0
|
1 /* Array prefetching.
|
|
2 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
|
|
3
|
|
4 This file is part of GCC.
|
|
5
|
|
6 GCC is free software; you can redistribute it and/or modify it
|
|
7 under the terms of the GNU General Public License as published by the
|
|
8 Free Software Foundation; either version 3, or (at your option) any
|
|
9 later version.
|
|
10
|
|
11 GCC is distributed in the hope that it will be useful, but WITHOUT
|
|
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 for more details.
|
|
15
|
|
16 You should have received a copy of the GNU General Public License
|
|
17 along with GCC; see the file COPYING3. If not see
|
|
18 <http://www.gnu.org/licenses/>. */
|
|
19
|
|
20 #include "config.h"
|
|
21 #include "system.h"
|
|
22 #include "coretypes.h"
|
|
23 #include "tm.h"
|
|
24 #include "tree.h"
|
|
25 #include "rtl.h"
|
|
26 #include "tm_p.h"
|
|
27 #include "hard-reg-set.h"
|
|
28 #include "basic-block.h"
|
|
29 #include "output.h"
|
|
30 #include "diagnostic.h"
|
|
31 #include "tree-flow.h"
|
|
32 #include "tree-dump.h"
|
|
33 #include "timevar.h"
|
|
34 #include "cfgloop.h"
|
|
35 #include "varray.h"
|
|
36 #include "expr.h"
|
|
37 #include "tree-pass.h"
|
|
38 #include "ggc.h"
|
|
39 #include "insn-config.h"
|
|
40 #include "recog.h"
|
|
41 #include "hashtab.h"
|
|
42 #include "tree-chrec.h"
|
|
43 #include "tree-scalar-evolution.h"
|
|
44 #include "toplev.h"
|
|
45 #include "params.h"
|
|
46 #include "langhooks.h"
|
|
47 #include "tree-inline.h"
|
|
48 #include "tree-data-ref.h"
|
|
49 #include "optabs.h"
|
|
50
|
|
51 /* This pass inserts prefetch instructions to optimize cache usage during
|
|
52 accesses to arrays in loops. It processes loops sequentially and:
|
|
53
|
|
54 1) Gathers all memory references in the single loop.
|
|
55 2) For each of the references it decides when it is profitable to prefetch
|
|
56 it. To do it, we evaluate the reuse among the accesses, and determines
|
|
57 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
|
|
58 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
|
|
59 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
|
|
60 iterations of the loop that are zero modulo PREFETCH_MOD). For example
|
|
61 (assuming cache line size is 64 bytes, char has size 1 byte and there
|
|
62 is no hardware sequential prefetch):
|
|
63
|
|
64 char *a;
|
|
65 for (i = 0; i < max; i++)
|
|
66 {
|
|
67 a[255] = ...; (0)
|
|
68 a[i] = ...; (1)
|
|
69 a[i + 64] = ...; (2)
|
|
70 a[16*i] = ...; (3)
|
|
71 a[187*i] = ...; (4)
|
|
72 a[187*i + 50] = ...; (5)
|
|
73 }
|
|
74
|
|
75 (0) obviously has PREFETCH_BEFORE 1
|
|
76 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
|
|
77 location 64 iterations before it, and PREFETCH_MOD 64 (since
|
|
78 it hits the same cache line otherwise).
|
|
79 (2) has PREFETCH_MOD 64
|
|
80 (3) has PREFETCH_MOD 4
|
|
81 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
|
|
82 the cache line accessed by (4) is the same with probability only
|
|
83 7/32.
|
|
84 (5) has PREFETCH_MOD 1 as well.
|
|
85
|
|
86 Additionally, we use data dependence analysis to determine for each
|
|
87 reference the distance till the first reuse; this information is used
|
|
88 to determine the temporality of the issued prefetch instruction.
|
|
89
|
|
90 3) We determine how much ahead we need to prefetch. The number of
|
|
91 iterations needed is time to fetch / time spent in one iteration of
|
|
92 the loop. The problem is that we do not know either of these values,
|
|
93 so we just make a heuristic guess based on a magic (possibly)
|
|
94 target-specific constant and size of the loop.
|
|
95
|
|
96 4) Determine which of the references we prefetch. We take into account
|
|
97 that there is a maximum number of simultaneous prefetches (provided
|
|
98 by machine description). We prefetch as many prefetches as possible
|
|
99 while still within this bound (starting with those with lowest
|
|
100 prefetch_mod, since they are responsible for most of the cache
|
|
101 misses).
|
|
102
|
|
103 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
|
|
104 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
|
|
105 prefetching nonaccessed memory.
|
|
106 TODO -- actually implement peeling.
|
|
107
|
|
108 6) We actually emit the prefetch instructions. ??? Perhaps emit the
|
|
109 prefetch instructions with guards in cases where 5) was not sufficient
|
|
110 to satisfy the constraints?
|
|
111
|
|
112 Some other TODO:
|
|
113 -- write and use more general reuse analysis (that could be also used
|
|
114 in other cache aimed loop optimizations)
|
|
115 -- make it behave sanely together with the prefetches given by user
|
|
116 (now we just ignore them; at the very least we should avoid
|
|
117 optimizing loops in that user put his own prefetches)
|
|
118 -- we assume cache line size alignment of arrays; this could be
|
|
119 improved. */
|
|
120
|
|
121 /* Magic constants follow. These should be replaced by machine specific
|
|
122 numbers. */
|
|
123
|
|
124 /* True if write can be prefetched by a read prefetch. */
|
|
125
|
|
126 #ifndef WRITE_CAN_USE_READ_PREFETCH
|
|
127 #define WRITE_CAN_USE_READ_PREFETCH 1
|
|
128 #endif
|
|
129
|
|
130 /* True if read can be prefetched by a write prefetch. */
|
|
131
|
|
132 #ifndef READ_CAN_USE_WRITE_PREFETCH
|
|
133 #define READ_CAN_USE_WRITE_PREFETCH 0
|
|
134 #endif
|
|
135
|
|
136 /* The size of the block loaded by a single prefetch. Usually, this is
|
|
137 the same as cache line size (at the moment, we only consider one level
|
|
138 of cache hierarchy). */
|
|
139
|
|
140 #ifndef PREFETCH_BLOCK
|
|
141 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
|
|
142 #endif
|
|
143
|
|
144 /* Do we have a forward hardware sequential prefetching? */
|
|
145
|
|
146 #ifndef HAVE_FORWARD_PREFETCH
|
|
147 #define HAVE_FORWARD_PREFETCH 0
|
|
148 #endif
|
|
149
|
|
150 /* Do we have a backward hardware sequential prefetching? */
|
|
151
|
|
152 #ifndef HAVE_BACKWARD_PREFETCH
|
|
153 #define HAVE_BACKWARD_PREFETCH 0
|
|
154 #endif
|
|
155
|
|
156 /* In some cases we are only able to determine that there is a certain
|
|
157 probability that the two accesses hit the same cache line. In this
|
|
158 case, we issue the prefetches for both of them if this probability
|
|
159 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
|
|
160
|
|
161 #ifndef ACCEPTABLE_MISS_RATE
|
|
162 #define ACCEPTABLE_MISS_RATE 50
|
|
163 #endif
|
|
164
|
|
165 #ifndef HAVE_prefetch
|
|
166 #define HAVE_prefetch 0
|
|
167 #endif
|
|
168
|
|
169 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
|
|
170 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
|
|
171
|
|
172 /* We consider a memory access nontemporal if it is not reused sooner than
|
|
173 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
|
|
174 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
|
|
175 so that we use nontemporal prefetches e.g. if single memory location
|
|
176 is accessed several times in a single iteration of the loop. */
|
|
177 #define NONTEMPORAL_FRACTION 16
|
|
178
|
|
179 /* In case we have to emit a memory fence instruction after the loop that
|
|
180 uses nontemporal stores, this defines the builtin to use. */
|
|
181
|
|
182 #ifndef FENCE_FOLLOWING_MOVNT
|
|
183 #define FENCE_FOLLOWING_MOVNT NULL_TREE
|
|
184 #endif
|
|
185
|
|
186 /* The group of references between that reuse may occur. */
|
|
187
|
|
188 struct mem_ref_group
|
|
189 {
|
|
190 tree base; /* Base of the reference. */
|
|
191 HOST_WIDE_INT step; /* Step of the reference. */
|
|
192 struct mem_ref *refs; /* References in the group. */
|
|
193 struct mem_ref_group *next; /* Next group of references. */
|
|
194 };
|
|
195
|
|
196 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
|
|
197
|
|
198 #define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
|
|
199
|
|
200 /* The memory reference. */
|
|
201
|
|
202 struct mem_ref
|
|
203 {
|
|
204 gimple stmt; /* Statement in that the reference appears. */
|
|
205 tree mem; /* The reference. */
|
|
206 HOST_WIDE_INT delta; /* Constant offset of the reference. */
|
|
207 struct mem_ref_group *group; /* The group of references it belongs to. */
|
|
208 unsigned HOST_WIDE_INT prefetch_mod;
|
|
209 /* Prefetch only each PREFETCH_MOD-th
|
|
210 iteration. */
|
|
211 unsigned HOST_WIDE_INT prefetch_before;
|
|
212 /* Prefetch only first PREFETCH_BEFORE
|
|
213 iterations. */
|
|
214 unsigned reuse_distance; /* The amount of data accessed before the first
|
|
215 reuse of this value. */
|
|
216 struct mem_ref *next; /* The next reference in the group. */
|
|
217 unsigned write_p : 1; /* Is it a write? */
|
|
218 unsigned independent_p : 1; /* True if the reference is independent on
|
|
219 all other references inside the loop. */
|
|
220 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
|
|
221 unsigned storent_p : 1; /* True if we changed the store to a
|
|
222 nontemporal one. */
|
|
223 };
|
|
224
|
|
225 /* Dumps information about reference REF to FILE. */
|
|
226
|
|
227 static void
|
|
228 dump_mem_ref (FILE *file, struct mem_ref *ref)
|
|
229 {
|
|
230 fprintf (file, "Reference %p:\n", (void *) ref);
|
|
231
|
|
232 fprintf (file, " group %p (base ", (void *) ref->group);
|
|
233 print_generic_expr (file, ref->group->base, TDF_SLIM);
|
|
234 fprintf (file, ", step ");
|
|
235 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->group->step);
|
|
236 fprintf (file, ")\n");
|
|
237
|
|
238 fprintf (file, " delta ");
|
|
239 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
|
|
240 fprintf (file, "\n");
|
|
241
|
|
242 fprintf (file, " %s\n", ref->write_p ? "write" : "read");
|
|
243
|
|
244 fprintf (file, "\n");
|
|
245 }
|
|
246
|
|
247 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
|
|
248 exist. */
|
|
249
|
|
250 static struct mem_ref_group *
|
|
251 find_or_create_group (struct mem_ref_group **groups, tree base,
|
|
252 HOST_WIDE_INT step)
|
|
253 {
|
|
254 struct mem_ref_group *group;
|
|
255
|
|
256 for (; *groups; groups = &(*groups)->next)
|
|
257 {
|
|
258 if ((*groups)->step == step
|
|
259 && operand_equal_p ((*groups)->base, base, 0))
|
|
260 return *groups;
|
|
261
|
|
262 /* Keep the list of groups sorted by decreasing step. */
|
|
263 if ((*groups)->step < step)
|
|
264 break;
|
|
265 }
|
|
266
|
|
267 group = XNEW (struct mem_ref_group);
|
|
268 group->base = base;
|
|
269 group->step = step;
|
|
270 group->refs = NULL;
|
|
271 group->next = *groups;
|
|
272 *groups = group;
|
|
273
|
|
274 return group;
|
|
275 }
|
|
276
|
|
277 /* Records a memory reference MEM in GROUP with offset DELTA and write status
|
|
278 WRITE_P. The reference occurs in statement STMT. */
|
|
279
|
|
280 static void
|
|
281 record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
|
|
282 HOST_WIDE_INT delta, bool write_p)
|
|
283 {
|
|
284 struct mem_ref **aref;
|
|
285
|
|
286 /* Do not record the same address twice. */
|
|
287 for (aref = &group->refs; *aref; aref = &(*aref)->next)
|
|
288 {
|
|
289 /* It does not have to be possible for write reference to reuse the read
|
|
290 prefetch, or vice versa. */
|
|
291 if (!WRITE_CAN_USE_READ_PREFETCH
|
|
292 && write_p
|
|
293 && !(*aref)->write_p)
|
|
294 continue;
|
|
295 if (!READ_CAN_USE_WRITE_PREFETCH
|
|
296 && !write_p
|
|
297 && (*aref)->write_p)
|
|
298 continue;
|
|
299
|
|
300 if ((*aref)->delta == delta)
|
|
301 return;
|
|
302 }
|
|
303
|
|
304 (*aref) = XNEW (struct mem_ref);
|
|
305 (*aref)->stmt = stmt;
|
|
306 (*aref)->mem = mem;
|
|
307 (*aref)->delta = delta;
|
|
308 (*aref)->write_p = write_p;
|
|
309 (*aref)->prefetch_before = PREFETCH_ALL;
|
|
310 (*aref)->prefetch_mod = 1;
|
|
311 (*aref)->reuse_distance = 0;
|
|
312 (*aref)->issue_prefetch_p = false;
|
|
313 (*aref)->group = group;
|
|
314 (*aref)->next = NULL;
|
|
315 (*aref)->independent_p = false;
|
|
316 (*aref)->storent_p = false;
|
|
317
|
|
318 if (dump_file && (dump_flags & TDF_DETAILS))
|
|
319 dump_mem_ref (dump_file, *aref);
|
|
320 }
|
|
321
|
|
322 /* Release memory references in GROUPS. */
|
|
323
|
|
324 static void
|
|
325 release_mem_refs (struct mem_ref_group *groups)
|
|
326 {
|
|
327 struct mem_ref_group *next_g;
|
|
328 struct mem_ref *ref, *next_r;
|
|
329
|
|
330 for (; groups; groups = next_g)
|
|
331 {
|
|
332 next_g = groups->next;
|
|
333 for (ref = groups->refs; ref; ref = next_r)
|
|
334 {
|
|
335 next_r = ref->next;
|
|
336 free (ref);
|
|
337 }
|
|
338 free (groups);
|
|
339 }
|
|
340 }
|
|
341
|
|
342 /* A structure used to pass arguments to idx_analyze_ref. */
|
|
343
|
|
344 struct ar_data
|
|
345 {
|
|
346 struct loop *loop; /* Loop of the reference. */
|
|
347 gimple stmt; /* Statement of the reference. */
|
|
348 HOST_WIDE_INT *step; /* Step of the memory reference. */
|
|
349 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
|
|
350 };
|
|
351
|
|
352 /* Analyzes a single INDEX of a memory reference to obtain information
|
|
353 described at analyze_ref. Callback for for_each_index. */
|
|
354
|
|
355 static bool
|
|
356 idx_analyze_ref (tree base, tree *index, void *data)
|
|
357 {
|
|
358 struct ar_data *ar_data = (struct ar_data *) data;
|
|
359 tree ibase, step, stepsize;
|
|
360 HOST_WIDE_INT istep, idelta = 0, imult = 1;
|
|
361 affine_iv iv;
|
|
362
|
|
363 if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
|
|
364 || TREE_CODE (base) == ALIGN_INDIRECT_REF)
|
|
365 return false;
|
|
366
|
|
367 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
|
|
368 *index, &iv, false))
|
|
369 return false;
|
|
370 ibase = iv.base;
|
|
371 step = iv.step;
|
|
372
|
|
373 if (!cst_and_fits_in_hwi (step))
|
|
374 return false;
|
|
375 istep = int_cst_value (step);
|
|
376
|
|
377 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
|
|
378 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
|
|
379 {
|
|
380 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
|
|
381 ibase = TREE_OPERAND (ibase, 0);
|
|
382 }
|
|
383 if (cst_and_fits_in_hwi (ibase))
|
|
384 {
|
|
385 idelta += int_cst_value (ibase);
|
|
386 ibase = build_int_cst (TREE_TYPE (ibase), 0);
|
|
387 }
|
|
388
|
|
389 if (TREE_CODE (base) == ARRAY_REF)
|
|
390 {
|
|
391 stepsize = array_ref_element_size (base);
|
|
392 if (!cst_and_fits_in_hwi (stepsize))
|
|
393 return false;
|
|
394 imult = int_cst_value (stepsize);
|
|
395
|
|
396 istep *= imult;
|
|
397 idelta *= imult;
|
|
398 }
|
|
399
|
|
400 *ar_data->step += istep;
|
|
401 *ar_data->delta += idelta;
|
|
402 *index = ibase;
|
|
403
|
|
404 return true;
|
|
405 }
|
|
406
|
|
407 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
|
|
408 STEP are integer constants and iter is number of iterations of LOOP. The
|
|
409 reference occurs in statement STMT. Strips nonaddressable component
|
|
410 references from REF_P. */
|
|
411
|
|
412 static bool
|
|
413 analyze_ref (struct loop *loop, tree *ref_p, tree *base,
|
|
414 HOST_WIDE_INT *step, HOST_WIDE_INT *delta,
|
|
415 gimple stmt)
|
|
416 {
|
|
417 struct ar_data ar_data;
|
|
418 tree off;
|
|
419 HOST_WIDE_INT bit_offset;
|
|
420 tree ref = *ref_p;
|
|
421
|
|
422 *step = 0;
|
|
423 *delta = 0;
|
|
424
|
|
425 /* First strip off the component references. Ignore bitfields. */
|
|
426 if (TREE_CODE (ref) == COMPONENT_REF
|
|
427 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))
|
|
428 ref = TREE_OPERAND (ref, 0);
|
|
429
|
|
430 *ref_p = ref;
|
|
431
|
|
432 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
|
|
433 {
|
|
434 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
|
|
435 bit_offset = TREE_INT_CST_LOW (off);
|
|
436 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
|
|
437
|
|
438 *delta += bit_offset / BITS_PER_UNIT;
|
|
439 }
|
|
440
|
|
441 *base = unshare_expr (ref);
|
|
442 ar_data.loop = loop;
|
|
443 ar_data.stmt = stmt;
|
|
444 ar_data.step = step;
|
|
445 ar_data.delta = delta;
|
|
446 return for_each_index (base, idx_analyze_ref, &ar_data);
|
|
447 }
|
|
448
|
|
449 /* Record a memory reference REF to the list REFS. The reference occurs in
|
|
450 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
|
|
451 reference was recorded, false otherwise. */
|
|
452
|
|
453 static bool
|
|
454 gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
|
|
455 tree ref, bool write_p, gimple stmt)
|
|
456 {
|
|
457 tree base;
|
|
458 HOST_WIDE_INT step, delta;
|
|
459 struct mem_ref_group *agrp;
|
|
460
|
|
461 if (get_base_address (ref) == NULL)
|
|
462 return false;
|
|
463
|
|
464 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
|
|
465 return false;
|
|
466
|
|
467 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
|
|
468 are integer constants. */
|
|
469 agrp = find_or_create_group (refs, base, step);
|
|
470 record_ref (agrp, stmt, ref, delta, write_p);
|
|
471
|
|
472 return true;
|
|
473 }
|
|
474
|
|
475 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
|
|
476 true if there are no other memory references inside the loop. */
|
|
477
|
|
478 static struct mem_ref_group *
|
|
479 gather_memory_references (struct loop *loop, bool *no_other_refs)
|
|
480 {
|
|
481 basic_block *body = get_loop_body_in_dom_order (loop);
|
|
482 basic_block bb;
|
|
483 unsigned i;
|
|
484 gimple_stmt_iterator bsi;
|
|
485 gimple stmt;
|
|
486 tree lhs, rhs;
|
|
487 struct mem_ref_group *refs = NULL;
|
|
488
|
|
489 *no_other_refs = true;
|
|
490
|
|
491 /* Scan the loop body in order, so that the former references precede the
|
|
492 later ones. */
|
|
493 for (i = 0; i < loop->num_nodes; i++)
|
|
494 {
|
|
495 bb = body[i];
|
|
496 if (bb->loop_father != loop)
|
|
497 continue;
|
|
498
|
|
499 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
|
500 {
|
|
501 stmt = gsi_stmt (bsi);
|
|
502
|
|
503 if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
|
504 {
|
|
505 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)
|
|
506 || (is_gimple_call (stmt)
|
|
507 && !(gimple_call_flags (stmt) & ECF_CONST)))
|
|
508 *no_other_refs = false;
|
|
509 continue;
|
|
510 }
|
|
511
|
|
512 lhs = gimple_assign_lhs (stmt);
|
|
513 rhs = gimple_assign_rhs1 (stmt);
|
|
514
|
|
515 if (REFERENCE_CLASS_P (rhs))
|
|
516 *no_other_refs &= gather_memory_references_ref (loop, &refs,
|
|
517 rhs, false, stmt);
|
|
518 if (REFERENCE_CLASS_P (lhs))
|
|
519 *no_other_refs &= gather_memory_references_ref (loop, &refs,
|
|
520 lhs, true, stmt);
|
|
521 }
|
|
522 }
|
|
523 free (body);
|
|
524
|
|
525 return refs;
|
|
526 }
|
|
527
|
|
528 /* Prune the prefetch candidate REF using the self-reuse. */
|
|
529
|
|
530 static void
|
|
531 prune_ref_by_self_reuse (struct mem_ref *ref)
|
|
532 {
|
|
533 HOST_WIDE_INT step = ref->group->step;
|
|
534 bool backward = step < 0;
|
|
535
|
|
536 if (step == 0)
|
|
537 {
|
|
538 /* Prefetch references to invariant address just once. */
|
|
539 ref->prefetch_before = 1;
|
|
540 return;
|
|
541 }
|
|
542
|
|
543 if (backward)
|
|
544 step = -step;
|
|
545
|
|
546 if (step > PREFETCH_BLOCK)
|
|
547 return;
|
|
548
|
|
549 if ((backward && HAVE_BACKWARD_PREFETCH)
|
|
550 || (!backward && HAVE_FORWARD_PREFETCH))
|
|
551 {
|
|
552 ref->prefetch_before = 1;
|
|
553 return;
|
|
554 }
|
|
555
|
|
556 ref->prefetch_mod = PREFETCH_BLOCK / step;
|
|
557 }
|
|
558
|
|
559 /* Divides X by BY, rounding down. */
|
|
560
|
|
561 static HOST_WIDE_INT
|
|
562 ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
|
|
563 {
|
|
564 gcc_assert (by > 0);
|
|
565
|
|
566 if (x >= 0)
|
|
567 return x / by;
|
|
568 else
|
|
569 return (x + by - 1) / by;
|
|
570 }
|
|
571
|
|
572 /* Prune the prefetch candidate REF using the reuse with BY.
|
|
573 If BY_IS_BEFORE is true, BY is before REF in the loop. */
|
|
574
|
|
575 static void
|
|
576 prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
|
|
577 bool by_is_before)
|
|
578 {
|
|
579 HOST_WIDE_INT step = ref->group->step;
|
|
580 bool backward = step < 0;
|
|
581 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
|
|
582 HOST_WIDE_INT delta = delta_b - delta_r;
|
|
583 HOST_WIDE_INT hit_from;
|
|
584 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
|
|
585
|
|
586 if (delta == 0)
|
|
587 {
|
|
588 /* If the references has the same address, only prefetch the
|
|
589 former. */
|
|
590 if (by_is_before)
|
|
591 ref->prefetch_before = 0;
|
|
592
|
|
593 return;
|
|
594 }
|
|
595
|
|
596 if (!step)
|
|
597 {
|
|
598 /* If the reference addresses are invariant and fall into the
|
|
599 same cache line, prefetch just the first one. */
|
|
600 if (!by_is_before)
|
|
601 return;
|
|
602
|
|
603 if (ddown (ref->delta, PREFETCH_BLOCK)
|
|
604 != ddown (by->delta, PREFETCH_BLOCK))
|
|
605 return;
|
|
606
|
|
607 ref->prefetch_before = 0;
|
|
608 return;
|
|
609 }
|
|
610
|
|
611 /* Only prune the reference that is behind in the array. */
|
|
612 if (backward)
|
|
613 {
|
|
614 if (delta > 0)
|
|
615 return;
|
|
616
|
|
617 /* Transform the data so that we may assume that the accesses
|
|
618 are forward. */
|
|
619 delta = - delta;
|
|
620 step = -step;
|
|
621 delta_r = PREFETCH_BLOCK - 1 - delta_r;
|
|
622 delta_b = PREFETCH_BLOCK - 1 - delta_b;
|
|
623 }
|
|
624 else
|
|
625 {
|
|
626 if (delta < 0)
|
|
627 return;
|
|
628 }
|
|
629
|
|
630 /* Check whether the two references are likely to hit the same cache
|
|
631 line, and how distant the iterations in that it occurs are from
|
|
632 each other. */
|
|
633
|
|
634 if (step <= PREFETCH_BLOCK)
|
|
635 {
|
|
636 /* The accesses are sure to meet. Let us check when. */
|
|
637 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
|
|
638 prefetch_before = (hit_from - delta_r + step - 1) / step;
|
|
639
|
|
640 if (prefetch_before < ref->prefetch_before)
|
|
641 ref->prefetch_before = prefetch_before;
|
|
642
|
|
643 return;
|
|
644 }
|
|
645
|
|
646 /* A more complicated case. First let us ensure that size of cache line
|
|
647 and step are coprime (here we assume that PREFETCH_BLOCK is a power
|
|
648 of two. */
|
|
649 prefetch_block = PREFETCH_BLOCK;
|
|
650 while ((step & 1) == 0
|
|
651 && prefetch_block > 1)
|
|
652 {
|
|
653 step >>= 1;
|
|
654 prefetch_block >>= 1;
|
|
655 delta >>= 1;
|
|
656 }
|
|
657
|
|
658 /* Now step > prefetch_block, and step and prefetch_block are coprime.
|
|
659 Determine the probability that the accesses hit the same cache line. */
|
|
660
|
|
661 prefetch_before = delta / step;
|
|
662 delta %= step;
|
|
663 if ((unsigned HOST_WIDE_INT) delta
|
|
664 <= (prefetch_block * ACCEPTABLE_MISS_RATE / 1000))
|
|
665 {
|
|
666 if (prefetch_before < ref->prefetch_before)
|
|
667 ref->prefetch_before = prefetch_before;
|
|
668
|
|
669 return;
|
|
670 }
|
|
671
|
|
672 /* Try also the following iteration. */
|
|
673 prefetch_before++;
|
|
674 delta = step - delta;
|
|
675 if ((unsigned HOST_WIDE_INT) delta
|
|
676 <= (prefetch_block * ACCEPTABLE_MISS_RATE / 1000))
|
|
677 {
|
|
678 if (prefetch_before < ref->prefetch_before)
|
|
679 ref->prefetch_before = prefetch_before;
|
|
680
|
|
681 return;
|
|
682 }
|
|
683
|
|
684 /* The ref probably does not reuse by. */
|
|
685 return;
|
|
686 }
|
|
687
|
|
688 /* Prune the prefetch candidate REF using the reuses with other references
|
|
689 in REFS. */
|
|
690
|
|
691 static void
|
|
692 prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
|
|
693 {
|
|
694 struct mem_ref *prune_by;
|
|
695 bool before = true;
|
|
696
|
|
697 prune_ref_by_self_reuse (ref);
|
|
698
|
|
699 for (prune_by = refs; prune_by; prune_by = prune_by->next)
|
|
700 {
|
|
701 if (prune_by == ref)
|
|
702 {
|
|
703 before = false;
|
|
704 continue;
|
|
705 }
|
|
706
|
|
707 if (!WRITE_CAN_USE_READ_PREFETCH
|
|
708 && ref->write_p
|
|
709 && !prune_by->write_p)
|
|
710 continue;
|
|
711 if (!READ_CAN_USE_WRITE_PREFETCH
|
|
712 && !ref->write_p
|
|
713 && prune_by->write_p)
|
|
714 continue;
|
|
715
|
|
716 prune_ref_by_group_reuse (ref, prune_by, before);
|
|
717 }
|
|
718 }
|
|
719
|
|
720 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
|
|
721
|
|
722 static void
|
|
723 prune_group_by_reuse (struct mem_ref_group *group)
|
|
724 {
|
|
725 struct mem_ref *ref_pruned;
|
|
726
|
|
727 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
|
|
728 {
|
|
729 prune_ref_by_reuse (ref_pruned, group->refs);
|
|
730
|
|
731 if (dump_file && (dump_flags & TDF_DETAILS))
|
|
732 {
|
|
733 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
|
|
734
|
|
735 if (ref_pruned->prefetch_before == PREFETCH_ALL
|
|
736 && ref_pruned->prefetch_mod == 1)
|
|
737 fprintf (dump_file, " no restrictions");
|
|
738 else if (ref_pruned->prefetch_before == 0)
|
|
739 fprintf (dump_file, " do not prefetch");
|
|
740 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
|
|
741 fprintf (dump_file, " prefetch once");
|
|
742 else
|
|
743 {
|
|
744 if (ref_pruned->prefetch_before != PREFETCH_ALL)
|
|
745 {
|
|
746 fprintf (dump_file, " prefetch before ");
|
|
747 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
|
|
748 ref_pruned->prefetch_before);
|
|
749 }
|
|
750 if (ref_pruned->prefetch_mod != 1)
|
|
751 {
|
|
752 fprintf (dump_file, " prefetch mod ");
|
|
753 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
|
|
754 ref_pruned->prefetch_mod);
|
|
755 }
|
|
756 }
|
|
757 fprintf (dump_file, "\n");
|
|
758 }
|
|
759 }
|
|
760 }
|
|
761
|
|
762 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
|
|
763
|
|
764 static void
|
|
765 prune_by_reuse (struct mem_ref_group *groups)
|
|
766 {
|
|
767 for (; groups; groups = groups->next)
|
|
768 prune_group_by_reuse (groups);
|
|
769 }
|
|
770
|
|
771 /* Returns true if we should issue prefetch for REF. */
|
|
772
|
|
773 static bool
|
|
774 should_issue_prefetch_p (struct mem_ref *ref)
|
|
775 {
|
|
776 /* For now do not issue prefetches for only first few of the
|
|
777 iterations. */
|
|
778 if (ref->prefetch_before != PREFETCH_ALL)
|
|
779 return false;
|
|
780
|
|
781 /* Do not prefetch nontemporal stores. */
|
|
782 if (ref->storent_p)
|
|
783 return false;
|
|
784
|
|
785 return true;
|
|
786 }
|
|
787
|
|
788 /* Decide which of the prefetch candidates in GROUPS to prefetch.
|
|
789 AHEAD is the number of iterations to prefetch ahead (which corresponds
|
|
790 to the number of simultaneous instances of one prefetch running at a
|
|
791 time). UNROLL_FACTOR is the factor by that the loop is going to be
|
|
792 unrolled. Returns true if there is anything to prefetch. */
|
|
793
|
|
794 static bool
|
|
795 schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
|
|
796 unsigned ahead)
|
|
797 {
|
|
798 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
|
|
799 unsigned slots_per_prefetch;
|
|
800 struct mem_ref *ref;
|
|
801 bool any = false;
|
|
802
|
|
803 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
|
|
804 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
|
|
805
|
|
806 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
|
|
807 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
|
|
808 it will need a prefetch slot. */
|
|
809 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
|
|
810 if (dump_file && (dump_flags & TDF_DETAILS))
|
|
811 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
|
|
812 slots_per_prefetch);
|
|
813
|
|
814 /* For now we just take memory references one by one and issue
|
|
815 prefetches for as many as possible. The groups are sorted
|
|
816 starting with the largest step, since the references with
|
|
817 large step are more likely to cause many cache misses. */
|
|
818
|
|
819 for (; groups; groups = groups->next)
|
|
820 for (ref = groups->refs; ref; ref = ref->next)
|
|
821 {
|
|
822 if (!should_issue_prefetch_p (ref))
|
|
823 continue;
|
|
824
|
|
825 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
|
|
826 and we unroll the loop UNROLL_FACTOR times, we need to insert
|
|
827 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
|
|
828 iteration. */
|
|
829 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
|
|
830 / ref->prefetch_mod);
|
|
831 prefetch_slots = n_prefetches * slots_per_prefetch;
|
|
832
|
|
833 /* If more than half of the prefetches would be lost anyway, do not
|
|
834 issue the prefetch. */
|
|
835 if (2 * remaining_prefetch_slots < prefetch_slots)
|
|
836 continue;
|
|
837
|
|
838 ref->issue_prefetch_p = true;
|
|
839
|
|
840 if (remaining_prefetch_slots <= prefetch_slots)
|
|
841 return true;
|
|
842 remaining_prefetch_slots -= prefetch_slots;
|
|
843 any = true;
|
|
844 }
|
|
845
|
|
846 return any;
|
|
847 }
|
|
848
|
|
849 /* Determine whether there is any reference suitable for prefetching
|
|
850 in GROUPS. */
|
|
851
|
|
852 static bool
|
|
853 anything_to_prefetch_p (struct mem_ref_group *groups)
|
|
854 {
|
|
855 struct mem_ref *ref;
|
|
856
|
|
857 for (; groups; groups = groups->next)
|
|
858 for (ref = groups->refs; ref; ref = ref->next)
|
|
859 if (should_issue_prefetch_p (ref))
|
|
860 return true;
|
|
861
|
|
862 return false;
|
|
863 }
|
|
864
|
|
865 /* Issue prefetches for the reference REF into loop as decided before.
|
|
866 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
|
|
867 is the factor by which LOOP was unrolled. */
|
|
868
|
|
869 static void
|
|
870 issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
|
|
871 {
|
|
872 HOST_WIDE_INT delta;
|
|
873 tree addr, addr_base, write_p, local;
|
|
874 gimple prefetch;
|
|
875 gimple_stmt_iterator bsi;
|
|
876 unsigned n_prefetches, ap;
|
|
877 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
|
|
878
|
|
879 if (dump_file && (dump_flags & TDF_DETAILS))
|
|
880 fprintf (dump_file, "Issued%s prefetch for %p.\n",
|
|
881 nontemporal ? " nontemporal" : "",
|
|
882 (void *) ref);
|
|
883
|
|
884 bsi = gsi_for_stmt (ref->stmt);
|
|
885
|
|
886 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
|
|
887 / ref->prefetch_mod);
|
|
888 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
|
|
889 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
|
|
890 true, NULL, true, GSI_SAME_STMT);
|
|
891 write_p = ref->write_p ? integer_one_node : integer_zero_node;
|
|
892 local = build_int_cst (integer_type_node, nontemporal ? 0 : 3);
|
|
893
|
|
894 for (ap = 0; ap < n_prefetches; ap++)
|
|
895 {
|
|
896 /* Determine the address to prefetch. */
|
|
897 delta = (ahead + ap * ref->prefetch_mod) * ref->group->step;
|
|
898 addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node,
|
|
899 addr_base, size_int (delta));
|
|
900 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
|
|
901 true, GSI_SAME_STMT);
|
|
902
|
|
903 /* Create the prefetch instruction. */
|
|
904 prefetch = gimple_build_call (built_in_decls[BUILT_IN_PREFETCH],
|
|
905 3, addr, write_p, local);
|
|
906 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
|
|
907 }
|
|
908 }
|
|
909
|
|
910 /* Issue prefetches for the references in GROUPS into loop as decided before.
|
|
911 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
|
|
912 factor by that LOOP was unrolled. */
|
|
913
|
|
914 static void
|
|
915 issue_prefetches (struct mem_ref_group *groups,
|
|
916 unsigned unroll_factor, unsigned ahead)
|
|
917 {
|
|
918 struct mem_ref *ref;
|
|
919
|
|
920 for (; groups; groups = groups->next)
|
|
921 for (ref = groups->refs; ref; ref = ref->next)
|
|
922 if (ref->issue_prefetch_p)
|
|
923 issue_prefetch_ref (ref, unroll_factor, ahead);
|
|
924 }
|
|
925
|
|
926 /* Returns true if REF is a memory write for that a nontemporal store insn
|
|
927 can be used. */
|
|
928
|
|
929 static bool
|
|
930 nontemporal_store_p (struct mem_ref *ref)
|
|
931 {
|
|
932 enum machine_mode mode;
|
|
933 enum insn_code code;
|
|
934
|
|
935 /* REF must be a write that is not reused. We require it to be independent
|
|
936 on all other memory references in the loop, as the nontemporal stores may
|
|
937 be reordered with respect to other memory references. */
|
|
938 if (!ref->write_p
|
|
939 || !ref->independent_p
|
|
940 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
|
|
941 return false;
|
|
942
|
|
943 /* Check that we have the storent instruction for the mode. */
|
|
944 mode = TYPE_MODE (TREE_TYPE (ref->mem));
|
|
945 if (mode == BLKmode)
|
|
946 return false;
|
|
947
|
|
948 code = optab_handler (storent_optab, mode)->insn_code;
|
|
949 return code != CODE_FOR_nothing;
|
|
950 }
|
|
951
|
|
952 /* If REF is a nontemporal store, we mark the corresponding modify statement
|
|
953 and return true. Otherwise, we return false. */
|
|
954
|
|
955 static bool
|
|
956 mark_nontemporal_store (struct mem_ref *ref)
|
|
957 {
|
|
958 if (!nontemporal_store_p (ref))
|
|
959 return false;
|
|
960
|
|
961 if (dump_file && (dump_flags & TDF_DETAILS))
|
|
962 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
|
|
963 (void *) ref);
|
|
964
|
|
965 gimple_assign_set_nontemporal_move (ref->stmt, true);
|
|
966 ref->storent_p = true;
|
|
967
|
|
968 return true;
|
|
969 }
|
|
970
|
|
971 /* Issue a memory fence instruction after LOOP. */
|
|
972
|
|
973 static void
|
|
974 emit_mfence_after_loop (struct loop *loop)
|
|
975 {
|
|
976 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
|
|
977 edge exit;
|
|
978 gimple call;
|
|
979 gimple_stmt_iterator bsi;
|
|
980 unsigned i;
|
|
981
|
|
982 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
|
|
983 {
|
|
984 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
|
|
985
|
|
986 if (!single_pred_p (exit->dest)
|
|
987 /* If possible, we prefer not to insert the fence on other paths
|
|
988 in cfg. */
|
|
989 && !(exit->flags & EDGE_ABNORMAL))
|
|
990 split_loop_exit_edge (exit);
|
|
991 bsi = gsi_after_labels (exit->dest);
|
|
992
|
|
993 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
|
|
994 mark_virtual_ops_for_renaming (call);
|
|
995 }
|
|
996
|
|
997 VEC_free (edge, heap, exits);
|
|
998 update_ssa (TODO_update_ssa_only_virtuals);
|
|
999 }
|
|
1000
|
|
1001 /* Returns true if we can use storent in loop, false otherwise. */
|
|
1002
|
|
1003 static bool
|
|
1004 may_use_storent_in_loop_p (struct loop *loop)
|
|
1005 {
|
|
1006 bool ret = true;
|
|
1007
|
|
1008 if (loop->inner != NULL)
|
|
1009 return false;
|
|
1010
|
|
1011 /* If we must issue a mfence insn after using storent, check that there
|
|
1012 is a suitable place for it at each of the loop exits. */
|
|
1013 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
|
|
1014 {
|
|
1015 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
|
|
1016 unsigned i;
|
|
1017 edge exit;
|
|
1018
|
|
1019 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
|
|
1020 if ((exit->flags & EDGE_ABNORMAL)
|
|
1021 && exit->dest == EXIT_BLOCK_PTR)
|
|
1022 ret = false;
|
|
1023
|
|
1024 VEC_free (edge, heap, exits);
|
|
1025 }
|
|
1026
|
|
1027 return ret;
|
|
1028 }
|
|
1029
|
|
1030 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
|
|
1031 references in the loop. */
|
|
1032
|
|
1033 static void
|
|
1034 mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
|
|
1035 {
|
|
1036 struct mem_ref *ref;
|
|
1037 bool any = false;
|
|
1038
|
|
1039 if (!may_use_storent_in_loop_p (loop))
|
|
1040 return;
|
|
1041
|
|
1042 for (; groups; groups = groups->next)
|
|
1043 for (ref = groups->refs; ref; ref = ref->next)
|
|
1044 any |= mark_nontemporal_store (ref);
|
|
1045
|
|
1046 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
|
|
1047 emit_mfence_after_loop (loop);
|
|
1048 }
|
|
1049
|
|
1050 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
|
|
1051 this is the case, fill in DESC by the description of number of
|
|
1052 iterations. */
|
|
1053
|
|
1054 static bool
|
|
1055 should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
|
|
1056 unsigned factor)
|
|
1057 {
|
|
1058 if (!can_unroll_loop_p (loop, factor, desc))
|
|
1059 return false;
|
|
1060
|
|
1061 /* We only consider loops without control flow for unrolling. This is not
|
|
1062 a hard restriction -- tree_unroll_loop works with arbitrary loops
|
|
1063 as well; but the unrolling/prefetching is usually more profitable for
|
|
1064 loops consisting of a single basic block, and we want to limit the
|
|
1065 code growth. */
|
|
1066 if (loop->num_nodes > 2)
|
|
1067 return false;
|
|
1068
|
|
1069 return true;
|
|
1070 }
|
|
1071
|
|
1072 /* Determine the coefficient by that unroll LOOP, from the information
|
|
1073 contained in the list of memory references REFS. Description of
|
|
1074 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
|
|
1075 insns of the LOOP. EST_NITER is the estimated number of iterations of
|
|
1076 the loop, or -1 if no estimate is available. */
|
|
1077
|
|
1078 static unsigned
|
|
1079 determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
|
|
1080 unsigned ninsns, struct tree_niter_desc *desc,
|
|
1081 HOST_WIDE_INT est_niter)
|
|
1082 {
|
|
1083 unsigned upper_bound;
|
|
1084 unsigned nfactor, factor, mod_constraint;
|
|
1085 struct mem_ref_group *agp;
|
|
1086 struct mem_ref *ref;
|
|
1087
|
|
1088 /* First check whether the loop is not too large to unroll. We ignore
|
|
1089 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
|
|
1090 from unrolling them enough to make exactly one cache line covered by each
|
|
1091 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
|
|
1092 us from unrolling the loops too many times in cases where we only expect
|
|
1093 gains from better scheduling and decreasing loop overhead, which is not
|
|
1094 the case here. */
|
|
1095 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
|
|
1096
|
|
1097 /* If we unrolled the loop more times than it iterates, the unrolled version
|
|
1098 of the loop would be never entered. */
|
|
1099 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
|
|
1100 upper_bound = est_niter;
|
|
1101
|
|
1102 if (upper_bound <= 1)
|
|
1103 return 1;
|
|
1104
|
|
1105 /* Choose the factor so that we may prefetch each cache just once,
|
|
1106 but bound the unrolling by UPPER_BOUND. */
|
|
1107 factor = 1;
|
|
1108 for (agp = refs; agp; agp = agp->next)
|
|
1109 for (ref = agp->refs; ref; ref = ref->next)
|
|
1110 if (should_issue_prefetch_p (ref))
|
|
1111 {
|
|
1112 mod_constraint = ref->prefetch_mod;
|
|
1113 nfactor = least_common_multiple (mod_constraint, factor);
|
|
1114 if (nfactor <= upper_bound)
|
|
1115 factor = nfactor;
|
|
1116 }
|
|
1117
|
|
1118 if (!should_unroll_loop_p (loop, desc, factor))
|
|
1119 return 1;
|
|
1120
|
|
1121 return factor;
|
|
1122 }
|
|
1123
|
|
1124 /* Returns the total volume of the memory references REFS, taking into account
|
|
1125 reuses in the innermost loop and cache line size. TODO -- we should also
|
|
1126 take into account reuses across the iterations of the loops in the loop
|
|
1127 nest. */
|
|
1128
|
|
1129 static unsigned
|
|
1130 volume_of_references (struct mem_ref_group *refs)
|
|
1131 {
|
|
1132 unsigned volume = 0;
|
|
1133 struct mem_ref_group *gr;
|
|
1134 struct mem_ref *ref;
|
|
1135
|
|
1136 for (gr = refs; gr; gr = gr->next)
|
|
1137 for (ref = gr->refs; ref; ref = ref->next)
|
|
1138 {
|
|
1139 /* Almost always reuses another value? */
|
|
1140 if (ref->prefetch_before != PREFETCH_ALL)
|
|
1141 continue;
|
|
1142
|
|
1143 /* If several iterations access the same cache line, use the size of
|
|
1144 the line divided by this number. Otherwise, a cache line is
|
|
1145 accessed in each iteration. TODO -- in the latter case, we should
|
|
1146 take the size of the reference into account, rounding it up on cache
|
|
1147 line size multiple. */
|
|
1148 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
|
|
1149 }
|
|
1150 return volume;
|
|
1151 }
|
|
1152
|
|
1153 /* Returns the volume of memory references accessed across VEC iterations of
|
|
1154 loops, whose sizes are described in the LOOP_SIZES array. N is the number
|
|
1155 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
|
|
1156
|
|
1157 static unsigned
|
|
1158 volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
|
|
1159 {
|
|
1160 unsigned i;
|
|
1161
|
|
1162 for (i = 0; i < n; i++)
|
|
1163 if (vec[i] != 0)
|
|
1164 break;
|
|
1165
|
|
1166 if (i == n)
|
|
1167 return 0;
|
|
1168
|
|
1169 gcc_assert (vec[i] > 0);
|
|
1170
|
|
1171 /* We ignore the parts of the distance vector in subloops, since usually
|
|
1172 the numbers of iterations are much smaller. */
|
|
1173 return loop_sizes[i] * vec[i];
|
|
1174 }
|
|
1175
|
|
1176 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
|
|
1177 at the position corresponding to the loop of the step. N is the depth
|
|
1178 of the considered loop nest, and, LOOP is its innermost loop. */
|
|
1179
|
|
1180 static void
|
|
1181 add_subscript_strides (tree access_fn, unsigned stride,
|
|
1182 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
|
|
1183 {
|
|
1184 struct loop *aloop;
|
|
1185 tree step;
|
|
1186 HOST_WIDE_INT astep;
|
|
1187 unsigned min_depth = loop_depth (loop) - n;
|
|
1188
|
|
1189 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
|
|
1190 {
|
|
1191 aloop = get_chrec_loop (access_fn);
|
|
1192 step = CHREC_RIGHT (access_fn);
|
|
1193 access_fn = CHREC_LEFT (access_fn);
|
|
1194
|
|
1195 if ((unsigned) loop_depth (aloop) <= min_depth)
|
|
1196 continue;
|
|
1197
|
|
1198 if (host_integerp (step, 0))
|
|
1199 astep = tree_low_cst (step, 0);
|
|
1200 else
|
|
1201 astep = L1_CACHE_LINE_SIZE;
|
|
1202
|
|
1203 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
|
|
1204
|
|
1205 }
|
|
1206 }
|
|
1207
|
|
1208 /* Returns the volume of memory references accessed between two consecutive
|
|
1209 self-reuses of the reference DR. We consider the subscripts of DR in N
|
|
1210 loops, and LOOP_SIZES contains the volumes of accesses in each of the
|
|
1211 loops. LOOP is the innermost loop of the current loop nest. */
|
|
1212
|
|
1213 static unsigned
|
|
1214 self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
|
|
1215 struct loop *loop)
|
|
1216 {
|
|
1217 tree stride, access_fn;
|
|
1218 HOST_WIDE_INT *strides, astride;
|
|
1219 VEC (tree, heap) *access_fns;
|
|
1220 tree ref = DR_REF (dr);
|
|
1221 unsigned i, ret = ~0u;
|
|
1222
|
|
1223 /* In the following example:
|
|
1224
|
|
1225 for (i = 0; i < N; i++)
|
|
1226 for (j = 0; j < N; j++)
|
|
1227 use (a[j][i]);
|
|
1228 the same cache line is accessed each N steps (except if the change from
|
|
1229 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
|
|
1230 we cannot rely purely on the results of the data dependence analysis.
|
|
1231
|
|
1232 Instead, we compute the stride of the reference in each loop, and consider
|
|
1233 the innermost loop in that the stride is less than cache size. */
|
|
1234
|
|
1235 strides = XCNEWVEC (HOST_WIDE_INT, n);
|
|
1236 access_fns = DR_ACCESS_FNS (dr);
|
|
1237
|
|
1238 for (i = 0; VEC_iterate (tree, access_fns, i, access_fn); i++)
|
|
1239 {
|
|
1240 /* Keep track of the reference corresponding to the subscript, so that we
|
|
1241 know its stride. */
|
|
1242 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
|
|
1243 ref = TREE_OPERAND (ref, 0);
|
|
1244
|
|
1245 if (TREE_CODE (ref) == ARRAY_REF)
|
|
1246 {
|
|
1247 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
|
|
1248 if (host_integerp (stride, 1))
|
|
1249 astride = tree_low_cst (stride, 1);
|
|
1250 else
|
|
1251 astride = L1_CACHE_LINE_SIZE;
|
|
1252
|
|
1253 ref = TREE_OPERAND (ref, 0);
|
|
1254 }
|
|
1255 else
|
|
1256 astride = 1;
|
|
1257
|
|
1258 add_subscript_strides (access_fn, astride, strides, n, loop);
|
|
1259 }
|
|
1260
|
|
1261 for (i = n; i-- > 0; )
|
|
1262 {
|
|
1263 unsigned HOST_WIDE_INT s;
|
|
1264
|
|
1265 s = strides[i] < 0 ? -strides[i] : strides[i];
|
|
1266
|
|
1267 if (s < (unsigned) L1_CACHE_LINE_SIZE
|
|
1268 && (loop_sizes[i]
|
|
1269 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
|
|
1270 {
|
|
1271 ret = loop_sizes[i];
|
|
1272 break;
|
|
1273 }
|
|
1274 }
|
|
1275
|
|
1276 free (strides);
|
|
1277 return ret;
|
|
1278 }
|
|
1279
|
|
1280 /* Determines the distance till the first reuse of each reference in REFS
|
|
1281 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
|
|
1282 memory references in the loop. */
|
|
1283
|
|
1284 static void
|
|
1285 determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
|
|
1286 bool no_other_refs)
|
|
1287 {
|
|
1288 struct loop *nest, *aloop;
|
|
1289 VEC (data_reference_p, heap) *datarefs = NULL;
|
|
1290 VEC (ddr_p, heap) *dependences = NULL;
|
|
1291 struct mem_ref_group *gr;
|
|
1292 struct mem_ref *ref, *refb;
|
|
1293 VEC (loop_p, heap) *vloops = NULL;
|
|
1294 unsigned *loop_data_size;
|
|
1295 unsigned i, j, n;
|
|
1296 unsigned volume, dist, adist;
|
|
1297 HOST_WIDE_INT vol;
|
|
1298 data_reference_p dr;
|
|
1299 ddr_p dep;
|
|
1300
|
|
1301 if (loop->inner)
|
|
1302 return;
|
|
1303
|
|
1304 /* Find the outermost loop of the loop nest of loop (we require that
|
|
1305 there are no sibling loops inside the nest). */
|
|
1306 nest = loop;
|
|
1307 while (1)
|
|
1308 {
|
|
1309 aloop = loop_outer (nest);
|
|
1310
|
|
1311 if (aloop == current_loops->tree_root
|
|
1312 || aloop->inner->next)
|
|
1313 break;
|
|
1314
|
|
1315 nest = aloop;
|
|
1316 }
|
|
1317
|
|
1318 /* For each loop, determine the amount of data accessed in each iteration.
|
|
1319 We use this to estimate whether the reference is evicted from the
|
|
1320 cache before its reuse. */
|
|
1321 find_loop_nest (nest, &vloops);
|
|
1322 n = VEC_length (loop_p, vloops);
|
|
1323 loop_data_size = XNEWVEC (unsigned, n);
|
|
1324 volume = volume_of_references (refs);
|
|
1325 i = n;
|
|
1326 while (i-- != 0)
|
|
1327 {
|
|
1328 loop_data_size[i] = volume;
|
|
1329 /* Bound the volume by the L2 cache size, since above this bound,
|
|
1330 all dependence distances are equivalent. */
|
|
1331 if (volume > L2_CACHE_SIZE_BYTES)
|
|
1332 continue;
|
|
1333
|
|
1334 aloop = VEC_index (loop_p, vloops, i);
|
|
1335 vol = estimated_loop_iterations_int (aloop, false);
|
|
1336 if (vol < 0)
|
|
1337 vol = expected_loop_iterations (aloop);
|
|
1338 volume *= vol;
|
|
1339 }
|
|
1340
|
|
1341 /* Prepare the references in the form suitable for data dependence
|
|
1342 analysis. We ignore unanalyzable data references (the results
|
|
1343 are used just as a heuristics to estimate temporality of the
|
|
1344 references, hence we do not need to worry about correctness). */
|
|
1345 for (gr = refs; gr; gr = gr->next)
|
|
1346 for (ref = gr->refs; ref; ref = ref->next)
|
|
1347 {
|
|
1348 dr = create_data_ref (nest, ref->mem, ref->stmt, !ref->write_p);
|
|
1349
|
|
1350 if (dr)
|
|
1351 {
|
|
1352 ref->reuse_distance = volume;
|
|
1353 dr->aux = ref;
|
|
1354 VEC_safe_push (data_reference_p, heap, datarefs, dr);
|
|
1355 }
|
|
1356 else
|
|
1357 no_other_refs = false;
|
|
1358 }
|
|
1359
|
|
1360 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
|
|
1361 {
|
|
1362 dist = self_reuse_distance (dr, loop_data_size, n, loop);
|
|
1363 ref = (struct mem_ref *) dr->aux;
|
|
1364 if (ref->reuse_distance > dist)
|
|
1365 ref->reuse_distance = dist;
|
|
1366
|
|
1367 if (no_other_refs)
|
|
1368 ref->independent_p = true;
|
|
1369 }
|
|
1370
|
|
1371 compute_all_dependences (datarefs, &dependences, vloops, true);
|
|
1372
|
|
1373 for (i = 0; VEC_iterate (ddr_p, dependences, i, dep); i++)
|
|
1374 {
|
|
1375 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
|
|
1376 continue;
|
|
1377
|
|
1378 ref = (struct mem_ref *) DDR_A (dep)->aux;
|
|
1379 refb = (struct mem_ref *) DDR_B (dep)->aux;
|
|
1380
|
|
1381 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
|
|
1382 || DDR_NUM_DIST_VECTS (dep) == 0)
|
|
1383 {
|
|
1384 /* If the dependence cannot be analyzed, assume that there might be
|
|
1385 a reuse. */
|
|
1386 dist = 0;
|
|
1387
|
|
1388 ref->independent_p = false;
|
|
1389 refb->independent_p = false;
|
|
1390 }
|
|
1391 else
|
|
1392 {
|
|
1393 /* The distance vectors are normalized to be always lexicographically
|
|
1394 positive, hence we cannot tell just from them whether DDR_A comes
|
|
1395 before DDR_B or vice versa. However, it is not important,
|
|
1396 anyway -- if DDR_A is close to DDR_B, then it is either reused in
|
|
1397 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
|
|
1398 in cache (and marking it as nontemporal would not affect
|
|
1399 anything). */
|
|
1400
|
|
1401 dist = volume;
|
|
1402 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
|
|
1403 {
|
|
1404 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
|
|
1405 loop_data_size, n);
|
|
1406
|
|
1407 /* If this is a dependence in the innermost loop (i.e., the
|
|
1408 distances in all superloops are zero) and it is not
|
|
1409 the trivial self-dependence with distance zero, record that
|
|
1410 the references are not completely independent. */
|
|
1411 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
|
|
1412 && (ref != refb
|
|
1413 || DDR_DIST_VECT (dep, j)[n-1] != 0))
|
|
1414 {
|
|
1415 ref->independent_p = false;
|
|
1416 refb->independent_p = false;
|
|
1417 }
|
|
1418
|
|
1419 /* Ignore accesses closer than
|
|
1420 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
|
|
1421 so that we use nontemporal prefetches e.g. if single memory
|
|
1422 location is accessed several times in a single iteration of
|
|
1423 the loop. */
|
|
1424 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
|
|
1425 continue;
|
|
1426
|
|
1427 if (adist < dist)
|
|
1428 dist = adist;
|
|
1429 }
|
|
1430 }
|
|
1431
|
|
1432 if (ref->reuse_distance > dist)
|
|
1433 ref->reuse_distance = dist;
|
|
1434 if (refb->reuse_distance > dist)
|
|
1435 refb->reuse_distance = dist;
|
|
1436 }
|
|
1437
|
|
1438 free_dependence_relations (dependences);
|
|
1439 free_data_refs (datarefs);
|
|
1440 free (loop_data_size);
|
|
1441
|
|
1442 if (dump_file && (dump_flags & TDF_DETAILS))
|
|
1443 {
|
|
1444 fprintf (dump_file, "Reuse distances:\n");
|
|
1445 for (gr = refs; gr; gr = gr->next)
|
|
1446 for (ref = gr->refs; ref; ref = ref->next)
|
|
1447 fprintf (dump_file, " ref %p distance %u\n",
|
|
1448 (void *) ref, ref->reuse_distance);
|
|
1449 }
|
|
1450 }
|
|
1451
|
|
1452 /* Issue prefetch instructions for array references in LOOP. Returns
|
|
1453 true if the LOOP was unrolled. */
|
|
1454
|
|
1455 static bool
|
|
1456 loop_prefetch_arrays (struct loop *loop)
|
|
1457 {
|
|
1458 struct mem_ref_group *refs;
|
|
1459 unsigned ahead, ninsns, time, unroll_factor;
|
|
1460 HOST_WIDE_INT est_niter;
|
|
1461 struct tree_niter_desc desc;
|
|
1462 bool unrolled = false, no_other_refs;
|
|
1463
|
|
1464 if (optimize_loop_nest_for_size_p (loop))
|
|
1465 {
|
|
1466 if (dump_file && (dump_flags & TDF_DETAILS))
|
|
1467 fprintf (dump_file, " ignored (cold area)\n");
|
|
1468 return false;
|
|
1469 }
|
|
1470
|
|
1471 /* Step 1: gather the memory references. */
|
|
1472 refs = gather_memory_references (loop, &no_other_refs);
|
|
1473
|
|
1474 /* Step 2: estimate the reuse effects. */
|
|
1475 prune_by_reuse (refs);
|
|
1476
|
|
1477 if (!anything_to_prefetch_p (refs))
|
|
1478 goto fail;
|
|
1479
|
|
1480 determine_loop_nest_reuse (loop, refs, no_other_refs);
|
|
1481
|
|
1482 /* Step 3: determine the ahead and unroll factor. */
|
|
1483
|
|
1484 /* FIXME: the time should be weighted by the probabilities of the blocks in
|
|
1485 the loop body. */
|
|
1486 time = tree_num_loop_insns (loop, &eni_time_weights);
|
|
1487 ahead = (PREFETCH_LATENCY + time - 1) / time;
|
|
1488 est_niter = estimated_loop_iterations_int (loop, false);
|
|
1489
|
|
1490 /* The prefetches will run for AHEAD iterations of the original loop. Unless
|
|
1491 the loop rolls at least AHEAD times, prefetching the references does not
|
|
1492 make sense. */
|
|
1493 if (est_niter >= 0 && est_niter <= (HOST_WIDE_INT) ahead)
|
|
1494 {
|
|
1495 if (dump_file && (dump_flags & TDF_DETAILS))
|
|
1496 fprintf (dump_file,
|
|
1497 "Not prefetching -- loop estimated to roll only %d times\n",
|
|
1498 (int) est_niter);
|
|
1499 goto fail;
|
|
1500 }
|
|
1501
|
|
1502 mark_nontemporal_stores (loop, refs);
|
|
1503
|
|
1504 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
|
|
1505 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
|
|
1506 est_niter);
|
|
1507 if (dump_file && (dump_flags & TDF_DETAILS))
|
|
1508 fprintf (dump_file, "Ahead %d, unroll factor %d\n", ahead, unroll_factor);
|
|
1509
|
|
1510 /* Step 4: what to prefetch? */
|
|
1511 if (!schedule_prefetches (refs, unroll_factor, ahead))
|
|
1512 goto fail;
|
|
1513
|
|
1514 /* Step 5: unroll the loop. TODO -- peeling of first and last few
|
|
1515 iterations so that we do not issue superfluous prefetches. */
|
|
1516 if (unroll_factor != 1)
|
|
1517 {
|
|
1518 tree_unroll_loop (loop, unroll_factor,
|
|
1519 single_dom_exit (loop), &desc);
|
|
1520 unrolled = true;
|
|
1521 }
|
|
1522
|
|
1523 /* Step 6: issue the prefetches. */
|
|
1524 issue_prefetches (refs, unroll_factor, ahead);
|
|
1525
|
|
1526 fail:
|
|
1527 release_mem_refs (refs);
|
|
1528 return unrolled;
|
|
1529 }
|
|
1530
|
|
1531 /* Issue prefetch instructions for array references in loops. */
|
|
1532
|
|
1533 unsigned int
|
|
1534 tree_ssa_prefetch_arrays (void)
|
|
1535 {
|
|
1536 loop_iterator li;
|
|
1537 struct loop *loop;
|
|
1538 bool unrolled = false;
|
|
1539 int todo_flags = 0;
|
|
1540
|
|
1541 if (!HAVE_prefetch
|
|
1542 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
|
|
1543 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
|
|
1544 of processor costs and i486 does not have prefetch, but
|
|
1545 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
|
|
1546 || PREFETCH_BLOCK == 0)
|
|
1547 return 0;
|
|
1548
|
|
1549 if (dump_file && (dump_flags & TDF_DETAILS))
|
|
1550 {
|
|
1551 fprintf (dump_file, "Prefetching parameters:\n");
|
|
1552 fprintf (dump_file, " simultaneous prefetches: %d\n",
|
|
1553 SIMULTANEOUS_PREFETCHES);
|
|
1554 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
|
|
1555 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
|
|
1556 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
|
|
1557 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
|
|
1558 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
|
|
1559 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
|
|
1560 fprintf (dump_file, "\n");
|
|
1561 }
|
|
1562
|
|
1563 initialize_original_copy_tables ();
|
|
1564
|
|
1565 if (!built_in_decls[BUILT_IN_PREFETCH])
|
|
1566 {
|
|
1567 tree type = build_function_type (void_type_node,
|
|
1568 tree_cons (NULL_TREE,
|
|
1569 const_ptr_type_node,
|
|
1570 NULL_TREE));
|
|
1571 tree decl = add_builtin_function ("__builtin_prefetch", type,
|
|
1572 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
|
|
1573 NULL, NULL_TREE);
|
|
1574 DECL_IS_NOVOPS (decl) = true;
|
|
1575 built_in_decls[BUILT_IN_PREFETCH] = decl;
|
|
1576 }
|
|
1577
|
|
1578 /* We assume that size of cache line is a power of two, so verify this
|
|
1579 here. */
|
|
1580 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
|
|
1581
|
|
1582 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
|
|
1583 {
|
|
1584 if (dump_file && (dump_flags & TDF_DETAILS))
|
|
1585 fprintf (dump_file, "Processing loop %d:\n", loop->num);
|
|
1586
|
|
1587 unrolled |= loop_prefetch_arrays (loop);
|
|
1588
|
|
1589 if (dump_file && (dump_flags & TDF_DETAILS))
|
|
1590 fprintf (dump_file, "\n\n");
|
|
1591 }
|
|
1592
|
|
1593 if (unrolled)
|
|
1594 {
|
|
1595 scev_reset ();
|
|
1596 todo_flags |= TODO_cleanup_cfg;
|
|
1597 }
|
|
1598
|
|
1599 free_original_copy_tables ();
|
|
1600 return todo_flags;
|
|
1601 }
|