0
|
1 /* sha1.c - Functions to compute SHA1 message digest of files or
|
|
2 memory blocks according to the NIST specification FIPS-180-1.
|
|
3
|
|
4 Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2008 Free Software
|
|
5 Foundation, Inc.
|
|
6
|
|
7 This program is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 This program is distributed in the hope that it will be useful,
|
|
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
15 GNU General Public License for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with this program; if not, write to the Free Software Foundation,
|
|
19 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
20
|
|
21 /* Written by Scott G. Miller
|
|
22 Credits:
|
|
23 Robert Klep <robert@ilse.nl> -- Expansion function fix
|
|
24 */
|
|
25
|
|
26 #include <config.h>
|
|
27
|
|
28 #include "sha1.h"
|
|
29
|
|
30 #include <stddef.h>
|
|
31 #include <string.h>
|
|
32
|
|
33 #if USE_UNLOCKED_IO
|
|
34 # include "unlocked-io.h"
|
|
35 #endif
|
|
36
|
|
37 #ifdef WORDS_BIGENDIAN
|
|
38 # define SWAP(n) (n)
|
|
39 #else
|
|
40 # define SWAP(n) \
|
|
41 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
|
|
42 #endif
|
|
43
|
|
44 #define BLOCKSIZE 4096
|
|
45 #if BLOCKSIZE % 64 != 0
|
|
46 # error "invalid BLOCKSIZE"
|
|
47 #endif
|
|
48
|
|
49 /* This array contains the bytes used to pad the buffer to the next
|
|
50 64-byte boundary. (RFC 1321, 3.1: Step 1) */
|
|
51 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
|
|
52
|
|
53
|
|
54 /* Take a pointer to a 160 bit block of data (five 32 bit ints) and
|
|
55 initialize it to the start constants of the SHA1 algorithm. This
|
|
56 must be called before using hash in the call to sha1_hash. */
|
|
57 void
|
|
58 sha1_init_ctx (struct sha1_ctx *ctx)
|
|
59 {
|
|
60 ctx->A = 0x67452301;
|
|
61 ctx->B = 0xefcdab89;
|
|
62 ctx->C = 0x98badcfe;
|
|
63 ctx->D = 0x10325476;
|
|
64 ctx->E = 0xc3d2e1f0;
|
|
65
|
|
66 ctx->total[0] = ctx->total[1] = 0;
|
|
67 ctx->buflen = 0;
|
|
68 }
|
|
69
|
|
70 /* Put result from CTX in first 20 bytes following RESBUF. The result
|
|
71 must be in little endian byte order.
|
|
72
|
|
73 IMPORTANT: On some systems it is required that RESBUF is correctly
|
|
74 aligned for a 32-bit value. */
|
|
75 void *
|
|
76 sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
|
|
77 {
|
|
78 ((sha1_uint32 *) resbuf)[0] = SWAP (ctx->A);
|
|
79 ((sha1_uint32 *) resbuf)[1] = SWAP (ctx->B);
|
|
80 ((sha1_uint32 *) resbuf)[2] = SWAP (ctx->C);
|
|
81 ((sha1_uint32 *) resbuf)[3] = SWAP (ctx->D);
|
|
82 ((sha1_uint32 *) resbuf)[4] = SWAP (ctx->E);
|
|
83
|
|
84 return resbuf;
|
|
85 }
|
|
86
|
|
87 /* Process the remaining bytes in the internal buffer and the usual
|
|
88 prolog according to the standard and write the result to RESBUF.
|
|
89
|
|
90 IMPORTANT: On some systems it is required that RESBUF is correctly
|
|
91 aligned for a 32-bit value. */
|
|
92 void *
|
|
93 sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
|
|
94 {
|
|
95 /* Take yet unprocessed bytes into account. */
|
|
96 sha1_uint32 bytes = ctx->buflen;
|
|
97 size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
|
|
98
|
|
99 /* Now count remaining bytes. */
|
|
100 ctx->total[0] += bytes;
|
|
101 if (ctx->total[0] < bytes)
|
|
102 ++ctx->total[1];
|
|
103
|
|
104 /* Put the 64-bit file length in *bits* at the end of the buffer. */
|
|
105 ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
|
|
106 ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
|
|
107
|
|
108 memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
|
|
109
|
|
110 /* Process last bytes. */
|
|
111 sha1_process_block (ctx->buffer, size * 4, ctx);
|
|
112
|
|
113 return sha1_read_ctx (ctx, resbuf);
|
|
114 }
|
|
115
|
|
116 /* Compute SHA1 message digest for bytes read from STREAM. The
|
|
117 resulting message digest number will be written into the 16 bytes
|
|
118 beginning at RESBLOCK. */
|
|
119 int
|
|
120 sha1_stream (FILE *stream, void *resblock)
|
|
121 {
|
|
122 struct sha1_ctx ctx;
|
|
123 char buffer[BLOCKSIZE + 72];
|
|
124 size_t sum;
|
|
125
|
|
126 /* Initialize the computation context. */
|
|
127 sha1_init_ctx (&ctx);
|
|
128
|
|
129 /* Iterate over full file contents. */
|
|
130 while (1)
|
|
131 {
|
|
132 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
|
|
133 computation function processes the whole buffer so that with the
|
|
134 next round of the loop another block can be read. */
|
|
135 size_t n;
|
|
136 sum = 0;
|
|
137
|
|
138 /* Read block. Take care for partial reads. */
|
|
139 while (1)
|
|
140 {
|
|
141 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
|
|
142
|
|
143 sum += n;
|
|
144
|
|
145 if (sum == BLOCKSIZE)
|
|
146 break;
|
|
147
|
|
148 if (n == 0)
|
|
149 {
|
|
150 /* Check for the error flag IFF N == 0, so that we don't
|
|
151 exit the loop after a partial read due to e.g., EAGAIN
|
|
152 or EWOULDBLOCK. */
|
|
153 if (ferror (stream))
|
|
154 return 1;
|
|
155 goto process_partial_block;
|
|
156 }
|
|
157
|
|
158 /* We've read at least one byte, so ignore errors. But always
|
|
159 check for EOF, since feof may be true even though N > 0.
|
|
160 Otherwise, we could end up calling fread after EOF. */
|
|
161 if (feof (stream))
|
|
162 goto process_partial_block;
|
|
163 }
|
|
164
|
|
165 /* Process buffer with BLOCKSIZE bytes. Note that
|
|
166 BLOCKSIZE % 64 == 0
|
|
167 */
|
|
168 sha1_process_block (buffer, BLOCKSIZE, &ctx);
|
|
169 }
|
|
170
|
|
171 process_partial_block:;
|
|
172
|
|
173 /* Process any remaining bytes. */
|
|
174 if (sum > 0)
|
|
175 sha1_process_bytes (buffer, sum, &ctx);
|
|
176
|
|
177 /* Construct result in desired memory. */
|
|
178 sha1_finish_ctx (&ctx, resblock);
|
|
179 return 0;
|
|
180 }
|
|
181
|
|
182 /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
|
|
183 result is always in little endian byte order, so that a byte-wise
|
|
184 output yields to the wanted ASCII representation of the message
|
|
185 digest. */
|
|
186 void *
|
|
187 sha1_buffer (const char *buffer, size_t len, void *resblock)
|
|
188 {
|
|
189 struct sha1_ctx ctx;
|
|
190
|
|
191 /* Initialize the computation context. */
|
|
192 sha1_init_ctx (&ctx);
|
|
193
|
|
194 /* Process whole buffer but last len % 64 bytes. */
|
|
195 sha1_process_bytes (buffer, len, &ctx);
|
|
196
|
|
197 /* Put result in desired memory area. */
|
|
198 return sha1_finish_ctx (&ctx, resblock);
|
|
199 }
|
|
200
|
|
201 void
|
|
202 sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
|
|
203 {
|
|
204 /* When we already have some bits in our internal buffer concatenate
|
|
205 both inputs first. */
|
|
206 if (ctx->buflen != 0)
|
|
207 {
|
|
208 size_t left_over = ctx->buflen;
|
|
209 size_t add = 128 - left_over > len ? len : 128 - left_over;
|
|
210
|
|
211 memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
|
|
212 ctx->buflen += add;
|
|
213
|
|
214 if (ctx->buflen > 64)
|
|
215 {
|
|
216 sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
|
|
217
|
|
218 ctx->buflen &= 63;
|
|
219 /* The regions in the following copy operation cannot overlap. */
|
|
220 memcpy (ctx->buffer,
|
|
221 &((char *) ctx->buffer)[(left_over + add) & ~63],
|
|
222 ctx->buflen);
|
|
223 }
|
|
224
|
|
225 buffer = (const char *) buffer + add;
|
|
226 len -= add;
|
|
227 }
|
|
228
|
|
229 /* Process available complete blocks. */
|
|
230 if (len >= 64)
|
|
231 {
|
|
232 #if !_STRING_ARCH_unaligned
|
|
233 # define alignof(type) offsetof (struct { char c; type x; }, x)
|
|
234 # define UNALIGNED_P(p) (((size_t) p) % alignof (sha1_uint32) != 0)
|
|
235 if (UNALIGNED_P (buffer))
|
|
236 while (len > 64)
|
|
237 {
|
|
238 sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
|
|
239 buffer = (const char *) buffer + 64;
|
|
240 len -= 64;
|
|
241 }
|
|
242 else
|
|
243 #endif
|
|
244 {
|
|
245 sha1_process_block (buffer, len & ~63, ctx);
|
|
246 buffer = (const char *) buffer + (len & ~63);
|
|
247 len &= 63;
|
|
248 }
|
|
249 }
|
|
250
|
|
251 /* Move remaining bytes in internal buffer. */
|
|
252 if (len > 0)
|
|
253 {
|
|
254 size_t left_over = ctx->buflen;
|
|
255
|
|
256 memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
|
|
257 left_over += len;
|
|
258 if (left_over >= 64)
|
|
259 {
|
|
260 sha1_process_block (ctx->buffer, 64, ctx);
|
|
261 left_over -= 64;
|
|
262 memcpy (ctx->buffer, &ctx->buffer[16], left_over);
|
|
263 }
|
|
264 ctx->buflen = left_over;
|
|
265 }
|
|
266 }
|
|
267
|
|
268 /* --- Code below is the primary difference between md5.c and sha1.c --- */
|
|
269
|
|
270 /* SHA1 round constants */
|
|
271 #define K1 0x5a827999
|
|
272 #define K2 0x6ed9eba1
|
|
273 #define K3 0x8f1bbcdc
|
|
274 #define K4 0xca62c1d6
|
|
275
|
|
276 /* Round functions. Note that F2 is the same as F4. */
|
|
277 #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
|
|
278 #define F2(B,C,D) (B ^ C ^ D)
|
|
279 #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
|
|
280 #define F4(B,C,D) (B ^ C ^ D)
|
|
281
|
|
282 /* Process LEN bytes of BUFFER, accumulating context into CTX.
|
|
283 It is assumed that LEN % 64 == 0.
|
|
284 Most of this code comes from GnuPG's cipher/sha1.c. */
|
|
285
|
|
286 void
|
|
287 sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
|
|
288 {
|
|
289 const sha1_uint32 *words = (const sha1_uint32*) buffer;
|
|
290 size_t nwords = len / sizeof (sha1_uint32);
|
|
291 const sha1_uint32 *endp = words + nwords;
|
|
292 sha1_uint32 x[16];
|
|
293 sha1_uint32 a = ctx->A;
|
|
294 sha1_uint32 b = ctx->B;
|
|
295 sha1_uint32 c = ctx->C;
|
|
296 sha1_uint32 d = ctx->D;
|
|
297 sha1_uint32 e = ctx->E;
|
|
298
|
|
299 /* First increment the byte count. RFC 1321 specifies the possible
|
|
300 length of the file up to 2^64 bits. Here we only compute the
|
|
301 number of bytes. Do a double word increment. */
|
|
302 ctx->total[0] += len;
|
|
303 if (ctx->total[0] < len)
|
|
304 ++ctx->total[1];
|
|
305
|
|
306 #define rol(x, n) (((x) << (n)) | ((sha1_uint32) (x) >> (32 - (n))))
|
|
307
|
|
308 #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
|
|
309 ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
|
|
310 , (x[I&0x0f] = rol(tm, 1)) )
|
|
311
|
|
312 #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
|
|
313 + F( B, C, D ) \
|
|
314 + K \
|
|
315 + M; \
|
|
316 B = rol( B, 30 ); \
|
|
317 } while(0)
|
|
318
|
|
319 while (words < endp)
|
|
320 {
|
|
321 sha1_uint32 tm;
|
|
322 int t;
|
|
323 for (t = 0; t < 16; t++)
|
|
324 {
|
|
325 x[t] = SWAP (*words);
|
|
326 words++;
|
|
327 }
|
|
328
|
|
329 R( a, b, c, d, e, F1, K1, x[ 0] );
|
|
330 R( e, a, b, c, d, F1, K1, x[ 1] );
|
|
331 R( d, e, a, b, c, F1, K1, x[ 2] );
|
|
332 R( c, d, e, a, b, F1, K1, x[ 3] );
|
|
333 R( b, c, d, e, a, F1, K1, x[ 4] );
|
|
334 R( a, b, c, d, e, F1, K1, x[ 5] );
|
|
335 R( e, a, b, c, d, F1, K1, x[ 6] );
|
|
336 R( d, e, a, b, c, F1, K1, x[ 7] );
|
|
337 R( c, d, e, a, b, F1, K1, x[ 8] );
|
|
338 R( b, c, d, e, a, F1, K1, x[ 9] );
|
|
339 R( a, b, c, d, e, F1, K1, x[10] );
|
|
340 R( e, a, b, c, d, F1, K1, x[11] );
|
|
341 R( d, e, a, b, c, F1, K1, x[12] );
|
|
342 R( c, d, e, a, b, F1, K1, x[13] );
|
|
343 R( b, c, d, e, a, F1, K1, x[14] );
|
|
344 R( a, b, c, d, e, F1, K1, x[15] );
|
|
345 R( e, a, b, c, d, F1, K1, M(16) );
|
|
346 R( d, e, a, b, c, F1, K1, M(17) );
|
|
347 R( c, d, e, a, b, F1, K1, M(18) );
|
|
348 R( b, c, d, e, a, F1, K1, M(19) );
|
|
349 R( a, b, c, d, e, F2, K2, M(20) );
|
|
350 R( e, a, b, c, d, F2, K2, M(21) );
|
|
351 R( d, e, a, b, c, F2, K2, M(22) );
|
|
352 R( c, d, e, a, b, F2, K2, M(23) );
|
|
353 R( b, c, d, e, a, F2, K2, M(24) );
|
|
354 R( a, b, c, d, e, F2, K2, M(25) );
|
|
355 R( e, a, b, c, d, F2, K2, M(26) );
|
|
356 R( d, e, a, b, c, F2, K2, M(27) );
|
|
357 R( c, d, e, a, b, F2, K2, M(28) );
|
|
358 R( b, c, d, e, a, F2, K2, M(29) );
|
|
359 R( a, b, c, d, e, F2, K2, M(30) );
|
|
360 R( e, a, b, c, d, F2, K2, M(31) );
|
|
361 R( d, e, a, b, c, F2, K2, M(32) );
|
|
362 R( c, d, e, a, b, F2, K2, M(33) );
|
|
363 R( b, c, d, e, a, F2, K2, M(34) );
|
|
364 R( a, b, c, d, e, F2, K2, M(35) );
|
|
365 R( e, a, b, c, d, F2, K2, M(36) );
|
|
366 R( d, e, a, b, c, F2, K2, M(37) );
|
|
367 R( c, d, e, a, b, F2, K2, M(38) );
|
|
368 R( b, c, d, e, a, F2, K2, M(39) );
|
|
369 R( a, b, c, d, e, F3, K3, M(40) );
|
|
370 R( e, a, b, c, d, F3, K3, M(41) );
|
|
371 R( d, e, a, b, c, F3, K3, M(42) );
|
|
372 R( c, d, e, a, b, F3, K3, M(43) );
|
|
373 R( b, c, d, e, a, F3, K3, M(44) );
|
|
374 R( a, b, c, d, e, F3, K3, M(45) );
|
|
375 R( e, a, b, c, d, F3, K3, M(46) );
|
|
376 R( d, e, a, b, c, F3, K3, M(47) );
|
|
377 R( c, d, e, a, b, F3, K3, M(48) );
|
|
378 R( b, c, d, e, a, F3, K3, M(49) );
|
|
379 R( a, b, c, d, e, F3, K3, M(50) );
|
|
380 R( e, a, b, c, d, F3, K3, M(51) );
|
|
381 R( d, e, a, b, c, F3, K3, M(52) );
|
|
382 R( c, d, e, a, b, F3, K3, M(53) );
|
|
383 R( b, c, d, e, a, F3, K3, M(54) );
|
|
384 R( a, b, c, d, e, F3, K3, M(55) );
|
|
385 R( e, a, b, c, d, F3, K3, M(56) );
|
|
386 R( d, e, a, b, c, F3, K3, M(57) );
|
|
387 R( c, d, e, a, b, F3, K3, M(58) );
|
|
388 R( b, c, d, e, a, F3, K3, M(59) );
|
|
389 R( a, b, c, d, e, F4, K4, M(60) );
|
|
390 R( e, a, b, c, d, F4, K4, M(61) );
|
|
391 R( d, e, a, b, c, F4, K4, M(62) );
|
|
392 R( c, d, e, a, b, F4, K4, M(63) );
|
|
393 R( b, c, d, e, a, F4, K4, M(64) );
|
|
394 R( a, b, c, d, e, F4, K4, M(65) );
|
|
395 R( e, a, b, c, d, F4, K4, M(66) );
|
|
396 R( d, e, a, b, c, F4, K4, M(67) );
|
|
397 R( c, d, e, a, b, F4, K4, M(68) );
|
|
398 R( b, c, d, e, a, F4, K4, M(69) );
|
|
399 R( a, b, c, d, e, F4, K4, M(70) );
|
|
400 R( e, a, b, c, d, F4, K4, M(71) );
|
|
401 R( d, e, a, b, c, F4, K4, M(72) );
|
|
402 R( c, d, e, a, b, F4, K4, M(73) );
|
|
403 R( b, c, d, e, a, F4, K4, M(74) );
|
|
404 R( a, b, c, d, e, F4, K4, M(75) );
|
|
405 R( e, a, b, c, d, F4, K4, M(76) );
|
|
406 R( d, e, a, b, c, F4, K4, M(77) );
|
|
407 R( c, d, e, a, b, F4, K4, M(78) );
|
|
408 R( b, c, d, e, a, F4, K4, M(79) );
|
|
409
|
|
410 a = ctx->A += a;
|
|
411 b = ctx->B += b;
|
|
412 c = ctx->C += c;
|
|
413 d = ctx->D += d;
|
|
414 e = ctx->E += e;
|
|
415 }
|
|
416 }
|