|
|
275 ssa_op_iter iter;
|
|
276 tree var;
|
|
277 basic_block bb = gimple_bb (stmt);
|
|
278
|
|
279 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_USES)
|
|
280 find_uses_to_rename_use (bb, var, use_blocks, need_phis);
|
|
281 }
|
|
282
|
|
283 /* Marks names that are used in BB and outside of the loop they are
|
|
284 defined in for rewrite. Records the set of blocks in that the ssa
|
|
285 names are defined to USE_BLOCKS. Record the SSA names that will
|
|
286 need exit PHIs in NEED_PHIS. */
|
|
287
|
|
288 static void
|
|
289 find_uses_to_rename_bb (basic_block bb, bitmap *use_blocks, bitmap need_phis)
|
|
290 {
|
|
291 gimple_stmt_iterator bsi;
|
|
292 edge e;
|
|
293 edge_iterator ei;
|
|
294
|
|
295 FOR_EACH_EDGE (e, ei, bb->succs)
|
|
296 for (bsi = gsi_start_phis (e->dest); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
297 find_uses_to_rename_use (bb, PHI_ARG_DEF_FROM_EDGE (gsi_stmt (bsi), e),
|
|
298 use_blocks, need_phis);
|
|
299
|
|
300 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
301 find_uses_to_rename_stmt (gsi_stmt (bsi), use_blocks, need_phis);
|
|
302 }
|
|
303
|
|
304 /* Marks names that are used outside of the loop they are defined in
|
|
305 for rewrite. Records the set of blocks in that the ssa
|
|
306 names are defined to USE_BLOCKS. If CHANGED_BBS is not NULL,
|
|
307 scan only blocks in this set. */
|
|
308
|
|
309 static void
|
|
310 find_uses_to_rename (bitmap changed_bbs, bitmap *use_blocks, bitmap need_phis)
|
|
311 {
|
|
312 basic_block bb;
|
|
313 unsigned index;
|
|
314 bitmap_iterator bi;
|
|
315
|
|
316 if (changed_bbs && !bitmap_empty_p (changed_bbs))
|
|
317 {
|
|
318 EXECUTE_IF_SET_IN_BITMAP (changed_bbs, 0, index, bi)
|
|
319 {
|
|
320 find_uses_to_rename_bb (BASIC_BLOCK (index), use_blocks, need_phis);
|
|
321 }
|
|
322 }
|
|
323 else
|
|
324 {
|
|
325 FOR_EACH_BB (bb)
|
|
326 {
|
|
327 find_uses_to_rename_bb (bb, use_blocks, need_phis);
|
|
328 }
|
|
329 }
|
|
330 }
|
|
331
|
|
332 /* Rewrites the program into a loop closed ssa form -- i.e. inserts extra
|
|
333 phi nodes to ensure that no variable is used outside the loop it is
|
|
334 defined in.
|
|
335
|
|
336 This strengthening of the basic ssa form has several advantages:
|
|
337
|
|
338 1) Updating it during unrolling/peeling/versioning is trivial, since
|
|
339 we do not need to care about the uses outside of the loop.
|
|
340 2) The behavior of all uses of an induction variable is the same.
|
|
341 Without this, you need to distinguish the case when the variable
|
|
342 is used outside of the loop it is defined in, for example
|
|
343
|
|
344 for (i = 0; i < 100; i++)
|
|
345 {
|
|
346 for (j = 0; j < 100; j++)
|
|
347 {
|
|
348 k = i + j;
|
|
349 use1 (k);
|
|
350 }
|
|
351 use2 (k);
|
|
352 }
|
|
353
|
|
354 Looking from the outer loop with the normal SSA form, the first use of k
|
|
355 is not well-behaved, while the second one is an induction variable with
|
|
356 base 99 and step 1.
|
|
357
|
|
358 If CHANGED_BBS is not NULL, we look for uses outside loops only in
|
|
359 the basic blocks in this set.
|
|
360
|
|
361 UPDATE_FLAG is used in the call to update_ssa. See
|
|
362 TODO_update_ssa* for documentation. */
|
|
363
|
|
364 void
|
|
365 rewrite_into_loop_closed_ssa (bitmap changed_bbs, unsigned update_flag)
|
|
366 {
|
|
367 bitmap loop_exits;
|
|
368 bitmap *use_blocks;
|
|
369 unsigned i, old_num_ssa_names;
|
|
370 bitmap names_to_rename;
|
|
371
|
|
372 loops_state_set (LOOP_CLOSED_SSA);
|
|
373 if (number_of_loops () <= 1)
|
|
374 return;
|
|
375
|
|
376 loop_exits = get_loops_exits ();
|
|
377 names_to_rename = BITMAP_ALLOC (NULL);
|
|
378
|
|
379 /* If the pass has caused the SSA form to be out-of-date, update it
|
|
380 now. */
|
|
381 update_ssa (update_flag);
|
|
382
|
|
383 old_num_ssa_names = num_ssa_names;
|
|
384 use_blocks = XCNEWVEC (bitmap, old_num_ssa_names);
|
|
385
|
|
386 /* Find the uses outside loops. */
|
|
387 find_uses_to_rename (changed_bbs, use_blocks, names_to_rename);
|
|
388
|
|
389 /* Add the PHI nodes on exits of the loops for the names we need to
|
|
390 rewrite. */
|
|
391 add_exit_phis (names_to_rename, use_blocks, loop_exits);
|
|
392
|
|
393 for (i = 0; i < old_num_ssa_names; i++)
|
|
394 BITMAP_FREE (use_blocks[i]);
|
|
395 free (use_blocks);
|
|
396 BITMAP_FREE (loop_exits);
|
|
397 BITMAP_FREE (names_to_rename);
|
|
398
|
|
399 /* Fix up all the names found to be used outside their original
|
|
400 loops. */
|
|
401 update_ssa (TODO_update_ssa);
|
|
402 }
|
|
403
|
|
404 /* Check invariants of the loop closed ssa form for the USE in BB. */
|
|
405
|
|
406 static void
|
|
407 check_loop_closed_ssa_use (basic_block bb, tree use)
|
|
408 {
|
|
409 gimple def;
|
|
410 basic_block def_bb;
|
|
411
|
|
412 if (TREE_CODE (use) != SSA_NAME || !is_gimple_reg (use))
|
|
413 return;
|
|
414
|
|
415 def = SSA_NAME_DEF_STMT (use);
|
|
416 def_bb = gimple_bb (def);
|
|
417 gcc_assert (!def_bb
|
|
418 || flow_bb_inside_loop_p (def_bb->loop_father, bb));
|
|
419 }
|
|
420
|
|
421 /* Checks invariants of loop closed ssa form in statement STMT in BB. */
|
|
422
|
|
423 static void
|
|
424 check_loop_closed_ssa_stmt (basic_block bb, gimple stmt)
|
|
425 {
|
|
426 ssa_op_iter iter;
|
|
427 tree var;
|
|
428
|
|
429 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_USES)
|
|
430 check_loop_closed_ssa_use (bb, var);
|
|
431 }
|
|
432
|
|
433 /* Checks that invariants of the loop closed ssa form are preserved. */
|
|
434
|
|
435 void
|
|
436 verify_loop_closed_ssa (void)
|
|
437 {
|
|
438 basic_block bb;
|
|
439 gimple_stmt_iterator bsi;
|
|
440 gimple phi;
|
|
441 edge e;
|
|
442 edge_iterator ei;
|
|
443
|
|
444 if (number_of_loops () <= 1)
|
|
445 return;
|
|
446
|
|
447 verify_ssa (false);
|
|
448
|
|
449 FOR_EACH_BB (bb)
|
|
450 {
|
|
451 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
452 {
|
|
453 phi = gsi_stmt (bsi);
|
|
454 FOR_EACH_EDGE (e, ei, bb->preds)
|
|
455 check_loop_closed_ssa_use (e->src,
|
|
456 PHI_ARG_DEF_FROM_EDGE (phi, e));
|
|
457 }
|
|
458
|
|
459 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
460 check_loop_closed_ssa_stmt (bb, gsi_stmt (bsi));
|
|
461 }
|
|
462 }
|
|
463
|
|
464 /* Split loop exit edge EXIT. The things are a bit complicated by a need to
|
|
465 preserve the loop closed ssa form. The newly created block is returned. */
|
|
466
|
|
467 basic_block
|
|
468 split_loop_exit_edge (edge exit)
|
|
469 {
|
|
470 basic_block dest = exit->dest;
|
|
471 basic_block bb = split_edge (exit);
|
|
472 gimple phi, new_phi;
|
|
473 tree new_name, name;
|
|
474 use_operand_p op_p;
|
|
475 gimple_stmt_iterator psi;
|
|
476
|
|
477 for (psi = gsi_start_phis (dest); !gsi_end_p (psi); gsi_next (&psi))
|
|
478 {
|
|
479 phi = gsi_stmt (psi);
|
|
480 op_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, single_succ_edge (bb));
|
|
481
|
|
482 name = USE_FROM_PTR (op_p);
|
|
483
|
|
484 /* If the argument of the PHI node is a constant, we do not need
|
|
485 to keep it inside loop. */
|
|
486 if (TREE_CODE (name) != SSA_NAME)
|
|
487 continue;
|
|
488
|
|
489 /* Otherwise create an auxiliary phi node that will copy the value
|
|
490 of the SSA name out of the loop. */
|
|
491 new_name = duplicate_ssa_name (name, NULL);
|
|
492 new_phi = create_phi_node (new_name, bb);
|
|
493 SSA_NAME_DEF_STMT (new_name) = new_phi;
|
|
494 add_phi_arg (new_phi, name, exit);
|
|
495 SET_USE (op_p, new_name);
|
|
496 }
|
|
497
|
|
498 return bb;
|
|
499 }
|
|
500
|
|
501 /* Returns the basic block in that statements should be emitted for induction
|
|
502 variables incremented at the end of the LOOP. */
|
|
503
|
|
504 basic_block
|
|
505 ip_end_pos (struct loop *loop)
|
|
506 {
|
|
507 return loop->latch;
|
|
508 }
|
|
509
|
|
510 /* Returns the basic block in that statements should be emitted for induction
|
|
511 variables incremented just before exit condition of a LOOP. */
|
|
512
|
|
513 basic_block
|
|
514 ip_normal_pos (struct loop *loop)
|
|
515 {
|
|
516 gimple last;
|
|
517 basic_block bb;
|
|
518 edge exit;
|
|
519
|
|
520 if (!single_pred_p (loop->latch))
|
|
521 return NULL;
|
|
522
|
|
523 bb = single_pred (loop->latch);
|
|
524 last = last_stmt (bb);
|
|
525 if (!last
|
|
526 || gimple_code (last) != GIMPLE_COND)
|
|
527 return NULL;
|
|
528
|
|
529 exit = EDGE_SUCC (bb, 0);
|
|
530 if (exit->dest == loop->latch)
|
|
531 exit = EDGE_SUCC (bb, 1);
|
|
532
|
|
533 if (flow_bb_inside_loop_p (loop, exit->dest))
|
|
534 return NULL;
|
|
535
|
|
536 return bb;
|
|
537 }
|
|
538
|
|
539 /* Stores the standard position for induction variable increment in LOOP
|
|
540 (just before the exit condition if it is available and latch block is empty,
|
|
541 end of the latch block otherwise) to BSI. INSERT_AFTER is set to true if
|
|
542 the increment should be inserted after *BSI. */
|
|
543
|
|
544 void
|
|
545 standard_iv_increment_position (struct loop *loop, gimple_stmt_iterator *bsi,
|
|
546 bool *insert_after)
|
|
547 {
|
|
548 basic_block bb = ip_normal_pos (loop), latch = ip_end_pos (loop);
|
|
549 gimple last = last_stmt (latch);
|
|
550
|
|
551 if (!bb
|
|
552 || (last && gimple_code (last) != GIMPLE_LABEL))
|
|
553 {
|
|
554 *bsi = gsi_last_bb (latch);
|
|
555 *insert_after = true;
|
|
556 }
|
|
557 else
|
|
558 {
|
|
559 *bsi = gsi_last_bb (bb);
|
|
560 *insert_after = false;
|
|
561 }
|
|
562 }
|
|
563
|
|
564 /* Copies phi node arguments for duplicated blocks. The index of the first
|
|
565 duplicated block is FIRST_NEW_BLOCK. */
|
|
566
|
|
567 static void
|
|
568 copy_phi_node_args (unsigned first_new_block)
|
|
569 {
|
|
570 unsigned i;
|
|
571
|
|
572 for (i = first_new_block; i < (unsigned) last_basic_block; i++)
|
|
573 BASIC_BLOCK (i)->flags |= BB_DUPLICATED;
|
|
574
|
|
575 for (i = first_new_block; i < (unsigned) last_basic_block; i++)
|
|
576 add_phi_args_after_copy_bb (BASIC_BLOCK (i));
|
|
577
|
|
578 for (i = first_new_block; i < (unsigned) last_basic_block; i++)
|
|
579 BASIC_BLOCK (i)->flags &= ~BB_DUPLICATED;
|
|
580 }
|
|
581
|
|
582
|
|
583 /* The same as cfgloopmanip.c:duplicate_loop_to_header_edge, but also
|
|
584 updates the PHI nodes at start of the copied region. In order to
|
|
585 achieve this, only loops whose exits all lead to the same location
|
|
586 are handled.
|
|
587
|
|
588 Notice that we do not completely update the SSA web after
|
|
589 duplication. The caller is responsible for calling update_ssa
|
|
590 after the loop has been duplicated. */
|
|
591
|
|
592 bool
|
|
593 gimple_duplicate_loop_to_header_edge (struct loop *loop, edge e,
|
|
594 unsigned int ndupl, sbitmap wont_exit,
|
|
595 edge orig, VEC (edge, heap) **to_remove,
|
|
596 int flags)
|
|
597 {
|
|
598 unsigned first_new_block;
|
|
599
|
|
600 if (!loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
|
|
601 return false;
|
|
602 if (!loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
|
|
603 return false;
|
|
604
|
|
605 #ifdef ENABLE_CHECKING
|
|
606 if (loops_state_satisfies_p (LOOP_CLOSED_SSA))
|
|
607 verify_loop_closed_ssa ();
|
|
608 #endif
|
|
609
|
|
610 first_new_block = last_basic_block;
|
|
611 if (!duplicate_loop_to_header_edge (loop, e, ndupl, wont_exit,
|
|
612 orig, to_remove, flags))
|
|
613 return false;
|
|
614
|
|
615 /* Readd the removed phi args for e. */
|
|
616 flush_pending_stmts (e);
|
|
617
|
|
618 /* Copy the phi node arguments. */
|
|
619 copy_phi_node_args (first_new_block);
|
|
620
|
|
621 scev_reset ();
|
|
622
|
|
623 return true;
|
|
624 }
|
|
625
|
|
626 /* Returns true if we can unroll LOOP FACTOR times. Number
|
|
627 of iterations of the loop is returned in NITER. */
|
|
628
|
|
629 bool
|
|
630 can_unroll_loop_p (struct loop *loop, unsigned factor,
|
|
631 struct tree_niter_desc *niter)
|
|
632 {
|
|
633 edge exit;
|
|
634
|
|
635 /* Check whether unrolling is possible. We only want to unroll loops
|
|
636 for that we are able to determine number of iterations. We also
|
|
637 want to split the extra iterations of the loop from its end,
|
|
638 therefore we require that the loop has precisely one
|
|
639 exit. */
|
|
640
|
|
641 exit = single_dom_exit (loop);
|
|
642 if (!exit)
|
|
643 return false;
|
|
644
|
|
645 if (!number_of_iterations_exit (loop, exit, niter, false)
|
|
646 || niter->cmp == ERROR_MARK
|
|
647 /* Scalar evolutions analysis might have copy propagated
|
|
648 the abnormal ssa names into these expressions, hence
|
|
649 emitting the computations based on them during loop
|
|
650 unrolling might create overlapping life ranges for
|
|
651 them, and failures in out-of-ssa. */
|
|
652 || contains_abnormal_ssa_name_p (niter->may_be_zero)
|
|
653 || contains_abnormal_ssa_name_p (niter->control.base)
|
|
654 || contains_abnormal_ssa_name_p (niter->control.step)
|
|
655 || contains_abnormal_ssa_name_p (niter->bound))
|
|
656 return false;
|
|
657
|
|
658 /* And of course, we must be able to duplicate the loop. */
|
|
659 if (!can_duplicate_loop_p (loop))
|
|
660 return false;
|
|
661
|
|
662 /* The final loop should be small enough. */
|
|
663 if (tree_num_loop_insns (loop, &eni_size_weights) * factor
|
|
664 > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS))
|
|
665 return false;
|
|
666
|
|
667 return true;
|
|
668 }
|
|
669
|
|
670 /* Determines the conditions that control execution of LOOP unrolled FACTOR
|
|
671 times. DESC is number of iterations of LOOP. ENTER_COND is set to
|
|
672 condition that must be true if the main loop can be entered.
|
|
673 EXIT_BASE, EXIT_STEP, EXIT_CMP and EXIT_BOUND are set to values describing
|
|
674 how the exit from the unrolled loop should be controlled. */
|
|
675
|
|
676 static void
|
|
677 determine_exit_conditions (struct loop *loop, struct tree_niter_desc *desc,
|
|
678 unsigned factor, tree *enter_cond,
|
|
679 tree *exit_base, tree *exit_step,
|
|
680 enum tree_code *exit_cmp, tree *exit_bound)
|
|
681 {
|
|
682 gimple_seq stmts;
|
|
683 tree base = desc->control.base;
|
|
684 tree step = desc->control.step;
|
|
685 tree bound = desc->bound;
|
|
686 tree type = TREE_TYPE (step);
|
|
687 tree bigstep, delta;
|
|
688 tree min = lower_bound_in_type (type, type);
|
|
689 tree max = upper_bound_in_type (type, type);
|
|
690 enum tree_code cmp = desc->cmp;
|
|
691 tree cond = boolean_true_node, assum;
|
|
692
|
|
693 /* For pointers, do the arithmetics in the type of step (sizetype). */
|
|
694 base = fold_convert (type, base);
|
|
695 bound = fold_convert (type, bound);
|
|
696
|
|
697 *enter_cond = boolean_false_node;
|
|
698 *exit_base = NULL_TREE;
|
|
699 *exit_step = NULL_TREE;
|
|
700 *exit_cmp = ERROR_MARK;
|
|
701 *exit_bound = NULL_TREE;
|
|
702 gcc_assert (cmp != ERROR_MARK);
|
|
703
|
|
704 /* We only need to be correct when we answer question
|
|
705 "Do at least FACTOR more iterations remain?" in the unrolled loop.
|
|
706 Thus, transforming BASE + STEP * i <> BOUND to
|
|
707 BASE + STEP * i < BOUND is ok. */
|
|
708 if (cmp == NE_EXPR)
|
|
709 {
|
|
710 if (tree_int_cst_sign_bit (step))
|
|
711 cmp = GT_EXPR;
|
|
712 else
|
|
713 cmp = LT_EXPR;
|
|
714 }
|
|
715 else if (cmp == LT_EXPR)
|
|
716 {
|
|
717 gcc_assert (!tree_int_cst_sign_bit (step));
|
|
718 }
|
|
719 else if (cmp == GT_EXPR)
|
|
720 {
|
|
721 gcc_assert (tree_int_cst_sign_bit (step));
|
|
722 }
|
|
723 else
|
|
724 gcc_unreachable ();
|
|
725
|
|
726 /* The main body of the loop may be entered iff:
|
|
727
|
|
728 1) desc->may_be_zero is false.
|
|
729 2) it is possible to check that there are at least FACTOR iterations
|
|
730 of the loop, i.e., BOUND - step * FACTOR does not overflow.
|
|
731 3) # of iterations is at least FACTOR */
|
|
732
|
|
733 if (!integer_zerop (desc->may_be_zero))
|
|
734 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
|
735 invert_truthvalue (desc->may_be_zero),
|
|
736 cond);
|
|
737
|
|
738 bigstep = fold_build2 (MULT_EXPR, type, step,
|
|
739 build_int_cst_type (type, factor));
|
|
740 delta = fold_build2 (MINUS_EXPR, type, bigstep, step);
|
|
741 if (cmp == LT_EXPR)
|
|
742 assum = fold_build2 (GE_EXPR, boolean_type_node,
|
|
743 bound,
|
|
744 fold_build2 (PLUS_EXPR, type, min, delta));
|
|
745 else
|
|
746 assum = fold_build2 (LE_EXPR, boolean_type_node,
|
|
747 bound,
|
|
748 fold_build2 (PLUS_EXPR, type, max, delta));
|
|
749 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
|
|
750
|
|
751 bound = fold_build2 (MINUS_EXPR, type, bound, delta);
|
|
752 assum = fold_build2 (cmp, boolean_type_node, base, bound);
|
|
753 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
|
|
754
|
|
755 cond = force_gimple_operand (unshare_expr (cond), &stmts, false, NULL_TREE);
|
|
756 if (stmts)
|
|
757 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
|
758 /* cond now may be a gimple comparison, which would be OK, but also any
|
|
759 other gimple rhs (say a && b). In this case we need to force it to
|
|
760 operand. */
|
|
761 if (!is_gimple_condexpr (cond))
|
|
762 {
|
|
763 cond = force_gimple_operand (cond, &stmts, true, NULL_TREE);
|
|
764 if (stmts)
|
|
765 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
|
766 }
|
|
767 *enter_cond = cond;
|
|
768
|
|
769 base = force_gimple_operand (unshare_expr (base), &stmts, true, NULL_TREE);
|
|
770 if (stmts)
|
|
771 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
|
772 bound = force_gimple_operand (unshare_expr (bound), &stmts, true, NULL_TREE);
|
|
773 if (stmts)
|
|
774 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
|
|
775
|
|
776 *exit_base = base;
|
|
777 *exit_step = bigstep;
|
|
778 *exit_cmp = cmp;
|
|
779 *exit_bound = bound;
|
|
780 }
|
|
781
|
|
782 /* Scales the frequencies of all basic blocks in LOOP that are strictly
|
|
783 dominated by BB by NUM/DEN. */
|
|
784
|
|
785 static void
|
|
786 scale_dominated_blocks_in_loop (struct loop *loop, basic_block bb,
|
|
787 int num, int den)
|
|
788 {
|
|
789 basic_block son;
|
|
790
|
|
791 if (den == 0)
|
|
792 return;
|
|
793
|
|
794 for (son = first_dom_son (CDI_DOMINATORS, bb);
|
|
795 son;
|
|
796 son = next_dom_son (CDI_DOMINATORS, son))
|
|
797 {
|
|
798 if (!flow_bb_inside_loop_p (loop, son))
|
|
799 continue;
|
|
800 scale_bbs_frequencies_int (&son, 1, num, den);
|
|
801 scale_dominated_blocks_in_loop (loop, son, num, den);
|
|
802 }
|
|
803 }
|
|
804
|
|
805 /* Unroll LOOP FACTOR times. DESC describes number of iterations of LOOP.
|
|
806 EXIT is the exit of the loop to that DESC corresponds.
|
|
807
|
|
808 If N is number of iterations of the loop and MAY_BE_ZERO is the condition
|
|
809 under that loop exits in the first iteration even if N != 0,
|
|
810
|
|
811 while (1)
|
|
812 {
|
|
813 x = phi (init, next);
|
|
814
|
|
815 pre;
|
|
816 if (st)
|
|
817 break;
|
|
818 post;
|
|
819 }
|
|
820
|
|
821 becomes (with possibly the exit conditions formulated a bit differently,
|
|
822 avoiding the need to create a new iv):
|
|
823
|
|
824 if (MAY_BE_ZERO || N < FACTOR)
|
|
825 goto rest;
|
|
826
|
|
827 do
|
|
828 {
|
|
829 x = phi (init, next);
|
|
830
|
|
831 pre;
|
|
832 post;
|
|
833 pre;
|
|
834 post;
|
|
835 ...
|
|
836 pre;
|
|
837 post;
|
|
838 N -= FACTOR;
|
|
839
|
|
840 } while (N >= FACTOR);
|
|
841
|
|
842 rest:
|
|
843 init' = phi (init, x);
|
|
844
|
|
845 while (1)
|
|
846 {
|
|
847 x = phi (init', next);
|
|
848
|
|
849 pre;
|
|
850 if (st)
|
|
851 break;
|
|
852 post;
|
|
853 }
|
|
854
|
|
855 Before the loop is unrolled, TRANSFORM is called for it (only for the
|
|
856 unrolled loop, but not for its versioned copy). DATA is passed to
|
|
857 TRANSFORM. */
|
|
858
|
|
859 /* Probability in % that the unrolled loop is entered. Just a guess. */
|
|
860 #define PROB_UNROLLED_LOOP_ENTERED 90
|
|
861
|
|
862 void
|
|
863 tree_transform_and_unroll_loop (struct loop *loop, unsigned factor,
|
|
864 edge exit, struct tree_niter_desc *desc,
|
|
865 transform_callback transform,
|
|
866 void *data)
|
|
867 {
|
|
868 gimple exit_if;
|
|
869 tree ctr_before, ctr_after;
|
|
870 tree enter_main_cond, exit_base, exit_step, exit_bound;
|
|
871 enum tree_code exit_cmp;
|
|
872 gimple phi_old_loop, phi_new_loop, phi_rest;
|
|
873 gimple_stmt_iterator psi_old_loop, psi_new_loop;
|
|
874 tree init, next, new_init, var;
|
|
875 struct loop *new_loop;
|
|
876 basic_block rest, exit_bb;
|
|
877 edge old_entry, new_entry, old_latch, precond_edge, new_exit;
|
|
878 edge new_nonexit, e;
|
|
879 gimple_stmt_iterator bsi;
|
|
880 use_operand_p op;
|
|
881 bool ok;
|
|
882 unsigned est_niter, prob_entry, scale_unrolled, scale_rest, freq_e, freq_h;
|
|
883 unsigned new_est_niter, i, prob;
|
|
884 unsigned irr = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
|
|
885 sbitmap wont_exit;
|
|
886 VEC (edge, heap) *to_remove = NULL;
|
|
887
|
|
888 est_niter = expected_loop_iterations (loop);
|
|
889 determine_exit_conditions (loop, desc, factor,
|
|
890 &enter_main_cond, &exit_base, &exit_step,
|
|
891 &exit_cmp, &exit_bound);
|
|
892
|
|
893 /* Let us assume that the unrolled loop is quite likely to be entered. */
|
|
894 if (integer_nonzerop (enter_main_cond))
|
|
895 prob_entry = REG_BR_PROB_BASE;
|
|
896 else
|
|
897 prob_entry = PROB_UNROLLED_LOOP_ENTERED * REG_BR_PROB_BASE / 100;
|
|
898
|
|
899 /* The values for scales should keep profile consistent, and somewhat close
|
|
900 to correct.
|
|
901
|
|
902 TODO: The current value of SCALE_REST makes it appear that the loop that
|
|
903 is created by splitting the remaining iterations of the unrolled loop is
|
|
904 executed the same number of times as the original loop, and with the same
|
|
905 frequencies, which is obviously wrong. This does not appear to cause
|
|
906 problems, so we do not bother with fixing it for now. To make the profile
|
|
907 correct, we would need to change the probability of the exit edge of the
|
|
908 loop, and recompute the distribution of frequencies in its body because
|
|
909 of this change (scale the frequencies of blocks before and after the exit
|
|
910 by appropriate factors). */
|
|
911 scale_unrolled = prob_entry;
|
|
912 scale_rest = REG_BR_PROB_BASE;
|
|
913
|
|
914 new_loop = loop_version (loop, enter_main_cond, NULL,
|
|
915 prob_entry, scale_unrolled, scale_rest, true);
|
|
916 gcc_assert (new_loop != NULL);
|
|
917 update_ssa (TODO_update_ssa);
|
|
918
|
|
919 /* Determine the probability of the exit edge of the unrolled loop. */
|
|
920 new_est_niter = est_niter / factor;
|
|
921
|
|
922 /* Without profile feedback, loops for that we do not know a better estimate
|
|
923 are assumed to roll 10 times. When we unroll such loop, it appears to
|
|
924 roll too little, and it may even seem to be cold. To avoid this, we
|
|
925 ensure that the created loop appears to roll at least 5 times (but at
|
|
926 most as many times as before unrolling). */
|
|
927 if (new_est_niter < 5)
|
|
928 {
|
|
929 if (est_niter < 5)
|
|
930 new_est_niter = est_niter;
|
|
931 else
|
|
932 new_est_niter = 5;
|
|
933 }
|
|
934
|
|
935 /* Prepare the cfg and update the phi nodes. Move the loop exit to the
|
|
936 loop latch (and make its condition dummy, for the moment). */
|
|
937 rest = loop_preheader_edge (new_loop)->src;
|
|
938 precond_edge = single_pred_edge (rest);
|
|
939 split_edge (loop_latch_edge (loop));
|
|
940 exit_bb = single_pred (loop->latch);
|
|
941
|
|
942 /* Since the exit edge will be removed, the frequency of all the blocks
|
|
943 in the loop that are dominated by it must be scaled by
|
|
944 1 / (1 - exit->probability). */
|
|
945 scale_dominated_blocks_in_loop (loop, exit->src,
|
|
946 REG_BR_PROB_BASE,
|
|
947 REG_BR_PROB_BASE - exit->probability);
|
|
948
|
|
949 bsi = gsi_last_bb (exit_bb);
|
|
950 exit_if = gimple_build_cond (EQ_EXPR, integer_zero_node,
|
|
951 integer_zero_node,
|
|
952 NULL_TREE, NULL_TREE);
|
|
953
|
|
954 gsi_insert_after (&bsi, exit_if, GSI_NEW_STMT);
|
|
955 new_exit = make_edge (exit_bb, rest, EDGE_FALSE_VALUE | irr);
|
|
956 rescan_loop_exit (new_exit, true, false);
|
|
957
|
|
958 /* Set the probability of new exit to the same of the old one. Fix
|
|
959 the frequency of the latch block, by scaling it back by
|
|
960 1 - exit->probability. */
|
|
961 new_exit->count = exit->count;
|
|
962 new_exit->probability = exit->probability;
|
|
963 new_nonexit = single_pred_edge (loop->latch);
|
|
964 new_nonexit->probability = REG_BR_PROB_BASE - exit->probability;
|
|
965 new_nonexit->flags = EDGE_TRUE_VALUE;
|
|
966 new_nonexit->count -= exit->count;
|
|
967 if (new_nonexit->count < 0)
|
|
968 new_nonexit->count = 0;
|
|
969 scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
|
|
970 REG_BR_PROB_BASE);
|
|
971
|
|
972 old_entry = loop_preheader_edge (loop);
|
|
973 new_entry = loop_preheader_edge (new_loop);
|
|
974 old_latch = loop_latch_edge (loop);
|
|
975 for (psi_old_loop = gsi_start_phis (loop->header),
|
|
976 psi_new_loop = gsi_start_phis (new_loop->header);
|
|
977 !gsi_end_p (psi_old_loop);
|
|
978 gsi_next (&psi_old_loop), gsi_next (&psi_new_loop))
|
|
979 {
|
|
980 phi_old_loop = gsi_stmt (psi_old_loop);
|
|
981 phi_new_loop = gsi_stmt (psi_new_loop);
|
|
982
|
|
983 init = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_entry);
|
|
984 op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_new_loop, new_entry);
|
|
985 gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
|
|
986 next = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_latch);
|
|
987
|
|
988 /* Prefer using original variable as a base for the new ssa name.
|
|
989 This is necessary for virtual ops, and useful in order to avoid
|
|
990 losing debug info for real ops. */
|
|
991 if (TREE_CODE (next) == SSA_NAME)
|
|
992 var = SSA_NAME_VAR (next);
|
|
993 else if (TREE_CODE (init) == SSA_NAME)
|
|
994 var = SSA_NAME_VAR (init);
|
|
995 else
|
|
996 {
|
|
997 var = create_tmp_var (TREE_TYPE (init), "unrinittmp");
|
|
998 add_referenced_var (var);
|
|
999 }
|
|
1000
|
|
1001 new_init = make_ssa_name (var, NULL);
|
|
1002 phi_rest = create_phi_node (new_init, rest);
|
|
1003 SSA_NAME_DEF_STMT (new_init) = phi_rest;
|
|
1004
|
|
1005 add_phi_arg (phi_rest, init, precond_edge);
|
|
1006 add_phi_arg (phi_rest, next, new_exit);
|
|
1007 SET_USE (op, new_init);
|
|
1008 }
|
|
1009
|
|
1010 remove_path (exit);
|
|
1011
|
|
1012 /* Transform the loop. */
|
|
1013 if (transform)
|
|
1014 (*transform) (loop, data);
|
|
1015
|
|
1016 /* Unroll the loop and remove the exits in all iterations except for the
|
|
1017 last one. */
|
|
1018 wont_exit = sbitmap_alloc (factor);
|
|
1019 sbitmap_ones (wont_exit);
|
|
1020 RESET_BIT (wont_exit, factor - 1);
|
|
1021
|
|
1022 ok = gimple_duplicate_loop_to_header_edge
|
|
1023 (loop, loop_latch_edge (loop), factor - 1,
|
|
1024 wont_exit, new_exit, &to_remove, DLTHE_FLAG_UPDATE_FREQ);
|
|
1025 free (wont_exit);
|
|
1026 gcc_assert (ok);
|
|
1027
|
|
1028 for (i = 0; VEC_iterate (edge, to_remove, i, e); i++)
|
|
1029 {
|
|
1030 ok = remove_path (e);
|
|
1031 gcc_assert (ok);
|
|
1032 }
|
|
1033 VEC_free (edge, heap, to_remove);
|
|
1034 update_ssa (TODO_update_ssa);
|
|
1035
|
|
1036 /* Ensure that the frequencies in the loop match the new estimated
|
|
1037 number of iterations, and change the probability of the new
|
|
1038 exit edge. */
|
|
1039 freq_h = loop->header->frequency;
|
|
1040 freq_e = EDGE_FREQUENCY (loop_preheader_edge (loop));
|
|
1041 if (freq_h != 0)
|
|
1042 scale_loop_frequencies (loop, freq_e * (new_est_niter + 1), freq_h);
|
|
1043
|
|
1044 exit_bb = single_pred (loop->latch);
|
|
1045 new_exit = find_edge (exit_bb, rest);
|
|
1046 new_exit->count = loop_preheader_edge (loop)->count;
|
|
1047 new_exit->probability = REG_BR_PROB_BASE / (new_est_niter + 1);
|
|
1048
|
|
1049 rest->count += new_exit->count;
|
|
1050 rest->frequency += EDGE_FREQUENCY (new_exit);
|
|
1051
|
|
1052 new_nonexit = single_pred_edge (loop->latch);
|
|
1053 prob = new_nonexit->probability;
|
|
1054 new_nonexit->probability = REG_BR_PROB_BASE - new_exit->probability;
|
|
1055 new_nonexit->count = exit_bb->count - new_exit->count;
|
|
1056 if (new_nonexit->count < 0)
|
|
1057 new_nonexit->count = 0;
|
|
1058 if (prob > 0)
|
|
1059 scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
|
|
1060 prob);
|
|
1061
|
|
1062 /* Finally create the new counter for number of iterations and add the new
|
|
1063 exit instruction. */
|
|
1064 bsi = gsi_last_bb (exit_bb);
|
|
1065 exit_if = gsi_stmt (bsi);
|
|
1066 create_iv (exit_base, exit_step, NULL_TREE, loop,
|
|
1067 &bsi, false, &ctr_before, &ctr_after);
|
|
1068 gimple_cond_set_code (exit_if, exit_cmp);
|
|
1069 gimple_cond_set_lhs (exit_if, ctr_after);
|
|
1070 gimple_cond_set_rhs (exit_if, exit_bound);
|
|
1071 update_stmt (exit_if);
|
|
1072
|
|
1073 #ifdef ENABLE_CHECKING
|
|
1074 verify_flow_info ();
|
|
1075 verify_dominators (CDI_DOMINATORS);
|
|
1076 verify_loop_structure ();
|
|
1077 verify_loop_closed_ssa ();
|
|
1078 #endif
|
|
1079 }
|
|
1080
|
|
1081 /* Wrapper over tree_transform_and_unroll_loop for case we do not
|
|
1082 want to transform the loop before unrolling. The meaning
|
|
1083 of the arguments is the same as for tree_transform_and_unroll_loop. */
|
|
1084
|
|
1085 void
|
|
1086 tree_unroll_loop (struct loop *loop, unsigned factor,
|
|
1087 edge exit, struct tree_niter_desc *desc)
|
|
1088 {
|
|
1089 tree_transform_and_unroll_loop (loop, factor, exit, desc,
|
|
1090 NULL, NULL);
|
|
1091 }
|