0
|
1 /* Inline functions for tree-flow.h
|
|
2 Copyright (C) 2001, 2003, 2005, 2006, 2007, 2008 Free Software
|
|
3 Foundation, Inc.
|
|
4 Contributed by Diego Novillo <dnovillo@redhat.com>
|
|
5
|
|
6 This file is part of GCC.
|
|
7
|
|
8 GCC is free software; you can redistribute it and/or modify
|
|
9 it under the terms of the GNU General Public License as published by
|
|
10 the Free Software Foundation; either version 3, or (at your option)
|
|
11 any later version.
|
|
12
|
|
13 GCC is distributed in the hope that it will be useful,
|
|
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
16 GNU General Public License for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with GCC; see the file COPYING3. If not see
|
|
20 <http://www.gnu.org/licenses/>. */
|
|
21
|
|
22 #ifndef _TREE_FLOW_INLINE_H
|
|
23 #define _TREE_FLOW_INLINE_H 1
|
|
24
|
|
25 /* Inline functions for manipulating various data structures defined in
|
|
26 tree-flow.h. See tree-flow.h for documentation. */
|
|
27
|
|
28 /* Return true when gimple SSA form was built.
|
|
29 gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
|
|
30 infrastructure is initialized. Check for presence of the datastructures
|
|
31 at first place. */
|
|
32 static inline bool
|
|
33 gimple_in_ssa_p (const struct function *fun)
|
|
34 {
|
|
35 return fun && fun->gimple_df && fun->gimple_df->in_ssa_p;
|
|
36 }
|
|
37
|
|
38 /* 'true' after aliases have been computed (see compute_may_aliases). */
|
|
39 static inline bool
|
|
40 gimple_aliases_computed_p (const struct function *fun)
|
|
41 {
|
|
42 gcc_assert (fun && fun->gimple_df);
|
|
43 return fun->gimple_df->aliases_computed_p;
|
|
44 }
|
|
45
|
|
46 /* Addressable variables in the function. If bit I is set, then
|
|
47 REFERENCED_VARS (I) has had its address taken. Note that
|
|
48 CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An
|
|
49 addressable variable is not necessarily call-clobbered (e.g., a
|
|
50 local addressable whose address does not escape) and not all
|
|
51 call-clobbered variables are addressable (e.g., a local static
|
|
52 variable). */
|
|
53 static inline bitmap
|
|
54 gimple_addressable_vars (const struct function *fun)
|
|
55 {
|
|
56 gcc_assert (fun && fun->gimple_df);
|
|
57 return fun->gimple_df->addressable_vars;
|
|
58 }
|
|
59
|
|
60 /* Call clobbered variables in the function. If bit I is set, then
|
|
61 REFERENCED_VARS (I) is call-clobbered. */
|
|
62 static inline bitmap
|
|
63 gimple_call_clobbered_vars (const struct function *fun)
|
|
64 {
|
|
65 gcc_assert (fun && fun->gimple_df);
|
|
66 return fun->gimple_df->call_clobbered_vars;
|
|
67 }
|
|
68
|
|
69 /* Call-used variables in the function. If bit I is set, then
|
|
70 REFERENCED_VARS (I) is call-used at pure function call-sites. */
|
|
71 static inline bitmap
|
|
72 gimple_call_used_vars (const struct function *fun)
|
|
73 {
|
|
74 gcc_assert (fun && fun->gimple_df);
|
|
75 return fun->gimple_df->call_used_vars;
|
|
76 }
|
|
77
|
|
78 /* Array of all variables referenced in the function. */
|
|
79 static inline htab_t
|
|
80 gimple_referenced_vars (const struct function *fun)
|
|
81 {
|
|
82 if (!fun->gimple_df)
|
|
83 return NULL;
|
|
84 return fun->gimple_df->referenced_vars;
|
|
85 }
|
|
86
|
|
87 /* Artificial variable used to model the effects of function calls. */
|
|
88 static inline tree
|
|
89 gimple_global_var (const struct function *fun)
|
|
90 {
|
|
91 gcc_assert (fun && fun->gimple_df);
|
|
92 return fun->gimple_df->global_var;
|
|
93 }
|
|
94
|
|
95 /* Artificial variable used to model the effects of nonlocal
|
|
96 variables. */
|
|
97 static inline tree
|
|
98 gimple_nonlocal_all (const struct function *fun)
|
|
99 {
|
|
100 gcc_assert (fun && fun->gimple_df);
|
|
101 return fun->gimple_df->nonlocal_all;
|
|
102 }
|
|
103
|
|
104 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
|
|
105
|
|
106 static inline void *
|
|
107 first_htab_element (htab_iterator *hti, htab_t table)
|
|
108 {
|
|
109 hti->htab = table;
|
|
110 hti->slot = table->entries;
|
|
111 hti->limit = hti->slot + htab_size (table);
|
|
112 do
|
|
113 {
|
|
114 PTR x = *(hti->slot);
|
|
115 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
|
|
116 break;
|
|
117 } while (++(hti->slot) < hti->limit);
|
|
118
|
|
119 if (hti->slot < hti->limit)
|
|
120 return *(hti->slot);
|
|
121 return NULL;
|
|
122 }
|
|
123
|
|
124 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
|
|
125 or NULL if we have reached the end. */
|
|
126
|
|
127 static inline bool
|
|
128 end_htab_p (const htab_iterator *hti)
|
|
129 {
|
|
130 if (hti->slot >= hti->limit)
|
|
131 return true;
|
|
132 return false;
|
|
133 }
|
|
134
|
|
135 /* Advance the hashtable iterator pointed to by HTI to the next element of the
|
|
136 hashtable. */
|
|
137
|
|
138 static inline void *
|
|
139 next_htab_element (htab_iterator *hti)
|
|
140 {
|
|
141 while (++(hti->slot) < hti->limit)
|
|
142 {
|
|
143 PTR x = *(hti->slot);
|
|
144 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
|
|
145 return x;
|
|
146 };
|
|
147 return NULL;
|
|
148 }
|
|
149
|
|
150 /* Initialize ITER to point to the first referenced variable in the
|
|
151 referenced_vars hashtable, and return that variable. */
|
|
152
|
|
153 static inline tree
|
|
154 first_referenced_var (referenced_var_iterator *iter)
|
|
155 {
|
|
156 return (tree) first_htab_element (&iter->hti,
|
|
157 gimple_referenced_vars (cfun));
|
|
158 }
|
|
159
|
|
160 /* Return true if we have hit the end of the referenced variables ITER is
|
|
161 iterating through. */
|
|
162
|
|
163 static inline bool
|
|
164 end_referenced_vars_p (const referenced_var_iterator *iter)
|
|
165 {
|
|
166 return end_htab_p (&iter->hti);
|
|
167 }
|
|
168
|
|
169 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
|
|
170 and return that variable. */
|
|
171
|
|
172 static inline tree
|
|
173 next_referenced_var (referenced_var_iterator *iter)
|
|
174 {
|
|
175 return (tree) next_htab_element (&iter->hti);
|
|
176 }
|
|
177
|
|
178 /* Fill up VEC with the variables in the referenced vars hashtable. */
|
|
179
|
|
180 static inline void
|
|
181 fill_referenced_var_vec (VEC (tree, heap) **vec)
|
|
182 {
|
|
183 referenced_var_iterator rvi;
|
|
184 tree var;
|
|
185 *vec = NULL;
|
|
186 FOR_EACH_REFERENCED_VAR (var, rvi)
|
|
187 VEC_safe_push (tree, heap, *vec, var);
|
|
188 }
|
|
189
|
|
190 /* Return the variable annotation for T, which must be a _DECL node.
|
|
191 Return NULL if the variable annotation doesn't already exist. */
|
|
192 static inline var_ann_t
|
|
193 var_ann (const_tree t)
|
|
194 {
|
|
195 var_ann_t ann;
|
|
196
|
|
197 if (!t->base.ann)
|
|
198 return NULL;
|
|
199 ann = (var_ann_t) t->base.ann;
|
|
200
|
|
201 gcc_assert (ann->common.type == VAR_ANN);
|
|
202
|
|
203 return ann;
|
|
204 }
|
|
205
|
|
206 /* Return the variable annotation for T, which must be a _DECL node.
|
|
207 Create the variable annotation if it doesn't exist. */
|
|
208 static inline var_ann_t
|
|
209 get_var_ann (tree var)
|
|
210 {
|
|
211 var_ann_t ann = var_ann (var);
|
|
212 return (ann) ? ann : create_var_ann (var);
|
|
213 }
|
|
214
|
|
215 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
|
|
216 Return NULL if the function annotation doesn't already exist. */
|
|
217 static inline function_ann_t
|
|
218 function_ann (const_tree t)
|
|
219 {
|
|
220 gcc_assert (t);
|
|
221 gcc_assert (TREE_CODE (t) == FUNCTION_DECL);
|
|
222 gcc_assert (!t->base.ann
|
|
223 || t->base.ann->common.type == FUNCTION_ANN);
|
|
224
|
|
225 return (function_ann_t) t->base.ann;
|
|
226 }
|
|
227
|
|
228 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
|
|
229 Create the function annotation if it doesn't exist. */
|
|
230 static inline function_ann_t
|
|
231 get_function_ann (tree var)
|
|
232 {
|
|
233 function_ann_t ann = function_ann (var);
|
|
234 gcc_assert (!var->base.ann || var->base.ann->common.type == FUNCTION_ANN);
|
|
235 return (ann) ? ann : create_function_ann (var);
|
|
236 }
|
|
237
|
|
238 /* Get the number of the next statement uid to be allocated. */
|
|
239 static inline unsigned int
|
|
240 gimple_stmt_max_uid (struct function *fn)
|
|
241 {
|
|
242 return fn->last_stmt_uid;
|
|
243 }
|
|
244
|
|
245 /* Set the number of the next statement uid to be allocated. */
|
|
246 static inline void
|
|
247 set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid)
|
|
248 {
|
|
249 fn->last_stmt_uid = maxid;
|
|
250 }
|
|
251
|
|
252 /* Set the number of the next statement uid to be allocated. */
|
|
253 static inline unsigned int
|
|
254 inc_gimple_stmt_max_uid (struct function *fn)
|
|
255 {
|
|
256 return fn->last_stmt_uid++;
|
|
257 }
|
|
258
|
|
259 /* Return the annotation type for annotation ANN. */
|
|
260 static inline enum tree_ann_type
|
|
261 ann_type (tree_ann_t ann)
|
|
262 {
|
|
263 return ann->common.type;
|
|
264 }
|
|
265
|
|
266 /* Return the may_aliases bitmap for variable VAR, or NULL if it has
|
|
267 no may aliases. */
|
|
268 static inline bitmap
|
|
269 may_aliases (const_tree var)
|
|
270 {
|
|
271 return MTAG_ALIASES (var);
|
|
272 }
|
|
273
|
|
274 /* Return the line number for EXPR, or return -1 if we have no line
|
|
275 number information for it. */
|
|
276 static inline int
|
|
277 get_lineno (const_gimple stmt)
|
|
278 {
|
|
279 location_t loc;
|
|
280
|
|
281 if (!stmt)
|
|
282 return -1;
|
|
283
|
|
284 loc = gimple_location (stmt);
|
|
285 if (loc != UNKNOWN_LOCATION)
|
|
286 return -1;
|
|
287
|
|
288 return LOCATION_LINE (loc);
|
|
289 }
|
|
290
|
|
291 /* Delink an immediate_uses node from its chain. */
|
|
292 static inline void
|
|
293 delink_imm_use (ssa_use_operand_t *linknode)
|
|
294 {
|
|
295 /* Return if this node is not in a list. */
|
|
296 if (linknode->prev == NULL)
|
|
297 return;
|
|
298
|
|
299 linknode->prev->next = linknode->next;
|
|
300 linknode->next->prev = linknode->prev;
|
|
301 linknode->prev = NULL;
|
|
302 linknode->next = NULL;
|
|
303 }
|
|
304
|
|
305 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
|
|
306 static inline void
|
|
307 link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
|
|
308 {
|
|
309 /* Link the new node at the head of the list. If we are in the process of
|
|
310 traversing the list, we won't visit any new nodes added to it. */
|
|
311 linknode->prev = list;
|
|
312 linknode->next = list->next;
|
|
313 list->next->prev = linknode;
|
|
314 list->next = linknode;
|
|
315 }
|
|
316
|
|
317 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
|
|
318 static inline void
|
|
319 link_imm_use (ssa_use_operand_t *linknode, tree def)
|
|
320 {
|
|
321 ssa_use_operand_t *root;
|
|
322
|
|
323 if (!def || TREE_CODE (def) != SSA_NAME)
|
|
324 linknode->prev = NULL;
|
|
325 else
|
|
326 {
|
|
327 root = &(SSA_NAME_IMM_USE_NODE (def));
|
|
328 #ifdef ENABLE_CHECKING
|
|
329 if (linknode->use)
|
|
330 gcc_assert (*(linknode->use) == def);
|
|
331 #endif
|
|
332 link_imm_use_to_list (linknode, root);
|
|
333 }
|
|
334 }
|
|
335
|
|
336 /* Set the value of a use pointed to by USE to VAL. */
|
|
337 static inline void
|
|
338 set_ssa_use_from_ptr (use_operand_p use, tree val)
|
|
339 {
|
|
340 delink_imm_use (use);
|
|
341 *(use->use) = val;
|
|
342 link_imm_use (use, val);
|
|
343 }
|
|
344
|
|
345 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
|
|
346 in STMT. */
|
|
347 static inline void
|
|
348 link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple stmt)
|
|
349 {
|
|
350 if (stmt)
|
|
351 link_imm_use (linknode, def);
|
|
352 else
|
|
353 link_imm_use (linknode, NULL);
|
|
354 linknode->loc.stmt = stmt;
|
|
355 }
|
|
356
|
|
357 /* Relink a new node in place of an old node in the list. */
|
|
358 static inline void
|
|
359 relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
|
|
360 {
|
|
361 /* The node one had better be in the same list. */
|
|
362 gcc_assert (*(old->use) == *(node->use));
|
|
363 node->prev = old->prev;
|
|
364 node->next = old->next;
|
|
365 if (old->prev)
|
|
366 {
|
|
367 old->prev->next = node;
|
|
368 old->next->prev = node;
|
|
369 /* Remove the old node from the list. */
|
|
370 old->prev = NULL;
|
|
371 }
|
|
372 }
|
|
373
|
|
374 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
|
|
375 in STMT. */
|
|
376 static inline void
|
|
377 relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old,
|
|
378 gimple stmt)
|
|
379 {
|
|
380 if (stmt)
|
|
381 relink_imm_use (linknode, old);
|
|
382 else
|
|
383 link_imm_use (linknode, NULL);
|
|
384 linknode->loc.stmt = stmt;
|
|
385 }
|
|
386
|
|
387
|
|
388 /* Return true is IMM has reached the end of the immediate use list. */
|
|
389 static inline bool
|
|
390 end_readonly_imm_use_p (const imm_use_iterator *imm)
|
|
391 {
|
|
392 return (imm->imm_use == imm->end_p);
|
|
393 }
|
|
394
|
|
395 /* Initialize iterator IMM to process the list for VAR. */
|
|
396 static inline use_operand_p
|
|
397 first_readonly_imm_use (imm_use_iterator *imm, tree var)
|
|
398 {
|
|
399 gcc_assert (TREE_CODE (var) == SSA_NAME);
|
|
400
|
|
401 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
|
|
402 imm->imm_use = imm->end_p->next;
|
|
403 #ifdef ENABLE_CHECKING
|
|
404 imm->iter_node.next = imm->imm_use->next;
|
|
405 #endif
|
|
406 if (end_readonly_imm_use_p (imm))
|
|
407 return NULL_USE_OPERAND_P;
|
|
408 return imm->imm_use;
|
|
409 }
|
|
410
|
|
411 /* Bump IMM to the next use in the list. */
|
|
412 static inline use_operand_p
|
|
413 next_readonly_imm_use (imm_use_iterator *imm)
|
|
414 {
|
|
415 use_operand_p old = imm->imm_use;
|
|
416
|
|
417 #ifdef ENABLE_CHECKING
|
|
418 /* If this assertion fails, it indicates the 'next' pointer has changed
|
|
419 since the last bump. This indicates that the list is being modified
|
|
420 via stmt changes, or SET_USE, or somesuch thing, and you need to be
|
|
421 using the SAFE version of the iterator. */
|
|
422 gcc_assert (imm->iter_node.next == old->next);
|
|
423 imm->iter_node.next = old->next->next;
|
|
424 #endif
|
|
425
|
|
426 imm->imm_use = old->next;
|
|
427 if (end_readonly_imm_use_p (imm))
|
|
428 return NULL_USE_OPERAND_P;
|
|
429 return imm->imm_use;
|
|
430 }
|
|
431
|
|
432 /* Return true if VAR has no uses. */
|
|
433 static inline bool
|
|
434 has_zero_uses (const_tree var)
|
|
435 {
|
|
436 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
|
|
437 /* A single use means there is no items in the list. */
|
|
438 return (ptr == ptr->next);
|
|
439 }
|
|
440
|
|
441 /* Return true if VAR has a single use. */
|
|
442 static inline bool
|
|
443 has_single_use (const_tree var)
|
|
444 {
|
|
445 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
|
|
446 /* A single use means there is one item in the list. */
|
|
447 return (ptr != ptr->next && ptr == ptr->next->next);
|
|
448 }
|
|
449
|
|
450
|
|
451 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
|
|
452 to the use pointer and stmt of occurrence. */
|
|
453 static inline bool
|
|
454 single_imm_use (const_tree var, use_operand_p *use_p, gimple *stmt)
|
|
455 {
|
|
456 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
|
|
457 if (ptr != ptr->next && ptr == ptr->next->next)
|
|
458 {
|
|
459 *use_p = ptr->next;
|
|
460 *stmt = ptr->next->loc.stmt;
|
|
461 return true;
|
|
462 }
|
|
463 *use_p = NULL_USE_OPERAND_P;
|
|
464 *stmt = NULL;
|
|
465 return false;
|
|
466 }
|
|
467
|
|
468 /* Return the number of immediate uses of VAR. */
|
|
469 static inline unsigned int
|
|
470 num_imm_uses (const_tree var)
|
|
471 {
|
|
472 const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var));
|
|
473 const ssa_use_operand_t *ptr;
|
|
474 unsigned int num = 0;
|
|
475
|
|
476 for (ptr = start->next; ptr != start; ptr = ptr->next)
|
|
477 num++;
|
|
478
|
|
479 return num;
|
|
480 }
|
|
481
|
|
482 /* Return the tree pointed-to by USE. */
|
|
483 static inline tree
|
|
484 get_use_from_ptr (use_operand_p use)
|
|
485 {
|
|
486 return *(use->use);
|
|
487 }
|
|
488
|
|
489 /* Return the tree pointed-to by DEF. */
|
|
490 static inline tree
|
|
491 get_def_from_ptr (def_operand_p def)
|
|
492 {
|
|
493 return *def;
|
|
494 }
|
|
495
|
|
496 /* Return a use_operand_p pointer for argument I of PHI node GS. */
|
|
497
|
|
498 static inline use_operand_p
|
|
499 gimple_phi_arg_imm_use_ptr (gimple gs, int i)
|
|
500 {
|
|
501 return &gimple_phi_arg (gs, i)->imm_use;
|
|
502 }
|
|
503
|
|
504 /* Return the tree operand for argument I of PHI node GS. */
|
|
505
|
|
506 static inline tree
|
|
507 gimple_phi_arg_def (gimple gs, size_t index)
|
|
508 {
|
|
509 struct phi_arg_d *pd = gimple_phi_arg (gs, index);
|
|
510 return get_use_from_ptr (&pd->imm_use);
|
|
511 }
|
|
512
|
|
513 /* Return a pointer to the tree operand for argument I of PHI node GS. */
|
|
514
|
|
515 static inline tree *
|
|
516 gimple_phi_arg_def_ptr (gimple gs, size_t index)
|
|
517 {
|
|
518 return &gimple_phi_arg (gs, index)->def;
|
|
519 }
|
|
520
|
|
521 /* Return the edge associated with argument I of phi node GS. */
|
|
522
|
|
523 static inline edge
|
|
524 gimple_phi_arg_edge (gimple gs, size_t i)
|
|
525 {
|
|
526 return EDGE_PRED (gimple_bb (gs), i);
|
|
527 }
|
|
528
|
|
529 /* Return the PHI nodes for basic block BB, or NULL if there are no
|
|
530 PHI nodes. */
|
|
531 static inline gimple_seq
|
|
532 phi_nodes (const_basic_block bb)
|
|
533 {
|
|
534 gcc_assert (!(bb->flags & BB_RTL));
|
|
535 if (!bb->il.gimple)
|
|
536 return NULL;
|
|
537 return bb->il.gimple->phi_nodes;
|
|
538 }
|
|
539
|
|
540 /* Set PHI nodes of a basic block BB to SEQ. */
|
|
541
|
|
542 static inline void
|
|
543 set_phi_nodes (basic_block bb, gimple_seq seq)
|
|
544 {
|
|
545 gimple_stmt_iterator i;
|
|
546
|
|
547 gcc_assert (!(bb->flags & BB_RTL));
|
|
548 bb->il.gimple->phi_nodes = seq;
|
|
549 if (seq)
|
|
550 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
|
|
551 gimple_set_bb (gsi_stmt (i), bb);
|
|
552 }
|
|
553
|
|
554 /* Return the phi argument which contains the specified use. */
|
|
555
|
|
556 static inline int
|
|
557 phi_arg_index_from_use (use_operand_p use)
|
|
558 {
|
|
559 struct phi_arg_d *element, *root;
|
|
560 size_t index;
|
|
561 gimple phi;
|
|
562
|
|
563 /* Since the use is the first thing in a PHI argument element, we can
|
|
564 calculate its index based on casting it to an argument, and performing
|
|
565 pointer arithmetic. */
|
|
566
|
|
567 phi = USE_STMT (use);
|
|
568 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
|
|
569
|
|
570 element = (struct phi_arg_d *)use;
|
|
571 root = gimple_phi_arg (phi, 0);
|
|
572 index = element - root;
|
|
573
|
|
574 #ifdef ENABLE_CHECKING
|
|
575 /* Make sure the calculation doesn't have any leftover bytes. If it does,
|
|
576 then imm_use is likely not the first element in phi_arg_d. */
|
|
577 gcc_assert (
|
|
578 (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
|
|
579 gcc_assert (index < gimple_phi_capacity (phi));
|
|
580 #endif
|
|
581
|
|
582 return index;
|
|
583 }
|
|
584
|
|
585 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
|
|
586
|
|
587 static inline void
|
|
588 set_is_used (tree var)
|
|
589 {
|
|
590 var_ann_t ann = get_var_ann (var);
|
|
591 ann->used = 1;
|
|
592 }
|
|
593
|
|
594
|
|
595 /* Return true if T (assumed to be a DECL) is a global variable. */
|
|
596
|
|
597 static inline bool
|
|
598 is_global_var (const_tree t)
|
|
599 {
|
|
600 if (MTAG_P (t))
|
|
601 return MTAG_GLOBAL (t);
|
|
602 else
|
|
603 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
|
|
604 }
|
|
605
|
|
606 /* PHI nodes should contain only ssa_names and invariants. A test
|
|
607 for ssa_name is definitely simpler; don't let invalid contents
|
|
608 slip in in the meantime. */
|
|
609
|
|
610 static inline bool
|
|
611 phi_ssa_name_p (const_tree t)
|
|
612 {
|
|
613 if (TREE_CODE (t) == SSA_NAME)
|
|
614 return true;
|
|
615 #ifdef ENABLE_CHECKING
|
|
616 gcc_assert (is_gimple_min_invariant (t));
|
|
617 #endif
|
|
618 return false;
|
|
619 }
|
|
620
|
|
621
|
|
622 /* Returns the loop of the statement STMT. */
|
|
623
|
|
624 static inline struct loop *
|
|
625 loop_containing_stmt (gimple stmt)
|
|
626 {
|
|
627 basic_block bb = gimple_bb (stmt);
|
|
628 if (!bb)
|
|
629 return NULL;
|
|
630
|
|
631 return bb->loop_father;
|
|
632 }
|
|
633
|
|
634
|
|
635 /* Return the memory partition tag associated with symbol SYM. */
|
|
636
|
|
637 static inline tree
|
|
638 memory_partition (tree sym)
|
|
639 {
|
|
640 tree tag;
|
|
641
|
|
642 /* MPTs belong to their own partition. */
|
|
643 if (TREE_CODE (sym) == MEMORY_PARTITION_TAG)
|
|
644 return sym;
|
|
645
|
|
646 gcc_assert (!is_gimple_reg (sym));
|
|
647 /* Autoparallelization moves statements from the original function (which has
|
|
648 aliases computed) to the new one (which does not). When rebuilding
|
|
649 operands for the statement in the new function, we do not want to
|
|
650 record the memory partition tags of the original function. */
|
|
651 if (!gimple_aliases_computed_p (cfun))
|
|
652 return NULL_TREE;
|
|
653 tag = get_var_ann (sym)->mpt;
|
|
654
|
|
655 #if defined ENABLE_CHECKING
|
|
656 if (tag)
|
|
657 gcc_assert (TREE_CODE (tag) == MEMORY_PARTITION_TAG);
|
|
658 #endif
|
|
659
|
|
660 return tag;
|
|
661 }
|
|
662
|
|
663 /* Return true if NAME is a memory factoring SSA name (i.e., an SSA
|
|
664 name for a memory partition. */
|
|
665
|
|
666 static inline bool
|
|
667 factoring_name_p (const_tree name)
|
|
668 {
|
|
669 return TREE_CODE (SSA_NAME_VAR (name)) == MEMORY_PARTITION_TAG;
|
|
670 }
|
|
671
|
|
672 /* Return true if VAR is used by function calls. */
|
|
673 static inline bool
|
|
674 is_call_used (const_tree var)
|
|
675 {
|
|
676 return (var_ann (var)->call_clobbered
|
|
677 || bitmap_bit_p (gimple_call_used_vars (cfun), DECL_UID (var)));
|
|
678 }
|
|
679
|
|
680 /* Return true if VAR is clobbered by function calls. */
|
|
681 static inline bool
|
|
682 is_call_clobbered (const_tree var)
|
|
683 {
|
|
684 return var_ann (var)->call_clobbered;
|
|
685 }
|
|
686
|
|
687 /* Mark variable VAR as being clobbered by function calls. */
|
|
688 static inline void
|
|
689 mark_call_clobbered (tree var, unsigned int escape_type)
|
|
690 {
|
|
691 var_ann (var)->escape_mask |= escape_type;
|
|
692 var_ann (var)->call_clobbered = true;
|
|
693 bitmap_set_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
|
|
694 }
|
|
695
|
|
696 /* Clear the call-clobbered attribute from variable VAR. */
|
|
697 static inline void
|
|
698 clear_call_clobbered (tree var)
|
|
699 {
|
|
700 var_ann_t ann = var_ann (var);
|
|
701 ann->escape_mask = 0;
|
|
702 if (MTAG_P (var))
|
|
703 MTAG_GLOBAL (var) = 0;
|
|
704 var_ann (var)->call_clobbered = false;
|
|
705 bitmap_clear_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
|
|
706 }
|
|
707
|
|
708 /* Return the common annotation for T. Return NULL if the annotation
|
|
709 doesn't already exist. */
|
|
710 static inline tree_ann_common_t
|
|
711 tree_common_ann (const_tree t)
|
|
712 {
|
|
713 /* Watch out static variables with unshared annotations. */
|
|
714 if (DECL_P (t) && TREE_CODE (t) == VAR_DECL)
|
|
715 return &var_ann (t)->common;
|
|
716 return &t->base.ann->common;
|
|
717 }
|
|
718
|
|
719 /* Return a common annotation for T. Create the constant annotation if it
|
|
720 doesn't exist. */
|
|
721 static inline tree_ann_common_t
|
|
722 get_tree_common_ann (tree t)
|
|
723 {
|
|
724 tree_ann_common_t ann = tree_common_ann (t);
|
|
725 return (ann) ? ann : create_tree_common_ann (t);
|
|
726 }
|
|
727
|
|
728 /* ----------------------------------------------------------------------- */
|
|
729
|
|
730 /* The following set of routines are used to iterator over various type of
|
|
731 SSA operands. */
|
|
732
|
|
733 /* Return true if PTR is finished iterating. */
|
|
734 static inline bool
|
|
735 op_iter_done (const ssa_op_iter *ptr)
|
|
736 {
|
|
737 return ptr->done;
|
|
738 }
|
|
739
|
|
740 /* Get the next iterator use value for PTR. */
|
|
741 static inline use_operand_p
|
|
742 op_iter_next_use (ssa_op_iter *ptr)
|
|
743 {
|
|
744 use_operand_p use_p;
|
|
745 #ifdef ENABLE_CHECKING
|
|
746 gcc_assert (ptr->iter_type == ssa_op_iter_use);
|
|
747 #endif
|
|
748 if (ptr->uses)
|
|
749 {
|
|
750 use_p = USE_OP_PTR (ptr->uses);
|
|
751 ptr->uses = ptr->uses->next;
|
|
752 return use_p;
|
|
753 }
|
|
754 if (ptr->vuses)
|
|
755 {
|
|
756 use_p = VUSE_OP_PTR (ptr->vuses, ptr->vuse_index);
|
|
757 if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
|
|
758 {
|
|
759 ptr->vuse_index = 0;
|
|
760 ptr->vuses = ptr->vuses->next;
|
|
761 }
|
|
762 return use_p;
|
|
763 }
|
|
764 if (ptr->mayuses)
|
|
765 {
|
|
766 use_p = VDEF_OP_PTR (ptr->mayuses, ptr->mayuse_index);
|
|
767 if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
|
|
768 {
|
|
769 ptr->mayuse_index = 0;
|
|
770 ptr->mayuses = ptr->mayuses->next;
|
|
771 }
|
|
772 return use_p;
|
|
773 }
|
|
774 if (ptr->phi_i < ptr->num_phi)
|
|
775 {
|
|
776 return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
|
|
777 }
|
|
778 ptr->done = true;
|
|
779 return NULL_USE_OPERAND_P;
|
|
780 }
|
|
781
|
|
782 /* Get the next iterator def value for PTR. */
|
|
783 static inline def_operand_p
|
|
784 op_iter_next_def (ssa_op_iter *ptr)
|
|
785 {
|
|
786 def_operand_p def_p;
|
|
787 #ifdef ENABLE_CHECKING
|
|
788 gcc_assert (ptr->iter_type == ssa_op_iter_def);
|
|
789 #endif
|
|
790 if (ptr->defs)
|
|
791 {
|
|
792 def_p = DEF_OP_PTR (ptr->defs);
|
|
793 ptr->defs = ptr->defs->next;
|
|
794 return def_p;
|
|
795 }
|
|
796 if (ptr->vdefs)
|
|
797 {
|
|
798 def_p = VDEF_RESULT_PTR (ptr->vdefs);
|
|
799 ptr->vdefs = ptr->vdefs->next;
|
|
800 return def_p;
|
|
801 }
|
|
802 ptr->done = true;
|
|
803 return NULL_DEF_OPERAND_P;
|
|
804 }
|
|
805
|
|
806 /* Get the next iterator tree value for PTR. */
|
|
807 static inline tree
|
|
808 op_iter_next_tree (ssa_op_iter *ptr)
|
|
809 {
|
|
810 tree val;
|
|
811 #ifdef ENABLE_CHECKING
|
|
812 gcc_assert (ptr->iter_type == ssa_op_iter_tree);
|
|
813 #endif
|
|
814 if (ptr->uses)
|
|
815 {
|
|
816 val = USE_OP (ptr->uses);
|
|
817 ptr->uses = ptr->uses->next;
|
|
818 return val;
|
|
819 }
|
|
820 if (ptr->vuses)
|
|
821 {
|
|
822 val = VUSE_OP (ptr->vuses, ptr->vuse_index);
|
|
823 if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
|
|
824 {
|
|
825 ptr->vuse_index = 0;
|
|
826 ptr->vuses = ptr->vuses->next;
|
|
827 }
|
|
828 return val;
|
|
829 }
|
|
830 if (ptr->mayuses)
|
|
831 {
|
|
832 val = VDEF_OP (ptr->mayuses, ptr->mayuse_index);
|
|
833 if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
|
|
834 {
|
|
835 ptr->mayuse_index = 0;
|
|
836 ptr->mayuses = ptr->mayuses->next;
|
|
837 }
|
|
838 return val;
|
|
839 }
|
|
840 if (ptr->defs)
|
|
841 {
|
|
842 val = DEF_OP (ptr->defs);
|
|
843 ptr->defs = ptr->defs->next;
|
|
844 return val;
|
|
845 }
|
|
846 if (ptr->vdefs)
|
|
847 {
|
|
848 val = VDEF_RESULT (ptr->vdefs);
|
|
849 ptr->vdefs = ptr->vdefs->next;
|
|
850 return val;
|
|
851 }
|
|
852
|
|
853 ptr->done = true;
|
|
854 return NULL_TREE;
|
|
855
|
|
856 }
|
|
857
|
|
858
|
|
859 /* This functions clears the iterator PTR, and marks it done. This is normally
|
|
860 used to prevent warnings in the compile about might be uninitialized
|
|
861 components. */
|
|
862
|
|
863 static inline void
|
|
864 clear_and_done_ssa_iter (ssa_op_iter *ptr)
|
|
865 {
|
|
866 ptr->defs = NULL;
|
|
867 ptr->uses = NULL;
|
|
868 ptr->vuses = NULL;
|
|
869 ptr->vdefs = NULL;
|
|
870 ptr->mayuses = NULL;
|
|
871 ptr->iter_type = ssa_op_iter_none;
|
|
872 ptr->phi_i = 0;
|
|
873 ptr->num_phi = 0;
|
|
874 ptr->phi_stmt = NULL;
|
|
875 ptr->done = true;
|
|
876 ptr->vuse_index = 0;
|
|
877 ptr->mayuse_index = 0;
|
|
878 }
|
|
879
|
|
880 /* Initialize the iterator PTR to the virtual defs in STMT. */
|
|
881 static inline void
|
|
882 op_iter_init (ssa_op_iter *ptr, gimple stmt, int flags)
|
|
883 {
|
|
884 ptr->defs = (flags & SSA_OP_DEF) ? gimple_def_ops (stmt) : NULL;
|
|
885 ptr->uses = (flags & SSA_OP_USE) ? gimple_use_ops (stmt) : NULL;
|
|
886 ptr->vuses = (flags & SSA_OP_VUSE) ? gimple_vuse_ops (stmt) : NULL;
|
|
887 ptr->vdefs = (flags & SSA_OP_VDEF) ? gimple_vdef_ops (stmt) : NULL;
|
|
888 ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? gimple_vdef_ops (stmt) : NULL;
|
|
889 ptr->done = false;
|
|
890
|
|
891 ptr->phi_i = 0;
|
|
892 ptr->num_phi = 0;
|
|
893 ptr->phi_stmt = NULL;
|
|
894 ptr->vuse_index = 0;
|
|
895 ptr->mayuse_index = 0;
|
|
896 }
|
|
897
|
|
898 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
|
|
899 the first use. */
|
|
900 static inline use_operand_p
|
|
901 op_iter_init_use (ssa_op_iter *ptr, gimple stmt, int flags)
|
|
902 {
|
|
903 gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
|
|
904 op_iter_init (ptr, stmt, flags);
|
|
905 ptr->iter_type = ssa_op_iter_use;
|
|
906 return op_iter_next_use (ptr);
|
|
907 }
|
|
908
|
|
909 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
|
|
910 the first def. */
|
|
911 static inline def_operand_p
|
|
912 op_iter_init_def (ssa_op_iter *ptr, gimple stmt, int flags)
|
|
913 {
|
|
914 gcc_assert ((flags & SSA_OP_ALL_USES) == 0);
|
|
915 op_iter_init (ptr, stmt, flags);
|
|
916 ptr->iter_type = ssa_op_iter_def;
|
|
917 return op_iter_next_def (ptr);
|
|
918 }
|
|
919
|
|
920 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
|
|
921 the first operand as a tree. */
|
|
922 static inline tree
|
|
923 op_iter_init_tree (ssa_op_iter *ptr, gimple stmt, int flags)
|
|
924 {
|
|
925 op_iter_init (ptr, stmt, flags);
|
|
926 ptr->iter_type = ssa_op_iter_tree;
|
|
927 return op_iter_next_tree (ptr);
|
|
928 }
|
|
929
|
|
930 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
|
|
931 KILL and DEF. */
|
|
932 static inline void
|
|
933 op_iter_next_vdef (vuse_vec_p *use, def_operand_p *def,
|
|
934 ssa_op_iter *ptr)
|
|
935 {
|
|
936 #ifdef ENABLE_CHECKING
|
|
937 gcc_assert (ptr->iter_type == ssa_op_iter_vdef);
|
|
938 #endif
|
|
939 if (ptr->mayuses)
|
|
940 {
|
|
941 *def = VDEF_RESULT_PTR (ptr->mayuses);
|
|
942 *use = VDEF_VECT (ptr->mayuses);
|
|
943 ptr->mayuses = ptr->mayuses->next;
|
|
944 return;
|
|
945 }
|
|
946
|
|
947 *def = NULL_DEF_OPERAND_P;
|
|
948 *use = NULL;
|
|
949 ptr->done = true;
|
|
950 return;
|
|
951 }
|
|
952
|
|
953
|
|
954 static inline void
|
|
955 op_iter_next_mustdef (use_operand_p *use, def_operand_p *def,
|
|
956 ssa_op_iter *ptr)
|
|
957 {
|
|
958 vuse_vec_p vp;
|
|
959 op_iter_next_vdef (&vp, def, ptr);
|
|
960 if (vp != NULL)
|
|
961 {
|
|
962 gcc_assert (VUSE_VECT_NUM_ELEM (*vp) == 1);
|
|
963 *use = VUSE_ELEMENT_PTR (*vp, 0);
|
|
964 }
|
|
965 else
|
|
966 *use = NULL_USE_OPERAND_P;
|
|
967 }
|
|
968
|
|
969 /* Initialize iterator PTR to the operands in STMT. Return the first operands
|
|
970 in USE and DEF. */
|
|
971 static inline void
|
|
972 op_iter_init_vdef (ssa_op_iter *ptr, gimple stmt, vuse_vec_p *use,
|
|
973 def_operand_p *def)
|
|
974 {
|
|
975 gcc_assert (gimple_code (stmt) != GIMPLE_PHI);
|
|
976
|
|
977 op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
|
|
978 ptr->iter_type = ssa_op_iter_vdef;
|
|
979 op_iter_next_vdef (use, def, ptr);
|
|
980 }
|
|
981
|
|
982
|
|
983 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
|
|
984 return NULL. */
|
|
985 static inline tree
|
|
986 single_ssa_tree_operand (gimple stmt, int flags)
|
|
987 {
|
|
988 tree var;
|
|
989 ssa_op_iter iter;
|
|
990
|
|
991 var = op_iter_init_tree (&iter, stmt, flags);
|
|
992 if (op_iter_done (&iter))
|
|
993 return NULL_TREE;
|
|
994 op_iter_next_tree (&iter);
|
|
995 if (op_iter_done (&iter))
|
|
996 return var;
|
|
997 return NULL_TREE;
|
|
998 }
|
|
999
|
|
1000
|
|
1001 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
|
|
1002 return NULL. */
|
|
1003 static inline use_operand_p
|
|
1004 single_ssa_use_operand (gimple stmt, int flags)
|
|
1005 {
|
|
1006 use_operand_p var;
|
|
1007 ssa_op_iter iter;
|
|
1008
|
|
1009 var = op_iter_init_use (&iter, stmt, flags);
|
|
1010 if (op_iter_done (&iter))
|
|
1011 return NULL_USE_OPERAND_P;
|
|
1012 op_iter_next_use (&iter);
|
|
1013 if (op_iter_done (&iter))
|
|
1014 return var;
|
|
1015 return NULL_USE_OPERAND_P;
|
|
1016 }
|
|
1017
|
|
1018
|
|
1019
|
|
1020 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
|
|
1021 return NULL. */
|
|
1022 static inline def_operand_p
|
|
1023 single_ssa_def_operand (gimple stmt, int flags)
|
|
1024 {
|
|
1025 def_operand_p var;
|
|
1026 ssa_op_iter iter;
|
|
1027
|
|
1028 var = op_iter_init_def (&iter, stmt, flags);
|
|
1029 if (op_iter_done (&iter))
|
|
1030 return NULL_DEF_OPERAND_P;
|
|
1031 op_iter_next_def (&iter);
|
|
1032 if (op_iter_done (&iter))
|
|
1033 return var;
|
|
1034 return NULL_DEF_OPERAND_P;
|
|
1035 }
|
|
1036
|
|
1037
|
|
1038 /* Return true if there are zero operands in STMT matching the type
|
|
1039 given in FLAGS. */
|
|
1040 static inline bool
|
|
1041 zero_ssa_operands (gimple stmt, int flags)
|
|
1042 {
|
|
1043 ssa_op_iter iter;
|
|
1044
|
|
1045 op_iter_init_tree (&iter, stmt, flags);
|
|
1046 return op_iter_done (&iter);
|
|
1047 }
|
|
1048
|
|
1049
|
|
1050 /* Return the number of operands matching FLAGS in STMT. */
|
|
1051 static inline int
|
|
1052 num_ssa_operands (gimple stmt, int flags)
|
|
1053 {
|
|
1054 ssa_op_iter iter;
|
|
1055 tree t;
|
|
1056 int num = 0;
|
|
1057
|
|
1058 FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
|
|
1059 num++;
|
|
1060 return num;
|
|
1061 }
|
|
1062
|
|
1063
|
|
1064 /* Delink all immediate_use information for STMT. */
|
|
1065 static inline void
|
|
1066 delink_stmt_imm_use (gimple stmt)
|
|
1067 {
|
|
1068 ssa_op_iter iter;
|
|
1069 use_operand_p use_p;
|
|
1070
|
|
1071 if (ssa_operands_active ())
|
|
1072 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
|
|
1073 delink_imm_use (use_p);
|
|
1074 }
|
|
1075
|
|
1076
|
|
1077 /* This routine will compare all the operands matching FLAGS in STMT1 to those
|
|
1078 in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
|
|
1079 static inline bool
|
|
1080 compare_ssa_operands_equal (gimple stmt1, gimple stmt2, int flags)
|
|
1081 {
|
|
1082 ssa_op_iter iter1, iter2;
|
|
1083 tree op1 = NULL_TREE;
|
|
1084 tree op2 = NULL_TREE;
|
|
1085 bool look1, look2;
|
|
1086
|
|
1087 if (stmt1 == stmt2)
|
|
1088 return true;
|
|
1089
|
|
1090 look1 = stmt1 != NULL;
|
|
1091 look2 = stmt2 != NULL;
|
|
1092
|
|
1093 if (look1)
|
|
1094 {
|
|
1095 op1 = op_iter_init_tree (&iter1, stmt1, flags);
|
|
1096 if (!look2)
|
|
1097 return op_iter_done (&iter1);
|
|
1098 }
|
|
1099 else
|
|
1100 clear_and_done_ssa_iter (&iter1);
|
|
1101
|
|
1102 if (look2)
|
|
1103 {
|
|
1104 op2 = op_iter_init_tree (&iter2, stmt2, flags);
|
|
1105 if (!look1)
|
|
1106 return op_iter_done (&iter2);
|
|
1107 }
|
|
1108 else
|
|
1109 clear_and_done_ssa_iter (&iter2);
|
|
1110
|
|
1111 while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
|
|
1112 {
|
|
1113 if (op1 != op2)
|
|
1114 return false;
|
|
1115 op1 = op_iter_next_tree (&iter1);
|
|
1116 op2 = op_iter_next_tree (&iter2);
|
|
1117 }
|
|
1118
|
|
1119 return (op_iter_done (&iter1) && op_iter_done (&iter2));
|
|
1120 }
|
|
1121
|
|
1122
|
|
1123 /* If there is a single DEF in the PHI node which matches FLAG, return it.
|
|
1124 Otherwise return NULL_DEF_OPERAND_P. */
|
|
1125 static inline tree
|
|
1126 single_phi_def (gimple stmt, int flags)
|
|
1127 {
|
|
1128 tree def = PHI_RESULT (stmt);
|
|
1129 if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
|
|
1130 return def;
|
|
1131 if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
|
|
1132 return def;
|
|
1133 return NULL_TREE;
|
|
1134 }
|
|
1135
|
|
1136 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
|
|
1137 be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
|
|
1138 static inline use_operand_p
|
|
1139 op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags)
|
|
1140 {
|
|
1141 tree phi_def = gimple_phi_result (phi);
|
|
1142 int comp;
|
|
1143
|
|
1144 clear_and_done_ssa_iter (ptr);
|
|
1145 ptr->done = false;
|
|
1146
|
|
1147 gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
|
|
1148
|
|
1149 comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
|
|
1150
|
|
1151 /* If the PHI node doesn't the operand type we care about, we're done. */
|
|
1152 if ((flags & comp) == 0)
|
|
1153 {
|
|
1154 ptr->done = true;
|
|
1155 return NULL_USE_OPERAND_P;
|
|
1156 }
|
|
1157
|
|
1158 ptr->phi_stmt = phi;
|
|
1159 ptr->num_phi = gimple_phi_num_args (phi);
|
|
1160 ptr->iter_type = ssa_op_iter_use;
|
|
1161 return op_iter_next_use (ptr);
|
|
1162 }
|
|
1163
|
|
1164
|
|
1165 /* Start an iterator for a PHI definition. */
|
|
1166
|
|
1167 static inline def_operand_p
|
|
1168 op_iter_init_phidef (ssa_op_iter *ptr, gimple phi, int flags)
|
|
1169 {
|
|
1170 tree phi_def = PHI_RESULT (phi);
|
|
1171 int comp;
|
|
1172
|
|
1173 clear_and_done_ssa_iter (ptr);
|
|
1174 ptr->done = false;
|
|
1175
|
|
1176 gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
|
|
1177
|
|
1178 comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
|
|
1179
|
|
1180 /* If the PHI node doesn't the operand type we care about, we're done. */
|
|
1181 if ((flags & comp) == 0)
|
|
1182 {
|
|
1183 ptr->done = true;
|
|
1184 return NULL_USE_OPERAND_P;
|
|
1185 }
|
|
1186
|
|
1187 ptr->iter_type = ssa_op_iter_def;
|
|
1188 /* The first call to op_iter_next_def will terminate the iterator since
|
|
1189 all the fields are NULL. Simply return the result here as the first and
|
|
1190 therefore only result. */
|
|
1191 return PHI_RESULT_PTR (phi);
|
|
1192 }
|
|
1193
|
|
1194 /* Return true is IMM has reached the end of the immediate use stmt list. */
|
|
1195
|
|
1196 static inline bool
|
|
1197 end_imm_use_stmt_p (const imm_use_iterator *imm)
|
|
1198 {
|
|
1199 return (imm->imm_use == imm->end_p);
|
|
1200 }
|
|
1201
|
|
1202 /* Finished the traverse of an immediate use stmt list IMM by removing the
|
|
1203 placeholder node from the list. */
|
|
1204
|
|
1205 static inline void
|
|
1206 end_imm_use_stmt_traverse (imm_use_iterator *imm)
|
|
1207 {
|
|
1208 delink_imm_use (&(imm->iter_node));
|
|
1209 }
|
|
1210
|
|
1211 /* Immediate use traversal of uses within a stmt require that all the
|
|
1212 uses on a stmt be sequentially listed. This routine is used to build up
|
|
1213 this sequential list by adding USE_P to the end of the current list
|
|
1214 currently delimited by HEAD and LAST_P. The new LAST_P value is
|
|
1215 returned. */
|
|
1216
|
|
1217 static inline use_operand_p
|
|
1218 move_use_after_head (use_operand_p use_p, use_operand_p head,
|
|
1219 use_operand_p last_p)
|
|
1220 {
|
|
1221 gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
|
|
1222 /* Skip head when we find it. */
|
|
1223 if (use_p != head)
|
|
1224 {
|
|
1225 /* If use_p is already linked in after last_p, continue. */
|
|
1226 if (last_p->next == use_p)
|
|
1227 last_p = use_p;
|
|
1228 else
|
|
1229 {
|
|
1230 /* Delink from current location, and link in at last_p. */
|
|
1231 delink_imm_use (use_p);
|
|
1232 link_imm_use_to_list (use_p, last_p);
|
|
1233 last_p = use_p;
|
|
1234 }
|
|
1235 }
|
|
1236 return last_p;
|
|
1237 }
|
|
1238
|
|
1239
|
|
1240 /* This routine will relink all uses with the same stmt as HEAD into the list
|
|
1241 immediately following HEAD for iterator IMM. */
|
|
1242
|
|
1243 static inline void
|
|
1244 link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
|
|
1245 {
|
|
1246 use_operand_p use_p;
|
|
1247 use_operand_p last_p = head;
|
|
1248 gimple head_stmt = USE_STMT (head);
|
|
1249 tree use = USE_FROM_PTR (head);
|
|
1250 ssa_op_iter op_iter;
|
|
1251 int flag;
|
|
1252
|
|
1253 /* Only look at virtual or real uses, depending on the type of HEAD. */
|
|
1254 flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
|
|
1255
|
|
1256 if (gimple_code (head_stmt) == GIMPLE_PHI)
|
|
1257 {
|
|
1258 FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
|
|
1259 if (USE_FROM_PTR (use_p) == use)
|
|
1260 last_p = move_use_after_head (use_p, head, last_p);
|
|
1261 }
|
|
1262 else
|
|
1263 {
|
|
1264 FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
|
|
1265 if (USE_FROM_PTR (use_p) == use)
|
|
1266 last_p = move_use_after_head (use_p, head, last_p);
|
|
1267 }
|
|
1268 /* Link iter node in after last_p. */
|
|
1269 if (imm->iter_node.prev != NULL)
|
|
1270 delink_imm_use (&imm->iter_node);
|
|
1271 link_imm_use_to_list (&(imm->iter_node), last_p);
|
|
1272 }
|
|
1273
|
|
1274 /* Initialize IMM to traverse over uses of VAR. Return the first statement. */
|
|
1275 static inline gimple
|
|
1276 first_imm_use_stmt (imm_use_iterator *imm, tree var)
|
|
1277 {
|
|
1278 gcc_assert (TREE_CODE (var) == SSA_NAME);
|
|
1279
|
|
1280 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
|
|
1281 imm->imm_use = imm->end_p->next;
|
|
1282 imm->next_imm_name = NULL_USE_OPERAND_P;
|
|
1283
|
|
1284 /* iter_node is used as a marker within the immediate use list to indicate
|
|
1285 where the end of the current stmt's uses are. Initialize it to NULL
|
|
1286 stmt and use, which indicates a marker node. */
|
|
1287 imm->iter_node.prev = NULL_USE_OPERAND_P;
|
|
1288 imm->iter_node.next = NULL_USE_OPERAND_P;
|
|
1289 imm->iter_node.loc.stmt = NULL;
|
|
1290 imm->iter_node.use = NULL_USE_OPERAND_P;
|
|
1291
|
|
1292 if (end_imm_use_stmt_p (imm))
|
|
1293 return NULL;
|
|
1294
|
|
1295 link_use_stmts_after (imm->imm_use, imm);
|
|
1296
|
|
1297 return USE_STMT (imm->imm_use);
|
|
1298 }
|
|
1299
|
|
1300 /* Bump IMM to the next stmt which has a use of var. */
|
|
1301
|
|
1302 static inline gimple
|
|
1303 next_imm_use_stmt (imm_use_iterator *imm)
|
|
1304 {
|
|
1305 imm->imm_use = imm->iter_node.next;
|
|
1306 if (end_imm_use_stmt_p (imm))
|
|
1307 {
|
|
1308 if (imm->iter_node.prev != NULL)
|
|
1309 delink_imm_use (&imm->iter_node);
|
|
1310 return NULL;
|
|
1311 }
|
|
1312
|
|
1313 link_use_stmts_after (imm->imm_use, imm);
|
|
1314 return USE_STMT (imm->imm_use);
|
|
1315 }
|
|
1316
|
|
1317 /* This routine will return the first use on the stmt IMM currently refers
|
|
1318 to. */
|
|
1319
|
|
1320 static inline use_operand_p
|
|
1321 first_imm_use_on_stmt (imm_use_iterator *imm)
|
|
1322 {
|
|
1323 imm->next_imm_name = imm->imm_use->next;
|
|
1324 return imm->imm_use;
|
|
1325 }
|
|
1326
|
|
1327 /* Return TRUE if the last use on the stmt IMM refers to has been visited. */
|
|
1328
|
|
1329 static inline bool
|
|
1330 end_imm_use_on_stmt_p (const imm_use_iterator *imm)
|
|
1331 {
|
|
1332 return (imm->imm_use == &(imm->iter_node));
|
|
1333 }
|
|
1334
|
|
1335 /* Bump to the next use on the stmt IMM refers to, return NULL if done. */
|
|
1336
|
|
1337 static inline use_operand_p
|
|
1338 next_imm_use_on_stmt (imm_use_iterator *imm)
|
|
1339 {
|
|
1340 imm->imm_use = imm->next_imm_name;
|
|
1341 if (end_imm_use_on_stmt_p (imm))
|
|
1342 return NULL_USE_OPERAND_P;
|
|
1343 else
|
|
1344 {
|
|
1345 imm->next_imm_name = imm->imm_use->next;
|
|
1346 return imm->imm_use;
|
|
1347 }
|
|
1348 }
|
|
1349
|
|
1350 /* Return true if VAR cannot be modified by the program. */
|
|
1351
|
|
1352 static inline bool
|
|
1353 unmodifiable_var_p (const_tree var)
|
|
1354 {
|
|
1355 if (TREE_CODE (var) == SSA_NAME)
|
|
1356 var = SSA_NAME_VAR (var);
|
|
1357
|
|
1358 if (MTAG_P (var))
|
|
1359 return false;
|
|
1360
|
|
1361 return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
|
|
1362 }
|
|
1363
|
|
1364 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
|
|
1365
|
|
1366 static inline bool
|
|
1367 array_ref_contains_indirect_ref (const_tree ref)
|
|
1368 {
|
|
1369 gcc_assert (TREE_CODE (ref) == ARRAY_REF);
|
|
1370
|
|
1371 do {
|
|
1372 ref = TREE_OPERAND (ref, 0);
|
|
1373 } while (handled_component_p (ref));
|
|
1374
|
|
1375 return TREE_CODE (ref) == INDIRECT_REF;
|
|
1376 }
|
|
1377
|
|
1378 /* Return true if REF, a handled component reference, has an ARRAY_REF
|
|
1379 somewhere in it. */
|
|
1380
|
|
1381 static inline bool
|
|
1382 ref_contains_array_ref (const_tree ref)
|
|
1383 {
|
|
1384 gcc_assert (handled_component_p (ref));
|
|
1385
|
|
1386 do {
|
|
1387 if (TREE_CODE (ref) == ARRAY_REF)
|
|
1388 return true;
|
|
1389 ref = TREE_OPERAND (ref, 0);
|
|
1390 } while (handled_component_p (ref));
|
|
1391
|
|
1392 return false;
|
|
1393 }
|
|
1394
|
|
1395 /* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2]
|
|
1396 overlap. SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the
|
|
1397 range is open-ended. Otherwise return false. */
|
|
1398
|
|
1399 static inline bool
|
|
1400 ranges_overlap_p (unsigned HOST_WIDE_INT pos1,
|
|
1401 unsigned HOST_WIDE_INT size1,
|
|
1402 unsigned HOST_WIDE_INT pos2,
|
|
1403 unsigned HOST_WIDE_INT size2)
|
|
1404 {
|
|
1405 if (pos1 >= pos2
|
|
1406 && (size2 == (unsigned HOST_WIDE_INT)-1
|
|
1407 || pos1 < (pos2 + size2)))
|
|
1408 return true;
|
|
1409 if (pos2 >= pos1
|
|
1410 && (size1 == (unsigned HOST_WIDE_INT)-1
|
|
1411 || pos2 < (pos1 + size1)))
|
|
1412 return true;
|
|
1413
|
|
1414 return false;
|
|
1415 }
|
|
1416
|
|
1417 /* Return the memory tag associated with symbol SYM. */
|
|
1418
|
|
1419 static inline tree
|
|
1420 symbol_mem_tag (tree sym)
|
|
1421 {
|
|
1422 tree tag = get_var_ann (sym)->symbol_mem_tag;
|
|
1423
|
|
1424 #if defined ENABLE_CHECKING
|
|
1425 if (tag)
|
|
1426 gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
|
|
1427 #endif
|
|
1428
|
|
1429 return tag;
|
|
1430 }
|
|
1431
|
|
1432
|
|
1433 /* Set the memory tag associated with symbol SYM. */
|
|
1434
|
|
1435 static inline void
|
|
1436 set_symbol_mem_tag (tree sym, tree tag)
|
|
1437 {
|
|
1438 #if defined ENABLE_CHECKING
|
|
1439 if (tag)
|
|
1440 gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
|
|
1441 #endif
|
|
1442
|
|
1443 get_var_ann (sym)->symbol_mem_tag = tag;
|
|
1444 }
|
|
1445
|
|
1446 /* Accessor to tree-ssa-operands.c caches. */
|
|
1447 static inline struct ssa_operands *
|
|
1448 gimple_ssa_operands (const struct function *fun)
|
|
1449 {
|
|
1450 return &fun->gimple_df->ssa_operands;
|
|
1451 }
|
|
1452
|
|
1453 /* Map describing reference statistics for function FN. */
|
|
1454 static inline struct mem_ref_stats_d *
|
|
1455 gimple_mem_ref_stats (const struct function *fn)
|
|
1456 {
|
|
1457 return &fn->gimple_df->mem_ref_stats;
|
|
1458 }
|
|
1459
|
|
1460 /* Given an edge_var_map V, return the PHI arg definition. */
|
|
1461
|
|
1462 static inline tree
|
|
1463 redirect_edge_var_map_def (edge_var_map *v)
|
|
1464 {
|
|
1465 return v->def;
|
|
1466 }
|
|
1467
|
|
1468 /* Given an edge_var_map V, return the PHI result. */
|
|
1469
|
|
1470 static inline tree
|
|
1471 redirect_edge_var_map_result (edge_var_map *v)
|
|
1472 {
|
|
1473 return v->result;
|
|
1474 }
|
|
1475
|
|
1476
|
|
1477 /* Return an SSA_NAME node for variable VAR defined in statement STMT
|
|
1478 in function cfun. */
|
|
1479
|
|
1480 static inline tree
|
|
1481 make_ssa_name (tree var, gimple stmt)
|
|
1482 {
|
|
1483 return make_ssa_name_fn (cfun, var, stmt);
|
|
1484 }
|
|
1485
|
|
1486 #endif /* _TREE_FLOW_INLINE_H */
|