Mercurial > hg > CbC > CbC_gcc
annotate gcc/postreload-gcse.c @ 158:494b0b89df80 default tip
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 25 May 2020 18:13:55 +0900 |
parents | 1830386684a0 |
children |
rev | line source |
---|---|
0 | 1 /* Post reload partially redundant load elimination |
145 | 2 Copyright (C) 2004-2020 Free Software Foundation, Inc. |
0 | 3 |
4 This file is part of GCC. | |
5 | |
6 GCC is free software; you can redistribute it and/or modify it under | |
7 the terms of the GNU General Public License as published by the Free | |
8 Software Foundation; either version 3, or (at your option) any later | |
9 version. | |
10 | |
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY | |
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
14 for more details. | |
15 | |
16 You should have received a copy of the GNU General Public License | |
17 along with GCC; see the file COPYING3. If not see | |
18 <http://www.gnu.org/licenses/>. */ | |
19 | |
20 #include "config.h" | |
21 #include "system.h" | |
22 #include "coretypes.h" | |
111 | 23 #include "backend.h" |
24 #include "target.h" | |
0 | 25 #include "rtl.h" |
26 #include "tree.h" | |
111 | 27 #include "predict.h" |
28 #include "df.h" | |
29 #include "memmodel.h" | |
0 | 30 #include "tm_p.h" |
31 #include "insn-config.h" | |
111 | 32 #include "emit-rtl.h" |
0 | 33 #include "recog.h" |
111 | 34 |
35 #include "cfgrtl.h" | |
36 #include "profile.h" | |
0 | 37 #include "expr.h" |
38 #include "tree-pass.h" | |
39 #include "dbgcnt.h" | |
145 | 40 #include "intl.h" |
111 | 41 #include "gcse-common.h" |
145 | 42 #include "gcse.h" |
43 #include "regs.h" | |
44 #include "function-abi.h" | |
0 | 45 |
46 /* The following code implements gcse after reload, the purpose of this | |
47 pass is to cleanup redundant loads generated by reload and other | |
48 optimizations that come after gcse. It searches for simple inter-block | |
49 redundancies and tries to eliminate them by adding moves and loads | |
50 in cold places. | |
51 | |
52 Perform partially redundant load elimination, try to eliminate redundant | |
53 loads created by the reload pass. We try to look for full or partial | |
54 redundant loads fed by one or more loads/stores in predecessor BBs, | |
55 and try adding loads to make them fully redundant. We also check if | |
56 it's worth adding loads to be able to delete the redundant load. | |
57 | |
58 Algorithm: | |
59 1. Build available expressions hash table: | |
60 For each load/store instruction, if the loaded/stored memory didn't | |
61 change until the end of the basic block add this memory expression to | |
62 the hash table. | |
63 2. Perform Redundancy elimination: | |
64 For each load instruction do the following: | |
65 perform partial redundancy elimination, check if it's worth adding | |
66 loads to make the load fully redundant. If so add loads and | |
67 register copies and delete the load. | |
68 3. Delete instructions made redundant in step 2. | |
69 | |
70 Future enhancement: | |
71 If the loaded register is used/defined between load and some store, | |
72 look for some other free register between load and all its stores, | |
73 and replace the load with a copy from this register to the loaded | |
74 register. | |
75 */ | |
76 | |
77 | |
78 /* Keep statistics of this pass. */ | |
79 static struct | |
80 { | |
81 int moves_inserted; | |
82 int copies_inserted; | |
83 int insns_deleted; | |
84 } stats; | |
85 | |
86 /* We need to keep a hash table of expressions. The table entries are of | |
87 type 'struct expr', and for each expression there is a single linked | |
88 list of occurrences. */ | |
89 | |
90 /* Expression elements in the hash table. */ | |
91 struct expr | |
92 { | |
93 /* The expression (SET_SRC for expressions, PATTERN for assignments). */ | |
94 rtx expr; | |
95 | |
96 /* The same hash for this entry. */ | |
97 hashval_t hash; | |
98 | |
111 | 99 /* Index in the transparent bitmaps. */ |
100 unsigned int bitmap_index; | |
101 | |
0 | 102 /* List of available occurrence in basic blocks in the function. */ |
103 struct occr *avail_occr; | |
104 }; | |
105 | |
111 | 106 /* Hashtable helpers. */ |
107 | |
108 struct expr_hasher : nofree_ptr_hash <expr> | |
109 { | |
110 static inline hashval_t hash (const expr *); | |
111 static inline bool equal (const expr *, const expr *); | |
112 }; | |
113 | |
114 | |
115 /* Hash expression X. | |
116 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found | |
117 or if the expression contains something we don't want to insert in the | |
118 table. */ | |
119 | |
120 static hashval_t | |
121 hash_expr (rtx x, int *do_not_record_p) | |
122 { | |
123 *do_not_record_p = 0; | |
124 return hash_rtx (x, GET_MODE (x), do_not_record_p, | |
125 NULL, /*have_reg_qty=*/false); | |
126 } | |
127 | |
128 /* Callback for hashtab. | |
129 Return the hash value for expression EXP. We don't actually hash | |
130 here, we just return the cached hash value. */ | |
131 | |
132 inline hashval_t | |
133 expr_hasher::hash (const expr *exp) | |
134 { | |
135 return exp->hash; | |
136 } | |
137 | |
138 /* Callback for hashtab. | |
139 Return nonzero if exp1 is equivalent to exp2. */ | |
140 | |
141 inline bool | |
142 expr_hasher::equal (const expr *exp1, const expr *exp2) | |
143 { | |
144 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true); | |
145 | |
146 gcc_assert (!equiv_p || exp1->hash == exp2->hash); | |
147 return equiv_p; | |
148 } | |
149 | |
150 /* The table itself. */ | |
151 static hash_table<expr_hasher> *expr_table; | |
152 | |
153 | |
0 | 154 static struct obstack expr_obstack; |
155 | |
156 /* Occurrence of an expression. | |
157 There is at most one occurrence per basic block. If a pattern appears | |
158 more than once, the last appearance is used. */ | |
159 | |
160 struct occr | |
161 { | |
162 /* Next occurrence of this expression. */ | |
163 struct occr *next; | |
164 /* The insn that computes the expression. */ | |
111 | 165 rtx_insn *insn; |
0 | 166 /* Nonzero if this [anticipatable] occurrence has been deleted. */ |
167 char deleted_p; | |
168 }; | |
169 | |
170 static struct obstack occr_obstack; | |
171 | |
172 /* The following structure holds the information about the occurrences of | |
173 the redundant instructions. */ | |
174 struct unoccr | |
175 { | |
176 struct unoccr *next; | |
177 edge pred; | |
111 | 178 rtx_insn *insn; |
0 | 179 }; |
180 | |
181 static struct obstack unoccr_obstack; | |
182 | |
183 /* Array where each element is the CUID if the insn that last set the hard | |
184 register with the number of the element, since the start of the current | |
185 basic block. | |
186 | |
187 This array is used during the building of the hash table (step 1) to | |
188 determine if a reg is killed before the end of a basic block. | |
189 | |
190 It is also used when eliminating partial redundancies (step 2) to see | |
191 if a reg was modified since the start of a basic block. */ | |
192 static int *reg_avail_info; | |
193 | |
194 /* A list of insns that may modify memory within the current basic block. */ | |
195 struct modifies_mem | |
196 { | |
111 | 197 rtx_insn *insn; |
0 | 198 struct modifies_mem *next; |
199 }; | |
200 static struct modifies_mem *modifies_mem_list; | |
201 | |
202 /* The modifies_mem structs also go on an obstack, only this obstack is | |
203 freed each time after completing the analysis or transformations on | |
204 a basic block. So we allocate a dummy modifies_mem_obstack_bottom | |
205 object on the obstack to keep track of the bottom of the obstack. */ | |
206 static struct obstack modifies_mem_obstack; | |
207 static struct modifies_mem *modifies_mem_obstack_bottom; | |
208 | |
209 /* Mapping of insn UIDs to CUIDs. | |
210 CUIDs are like UIDs except they increase monotonically in each basic | |
211 block, have no gaps, and only apply to real insns. */ | |
212 static int *uid_cuid; | |
213 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)]) | |
111 | 214 |
215 /* Bitmap of blocks which have memory stores. */ | |
216 static bitmap modify_mem_list_set; | |
217 | |
218 /* Bitmap of blocks which have calls. */ | |
219 static bitmap blocks_with_calls; | |
220 | |
221 /* Vector indexed by block # with a list of all the insns that | |
222 modify memory within the block. */ | |
223 static vec<rtx_insn *> *modify_mem_list; | |
224 | |
225 /* Vector indexed by block # with a canonicalized list of insns | |
226 that modify memory in the block. */ | |
227 static vec<modify_pair> *canon_modify_mem_list; | |
228 | |
229 /* Vector of simple bitmaps indexed by block number. Each component sbitmap | |
230 indicates which expressions are transparent through the block. */ | |
231 static sbitmap *transp; | |
0 | 232 |
233 | |
234 /* Helpers for memory allocation/freeing. */ | |
235 static void alloc_mem (void); | |
236 static void free_mem (void); | |
237 | |
238 /* Support for hash table construction and transformations. */ | |
111 | 239 static bool oprs_unchanged_p (rtx, rtx_insn *, bool); |
240 static void record_last_reg_set_info (rtx_insn *, rtx); | |
241 static void record_last_reg_set_info_regno (rtx_insn *, int); | |
242 static void record_last_mem_set_info (rtx_insn *); | |
0 | 243 static void record_last_set_info (rtx, const_rtx, void *); |
111 | 244 static void record_opr_changes (rtx_insn *); |
0 | 245 |
246 static void find_mem_conflicts (rtx, const_rtx, void *); | |
247 static int load_killed_in_block_p (int, rtx, bool); | |
248 static void reset_opr_set_tables (void); | |
249 | |
250 /* Hash table support. */ | |
251 static hashval_t hash_expr (rtx, int *); | |
111 | 252 static void insert_expr_in_table (rtx, rtx_insn *); |
0 | 253 static struct expr *lookup_expr_in_table (rtx); |
254 static void dump_hash_table (FILE *); | |
255 | |
256 /* Helpers for eliminate_partially_redundant_load. */ | |
257 static bool reg_killed_on_edge (rtx, edge); | |
258 static bool reg_used_on_edge (rtx, edge); | |
259 | |
111 | 260 static rtx get_avail_load_store_reg (rtx_insn *); |
0 | 261 |
262 static bool bb_has_well_behaved_predecessors (basic_block); | |
111 | 263 static struct occr* get_bb_avail_insn (basic_block, struct occr *, int); |
264 static void hash_scan_set (rtx_insn *); | |
0 | 265 static void compute_hash_table (void); |
266 | |
267 /* The work horses of this pass. */ | |
268 static void eliminate_partially_redundant_load (basic_block, | |
111 | 269 rtx_insn *, |
0 | 270 struct expr *); |
271 static void eliminate_partially_redundant_loads (void); | |
272 | |
273 | |
274 /* Allocate memory for the CUID mapping array and register/memory | |
275 tracking tables. */ | |
276 | |
277 static void | |
278 alloc_mem (void) | |
279 { | |
280 int i; | |
281 basic_block bb; | |
111 | 282 rtx_insn *insn; |
0 | 283 |
284 /* Find the largest UID and create a mapping from UIDs to CUIDs. */ | |
285 uid_cuid = XCNEWVEC (int, get_max_uid () + 1); | |
286 i = 1; | |
111 | 287 FOR_EACH_BB_FN (bb, cfun) |
0 | 288 FOR_BB_INSNS (bb, insn) |
289 { | |
290 if (INSN_P (insn)) | |
291 uid_cuid[INSN_UID (insn)] = i++; | |
292 else | |
293 uid_cuid[INSN_UID (insn)] = i; | |
294 } | |
295 | |
296 /* Allocate the available expressions hash table. We don't want to | |
297 make the hash table too small, but unnecessarily making it too large | |
298 also doesn't help. The i/4 is a gcse.c relic, and seems like a | |
299 reasonable choice. */ | |
111 | 300 expr_table = new hash_table<expr_hasher> (MAX (i / 4, 13)); |
0 | 301 |
302 /* We allocate everything on obstacks because we often can roll back | |
303 the whole obstack to some point. Freeing obstacks is very fast. */ | |
304 gcc_obstack_init (&expr_obstack); | |
305 gcc_obstack_init (&occr_obstack); | |
306 gcc_obstack_init (&unoccr_obstack); | |
307 gcc_obstack_init (&modifies_mem_obstack); | |
308 | |
309 /* Working array used to track the last set for each register | |
310 in the current block. */ | |
311 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int)); | |
312 | |
313 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we | |
314 can roll it back in reset_opr_set_tables. */ | |
315 modifies_mem_obstack_bottom = | |
316 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack, | |
317 sizeof (struct modifies_mem)); | |
111 | 318 |
319 blocks_with_calls = BITMAP_ALLOC (NULL); | |
320 modify_mem_list_set = BITMAP_ALLOC (NULL); | |
321 | |
322 modify_mem_list = (vec_rtx_heap *) xcalloc (last_basic_block_for_fn (cfun), | |
323 sizeof (vec_rtx_heap)); | |
324 canon_modify_mem_list | |
325 = (vec_modify_pair_heap *) xcalloc (last_basic_block_for_fn (cfun), | |
326 sizeof (vec_modify_pair_heap)); | |
0 | 327 } |
328 | |
329 /* Free memory allocated by alloc_mem. */ | |
330 | |
331 static void | |
332 free_mem (void) | |
333 { | |
334 free (uid_cuid); | |
335 | |
111 | 336 delete expr_table; |
337 expr_table = NULL; | |
0 | 338 |
339 obstack_free (&expr_obstack, NULL); | |
340 obstack_free (&occr_obstack, NULL); | |
341 obstack_free (&unoccr_obstack, NULL); | |
342 obstack_free (&modifies_mem_obstack, NULL); | |
343 | |
111 | 344 unsigned i; |
345 bitmap_iterator bi; | |
346 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi) | |
347 { | |
348 modify_mem_list[i].release (); | |
349 canon_modify_mem_list[i].release (); | |
350 } | |
0 | 351 |
111 | 352 BITMAP_FREE (blocks_with_calls); |
353 BITMAP_FREE (modify_mem_list_set); | |
354 free (reg_avail_info); | |
355 free (modify_mem_list); | |
356 free (canon_modify_mem_list); | |
0 | 357 } |
358 | |
359 | |
360 /* Insert expression X in INSN in the hash TABLE. | |
361 If it is already present, record it as the last occurrence in INSN's | |
362 basic block. */ | |
363 | |
364 static void | |
111 | 365 insert_expr_in_table (rtx x, rtx_insn *insn) |
0 | 366 { |
367 int do_not_record_p; | |
368 hashval_t hash; | |
369 struct expr *cur_expr, **slot; | |
145 | 370 struct occr *avail_occr; |
0 | 371 |
372 hash = hash_expr (x, &do_not_record_p); | |
373 | |
374 /* Do not insert expression in the table if it contains volatile operands, | |
375 or if hash_expr determines the expression is something we don't want | |
376 to or can't handle. */ | |
377 if (do_not_record_p) | |
378 return; | |
379 | |
380 /* We anticipate that redundant expressions are rare, so for convenience | |
381 allocate a new hash table element here already and set its fields. | |
382 If we don't do this, we need a hack with a static struct expr. Anyway, | |
383 obstack_free is really fast and one more obstack_alloc doesn't hurt if | |
384 we're going to see more expressions later on. */ | |
385 cur_expr = (struct expr *) obstack_alloc (&expr_obstack, | |
386 sizeof (struct expr)); | |
387 cur_expr->expr = x; | |
388 cur_expr->hash = hash; | |
389 cur_expr->avail_occr = NULL; | |
390 | |
111 | 391 slot = expr_table->find_slot_with_hash (cur_expr, hash, INSERT); |
55
77e2b8dfacca
update it from 4.4.3 to 4.5.0
ryoma <e075725@ie.u-ryukyu.ac.jp>
parents:
0
diff
changeset
|
392 |
0 | 393 if (! (*slot)) |
111 | 394 { |
395 /* The expression isn't found, so insert it. */ | |
396 *slot = cur_expr; | |
397 | |
398 /* Anytime we add an entry to the table, record the index | |
399 of the new entry. The bitmap index starts counting | |
400 at zero. */ | |
401 cur_expr->bitmap_index = expr_table->elements () - 1; | |
402 } | |
0 | 403 else |
404 { | |
405 /* The expression is already in the table, so roll back the | |
406 obstack and use the existing table entry. */ | |
407 obstack_free (&expr_obstack, cur_expr); | |
408 cur_expr = *slot; | |
409 } | |
410 | |
145 | 411 /* Search for another occurrence in the same basic block. We insert |
412 insns blockwise from start to end, so keep appending to the | |
413 start of the list so we have to check only a single element. */ | |
0 | 414 avail_occr = cur_expr->avail_occr; |
145 | 415 if (avail_occr |
416 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn)) | |
0 | 417 avail_occr->insn = insn; |
418 else | |
419 { | |
420 /* First occurrence of this expression in this basic block. */ | |
421 avail_occr = (struct occr *) obstack_alloc (&occr_obstack, | |
422 sizeof (struct occr)); | |
423 avail_occr->insn = insn; | |
145 | 424 avail_occr->next = cur_expr->avail_occr; |
0 | 425 avail_occr->deleted_p = 0; |
145 | 426 cur_expr->avail_occr = avail_occr; |
0 | 427 } |
428 } | |
429 | |
430 | |
431 /* Lookup pattern PAT in the expression hash table. | |
432 The result is a pointer to the table entry, or NULL if not found. */ | |
433 | |
434 static struct expr * | |
435 lookup_expr_in_table (rtx pat) | |
436 { | |
437 int do_not_record_p; | |
438 struct expr **slot, *tmp_expr; | |
439 hashval_t hash = hash_expr (pat, &do_not_record_p); | |
440 | |
441 if (do_not_record_p) | |
442 return NULL; | |
443 | |
444 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack, | |
445 sizeof (struct expr)); | |
446 tmp_expr->expr = pat; | |
447 tmp_expr->hash = hash; | |
448 tmp_expr->avail_occr = NULL; | |
449 | |
111 | 450 slot = expr_table->find_slot_with_hash (tmp_expr, hash, INSERT); |
0 | 451 obstack_free (&expr_obstack, tmp_expr); |
452 | |
453 if (!slot) | |
454 return NULL; | |
455 else | |
456 return (*slot); | |
457 } | |
458 | |
459 | |
460 /* Dump all expressions and occurrences that are currently in the | |
461 expression hash table to FILE. */ | |
462 | |
463 /* This helper is called via htab_traverse. */ | |
111 | 464 int |
465 dump_expr_hash_table_entry (expr **slot, FILE *file) | |
0 | 466 { |
111 | 467 struct expr *exprs = *slot; |
0 | 468 struct occr *occr; |
469 | |
470 fprintf (file, "expr: "); | |
111 | 471 print_rtl (file, exprs->expr); |
472 fprintf (file,"\nhashcode: %u\n", exprs->hash); | |
0 | 473 fprintf (file,"list of occurrences:\n"); |
111 | 474 occr = exprs->avail_occr; |
0 | 475 while (occr) |
476 { | |
111 | 477 rtx_insn *insn = occr->insn; |
0 | 478 print_rtl_single (file, insn); |
479 fprintf (file, "\n"); | |
480 occr = occr->next; | |
481 } | |
482 fprintf (file, "\n"); | |
483 return 1; | |
484 } | |
485 | |
486 static void | |
487 dump_hash_table (FILE *file) | |
488 { | |
489 fprintf (file, "\n\nexpression hash table\n"); | |
490 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n", | |
111 | 491 (long) expr_table->size (), |
492 (long) expr_table->elements (), | |
493 expr_table->collisions ()); | |
145 | 494 if (!expr_table->is_empty ()) |
0 | 495 { |
496 fprintf (file, "\n\ntable entries:\n"); | |
111 | 497 expr_table->traverse <FILE *, dump_expr_hash_table_entry> (file); |
0 | 498 } |
499 fprintf (file, "\n"); | |
500 } | |
501 | |
502 /* Return true if register X is recorded as being set by an instruction | |
503 whose CUID is greater than the one given. */ | |
504 | |
505 static bool | |
506 reg_changed_after_insn_p (rtx x, int cuid) | |
507 { | |
508 unsigned int regno, end_regno; | |
509 | |
510 regno = REGNO (x); | |
111 | 511 end_regno = END_REGNO (x); |
0 | 512 do |
513 if (reg_avail_info[regno] > cuid) | |
514 return true; | |
515 while (++regno < end_regno); | |
516 return false; | |
517 } | |
518 | |
519 /* Return nonzero if the operands of expression X are unchanged | |
520 1) from the start of INSN's basic block up to but not including INSN | |
521 if AFTER_INSN is false, or | |
522 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */ | |
523 | |
524 static bool | |
111 | 525 oprs_unchanged_p (rtx x, rtx_insn *insn, bool after_insn) |
0 | 526 { |
527 int i, j; | |
528 enum rtx_code code; | |
529 const char *fmt; | |
530 | |
531 if (x == 0) | |
532 return 1; | |
533 | |
534 code = GET_CODE (x); | |
535 switch (code) | |
536 { | |
537 case REG: | |
538 /* We are called after register allocation. */ | |
539 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER); | |
540 if (after_insn) | |
541 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1); | |
542 else | |
543 return !reg_changed_after_insn_p (x, 0); | |
544 | |
545 case MEM: | |
546 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn)) | |
547 return 0; | |
548 else | |
549 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn); | |
550 | |
551 case PC: | |
552 case CC0: /*FIXME*/ | |
553 case CONST: | |
111 | 554 CASE_CONST_ANY: |
0 | 555 case SYMBOL_REF: |
556 case LABEL_REF: | |
557 case ADDR_VEC: | |
558 case ADDR_DIFF_VEC: | |
559 return 1; | |
560 | |
561 case PRE_DEC: | |
562 case PRE_INC: | |
563 case POST_DEC: | |
564 case POST_INC: | |
565 case PRE_MODIFY: | |
566 case POST_MODIFY: | |
567 if (after_insn) | |
568 return 0; | |
569 break; | |
570 | |
571 default: | |
572 break; | |
573 } | |
574 | |
575 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--) | |
576 { | |
577 if (fmt[i] == 'e') | |
578 { | |
579 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn)) | |
580 return 0; | |
581 } | |
582 else if (fmt[i] == 'E') | |
583 for (j = 0; j < XVECLEN (x, i); j++) | |
584 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn)) | |
585 return 0; | |
586 } | |
587 | |
588 return 1; | |
589 } | |
590 | |
591 | |
592 /* Used for communication between find_mem_conflicts and | |
593 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a | |
594 conflict between two memory references. | |
595 This is a bit of a hack to work around the limitations of note_stores. */ | |
596 static int mems_conflict_p; | |
597 | |
598 /* DEST is the output of an instruction. If it is a memory reference, and | |
599 possibly conflicts with the load found in DATA, then set mems_conflict_p | |
600 to a nonzero value. */ | |
601 | |
602 static void | |
603 find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, | |
604 void *data) | |
605 { | |
606 rtx mem_op = (rtx) data; | |
607 | |
608 while (GET_CODE (dest) == SUBREG | |
609 || GET_CODE (dest) == ZERO_EXTRACT | |
610 || GET_CODE (dest) == STRICT_LOW_PART) | |
611 dest = XEXP (dest, 0); | |
612 | |
613 /* If DEST is not a MEM, then it will not conflict with the load. Note | |
614 that function calls are assumed to clobber memory, but are handled | |
615 elsewhere. */ | |
616 if (! MEM_P (dest)) | |
617 return; | |
618 | |
111 | 619 if (true_dependence (dest, GET_MODE (dest), mem_op)) |
0 | 620 mems_conflict_p = 1; |
621 } | |
622 | |
623 | |
624 /* Return nonzero if the expression in X (a memory reference) is killed | |
625 in the current basic block before (if AFTER_INSN is false) or after | |
626 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT. | |
627 | |
628 This function assumes that the modifies_mem table is flushed when | |
629 the hash table construction or redundancy elimination phases start | |
630 processing a new basic block. */ | |
631 | |
632 static int | |
633 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn) | |
634 { | |
635 struct modifies_mem *list_entry = modifies_mem_list; | |
636 | |
637 while (list_entry) | |
638 { | |
111 | 639 rtx_insn *setter = list_entry->insn; |
0 | 640 |
641 /* Ignore entries in the list that do not apply. */ | |
642 if ((after_insn | |
643 && INSN_CUID (setter) < uid_limit) | |
644 || (! after_insn | |
645 && INSN_CUID (setter) > uid_limit)) | |
646 { | |
647 list_entry = list_entry->next; | |
648 continue; | |
649 } | |
650 | |
651 /* If SETTER is a call everything is clobbered. Note that calls | |
652 to pure functions are never put on the list, so we need not | |
653 worry about them. */ | |
654 if (CALL_P (setter)) | |
655 return 1; | |
656 | |
657 /* SETTER must be an insn of some kind that sets memory. Call | |
658 note_stores to examine each hunk of memory that is modified. | |
659 It will set mems_conflict_p to nonzero if there may be a | |
660 conflict between X and SETTER. */ | |
661 mems_conflict_p = 0; | |
145 | 662 note_stores (setter, find_mem_conflicts, x); |
0 | 663 if (mems_conflict_p) |
664 return 1; | |
665 | |
666 list_entry = list_entry->next; | |
667 } | |
668 return 0; | |
669 } | |
670 | |
671 | |
672 /* Record register first/last/block set information for REGNO in INSN. */ | |
673 | |
674 static inline void | |
111 | 675 record_last_reg_set_info (rtx_insn *insn, rtx reg) |
0 | 676 { |
677 unsigned int regno, end_regno; | |
678 | |
679 regno = REGNO (reg); | |
111 | 680 end_regno = END_REGNO (reg); |
0 | 681 do |
682 reg_avail_info[regno] = INSN_CUID (insn); | |
683 while (++regno < end_regno); | |
684 } | |
685 | |
686 static inline void | |
111 | 687 record_last_reg_set_info_regno (rtx_insn *insn, int regno) |
0 | 688 { |
689 reg_avail_info[regno] = INSN_CUID (insn); | |
690 } | |
691 | |
692 | |
693 /* Record memory modification information for INSN. We do not actually care | |
694 about the memory location(s) that are set, or even how they are set (consider | |
695 a CALL_INSN). We merely need to record which insns modify memory. */ | |
696 | |
697 static void | |
111 | 698 record_last_mem_set_info (rtx_insn *insn) |
0 | 699 { |
700 struct modifies_mem *list_entry; | |
701 | |
702 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack, | |
703 sizeof (struct modifies_mem)); | |
704 list_entry->insn = insn; | |
705 list_entry->next = modifies_mem_list; | |
706 modifies_mem_list = list_entry; | |
111 | 707 |
708 record_last_mem_set_info_common (insn, modify_mem_list, | |
709 canon_modify_mem_list, | |
710 modify_mem_list_set, | |
711 blocks_with_calls); | |
0 | 712 } |
713 | |
714 /* Called from compute_hash_table via note_stores to handle one | |
715 SET or CLOBBER in an insn. DATA is really the instruction in which | |
716 the SET is taking place. */ | |
717 | |
718 static void | |
719 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data) | |
720 { | |
111 | 721 rtx_insn *last_set_insn = (rtx_insn *) data; |
0 | 722 |
723 if (GET_CODE (dest) == SUBREG) | |
724 dest = SUBREG_REG (dest); | |
725 | |
726 if (REG_P (dest)) | |
727 record_last_reg_set_info (last_set_insn, dest); | |
728 else if (MEM_P (dest)) | |
729 { | |
730 /* Ignore pushes, they don't clobber memory. They may still | |
731 clobber the stack pointer though. Some targets do argument | |
732 pushes without adding REG_INC notes. See e.g. PR25196, | |
733 where a pushsi2 on i386 doesn't have REG_INC notes. Note | |
734 such changes here too. */ | |
735 if (! push_operand (dest, GET_MODE (dest))) | |
736 record_last_mem_set_info (last_set_insn); | |
737 else | |
738 record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM); | |
739 } | |
740 } | |
741 | |
742 | |
743 /* Reset tables used to keep track of what's still available since the | |
744 start of the block. */ | |
745 | |
746 static void | |
747 reset_opr_set_tables (void) | |
748 { | |
749 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int)); | |
750 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom); | |
751 modifies_mem_list = NULL; | |
752 } | |
753 | |
754 | |
755 /* Record things set by INSN. | |
756 This data is used by oprs_unchanged_p. */ | |
757 | |
758 static void | |
111 | 759 record_opr_changes (rtx_insn *insn) |
0 | 760 { |
761 rtx note; | |
762 | |
763 /* Find all stores and record them. */ | |
145 | 764 note_stores (insn, record_last_set_info, insn); |
0 | 765 |
766 /* Also record autoincremented REGs for this insn as changed. */ | |
767 for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) | |
768 if (REG_NOTE_KIND (note) == REG_INC) | |
769 record_last_reg_set_info (insn, XEXP (note, 0)); | |
770 | |
771 /* Finally, if this is a call, record all call clobbers. */ | |
772 if (CALL_P (insn)) | |
773 { | |
774 unsigned int regno; | |
111 | 775 hard_reg_set_iterator hrsi; |
145 | 776 /* We don't track modes of hard registers, so we need to be |
777 conservative and assume that partial kills are full kills. */ | |
778 HARD_REG_SET callee_clobbers | |
779 = insn_callee_abi (insn).full_and_partial_reg_clobbers (); | |
780 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi) | |
111 | 781 record_last_reg_set_info_regno (insn, regno); |
0 | 782 |
783 if (! RTL_CONST_OR_PURE_CALL_P (insn)) | |
784 record_last_mem_set_info (insn); | |
785 } | |
786 } | |
787 | |
788 | |
789 /* Scan the pattern of INSN and add an entry to the hash TABLE. | |
790 After reload we are interested in loads/stores only. */ | |
791 | |
792 static void | |
111 | 793 hash_scan_set (rtx_insn *insn) |
0 | 794 { |
795 rtx pat = PATTERN (insn); | |
796 rtx src = SET_SRC (pat); | |
797 rtx dest = SET_DEST (pat); | |
798 | |
799 /* We are only interested in loads and stores. */ | |
800 if (! MEM_P (src) && ! MEM_P (dest)) | |
801 return; | |
802 | |
803 /* Don't mess with jumps and nops. */ | |
804 if (JUMP_P (insn) || set_noop_p (pat)) | |
805 return; | |
806 | |
807 if (REG_P (dest)) | |
808 { | |
809 if (/* Don't CSE something if we can't do a reg/reg copy. */ | |
810 can_copy_p (GET_MODE (dest)) | |
811 /* Is SET_SRC something we want to gcse? */ | |
812 && general_operand (src, GET_MODE (src)) | |
813 #ifdef STACK_REGS | |
814 /* Never consider insns touching the register stack. It may | |
815 create situations that reg-stack cannot handle (e.g. a stack | |
816 register live across an abnormal edge). */ | |
817 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG) | |
818 #endif | |
819 /* An expression is not available if its operands are | |
820 subsequently modified, including this insn. */ | |
821 && oprs_unchanged_p (src, insn, true)) | |
822 { | |
823 insert_expr_in_table (src, insn); | |
824 } | |
825 } | |
826 else if (REG_P (src)) | |
827 { | |
828 /* Only record sets of pseudo-regs in the hash table. */ | |
829 if (/* Don't CSE something if we can't do a reg/reg copy. */ | |
830 can_copy_p (GET_MODE (src)) | |
831 /* Is SET_DEST something we want to gcse? */ | |
832 && general_operand (dest, GET_MODE (dest)) | |
833 #ifdef STACK_REGS | |
834 /* As above for STACK_REGS. */ | |
835 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG) | |
836 #endif | |
837 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest))) | |
838 /* Check if the memory expression is killed after insn. */ | |
839 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true) | |
840 && oprs_unchanged_p (XEXP (dest, 0), insn, true)) | |
841 { | |
842 insert_expr_in_table (dest, insn); | |
843 } | |
844 } | |
845 } | |
846 | |
847 | |
848 /* Create hash table of memory expressions available at end of basic | |
849 blocks. Basically you should think of this hash table as the | |
850 representation of AVAIL_OUT. This is the set of expressions that | |
851 is generated in a basic block and not killed before the end of the | |
852 same basic block. Notice that this is really a local computation. */ | |
853 | |
854 static void | |
855 compute_hash_table (void) | |
856 { | |
857 basic_block bb; | |
858 | |
111 | 859 FOR_EACH_BB_FN (bb, cfun) |
0 | 860 { |
111 | 861 rtx_insn *insn; |
0 | 862 |
863 /* First pass over the instructions records information used to | |
864 determine when registers and memory are last set. | |
865 Since we compute a "local" AVAIL_OUT, reset the tables that | |
866 help us keep track of what has been modified since the start | |
867 of the block. */ | |
868 reset_opr_set_tables (); | |
869 FOR_BB_INSNS (bb, insn) | |
870 { | |
871 if (INSN_P (insn)) | |
872 record_opr_changes (insn); | |
873 } | |
874 | |
875 /* The next pass actually builds the hash table. */ | |
876 FOR_BB_INSNS (bb, insn) | |
877 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET) | |
878 hash_scan_set (insn); | |
879 } | |
880 } | |
881 | |
882 | |
883 /* Check if register REG is killed in any insn waiting to be inserted on | |
884 edge E. This function is required to check that our data flow analysis | |
885 is still valid prior to commit_edge_insertions. */ | |
886 | |
887 static bool | |
888 reg_killed_on_edge (rtx reg, edge e) | |
889 { | |
111 | 890 rtx_insn *insn; |
0 | 891 |
892 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn)) | |
893 if (INSN_P (insn) && reg_set_p (reg, insn)) | |
894 return true; | |
895 | |
896 return false; | |
897 } | |
898 | |
899 /* Similar to above - check if register REG is used in any insn waiting | |
900 to be inserted on edge E. | |
901 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p | |
902 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */ | |
903 | |
904 static bool | |
905 reg_used_on_edge (rtx reg, edge e) | |
906 { | |
111 | 907 rtx_insn *insn; |
0 | 908 |
909 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn)) | |
910 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn))) | |
911 return true; | |
912 | |
913 return false; | |
914 } | |
915 | |
916 /* Return the loaded/stored register of a load/store instruction. */ | |
917 | |
918 static rtx | |
111 | 919 get_avail_load_store_reg (rtx_insn *insn) |
0 | 920 { |
921 if (REG_P (SET_DEST (PATTERN (insn)))) | |
922 /* A load. */ | |
111 | 923 return SET_DEST (PATTERN (insn)); |
0 | 924 else |
925 { | |
926 /* A store. */ | |
927 gcc_assert (REG_P (SET_SRC (PATTERN (insn)))); | |
928 return SET_SRC (PATTERN (insn)); | |
929 } | |
930 } | |
931 | |
932 /* Return nonzero if the predecessors of BB are "well behaved". */ | |
933 | |
934 static bool | |
935 bb_has_well_behaved_predecessors (basic_block bb) | |
936 { | |
937 edge pred; | |
938 edge_iterator ei; | |
939 | |
940 if (EDGE_COUNT (bb->preds) == 0) | |
941 return false; | |
942 | |
943 FOR_EACH_EDGE (pred, ei, bb->preds) | |
944 { | |
111 | 945 /* commit_one_edge_insertion refuses to insert on abnormal edges even if |
946 the source has only one successor so EDGE_CRITICAL_P is too weak. */ | |
947 if ((pred->flags & EDGE_ABNORMAL) && !single_pred_p (pred->dest)) | |
0 | 948 return false; |
949 | |
111 | 950 if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label) |
951 return false; | |
952 | |
953 if (tablejump_p (BB_END (pred->src), NULL, NULL)) | |
0 | 954 return false; |
955 } | |
956 return true; | |
957 } | |
958 | |
959 | |
960 /* Search for the occurrences of expression in BB. */ | |
961 | |
962 static struct occr* | |
111 | 963 get_bb_avail_insn (basic_block bb, struct occr *orig_occr, int bitmap_index) |
0 | 964 { |
111 | 965 struct occr *occr = orig_occr; |
966 | |
0 | 967 for (; occr != NULL; occr = occr->next) |
968 if (BLOCK_FOR_INSN (occr->insn) == bb) | |
969 return occr; | |
111 | 970 |
971 /* If we could not find an occurrence in BB, see if BB | |
972 has a single predecessor with an occurrence that is | |
973 transparent through BB. */ | |
145 | 974 if (transp |
975 && single_pred_p (bb) | |
111 | 976 && bitmap_bit_p (transp[bb->index], bitmap_index) |
977 && (occr = get_bb_avail_insn (single_pred (bb), orig_occr, bitmap_index))) | |
978 { | |
979 rtx avail_reg = get_avail_load_store_reg (occr->insn); | |
980 if (!reg_set_between_p (avail_reg, | |
981 PREV_INSN (BB_HEAD (bb)), | |
982 NEXT_INSN (BB_END (bb))) | |
983 && !reg_killed_on_edge (avail_reg, single_pred_edge (bb))) | |
984 return occr; | |
985 } | |
986 | |
0 | 987 return NULL; |
988 } | |
989 | |
990 | |
111 | 991 /* This helper is called via htab_traverse. */ |
992 int | |
993 compute_expr_transp (expr **slot, FILE *dump_file ATTRIBUTE_UNUSED) | |
994 { | |
995 struct expr *expr = *slot; | |
996 | |
997 compute_transp (expr->expr, expr->bitmap_index, transp, | |
998 blocks_with_calls, modify_mem_list_set, | |
999 canon_modify_mem_list); | |
1000 return 1; | |
1001 } | |
1002 | |
0 | 1003 /* This handles the case where several stores feed a partially redundant |
1004 load. It checks if the redundancy elimination is possible and if it's | |
1005 worth it. | |
1006 | |
1007 Redundancy elimination is possible if, | |
1008 1) None of the operands of an insn have been modified since the start | |
1009 of the current basic block. | |
1010 2) In any predecessor of the current basic block, the same expression | |
1011 is generated. | |
1012 | |
1013 See the function body for the heuristics that determine if eliminating | |
1014 a redundancy is also worth doing, assuming it is possible. */ | |
1015 | |
1016 static void | |
111 | 1017 eliminate_partially_redundant_load (basic_block bb, rtx_insn *insn, |
0 | 1018 struct expr *expr) |
1019 { | |
1020 edge pred; | |
111 | 1021 rtx_insn *avail_insn = NULL; |
0 | 1022 rtx avail_reg; |
1023 rtx dest, pat; | |
1024 struct occr *a_occr; | |
1025 struct unoccr *occr, *avail_occrs = NULL; | |
1026 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL; | |
1027 int npred_ok = 0; | |
111 | 1028 profile_count ok_count = profile_count::zero (); |
1029 /* Redundant load execution count. */ | |
1030 profile_count critical_count = profile_count::zero (); | |
1031 /* Execution count of critical edges. */ | |
0 | 1032 edge_iterator ei; |
1033 bool critical_edge_split = false; | |
1034 | |
1035 /* The execution count of the loads to be added to make the | |
1036 load fully redundant. */ | |
111 | 1037 profile_count not_ok_count = profile_count::zero (); |
0 | 1038 basic_block pred_bb; |
1039 | |
1040 pat = PATTERN (insn); | |
1041 dest = SET_DEST (pat); | |
1042 | |
1043 /* Check that the loaded register is not used, set, or killed from the | |
1044 beginning of the block. */ | |
1045 if (reg_changed_after_insn_p (dest, 0) | |
1046 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn)) | |
1047 return; | |
1048 | |
1049 /* Check potential for replacing load with copy for predecessors. */ | |
1050 FOR_EACH_EDGE (pred, ei, bb->preds) | |
1051 { | |
111 | 1052 rtx_insn *next_pred_bb_end; |
0 | 1053 |
111 | 1054 avail_insn = NULL; |
0 | 1055 avail_reg = NULL_RTX; |
1056 pred_bb = pred->src; | |
111 | 1057 for (a_occr = get_bb_avail_insn (pred_bb, |
1058 expr->avail_occr, | |
1059 expr->bitmap_index); | |
1060 a_occr; | |
1061 a_occr = get_bb_avail_insn (pred_bb, | |
1062 a_occr->next, | |
1063 expr->bitmap_index)) | |
0 | 1064 { |
1065 /* Check if the loaded register is not used. */ | |
1066 avail_insn = a_occr->insn; | |
1067 avail_reg = get_avail_load_store_reg (avail_insn); | |
1068 gcc_assert (avail_reg); | |
55
77e2b8dfacca
update it from 4.4.3 to 4.5.0
ryoma <e075725@ie.u-ryukyu.ac.jp>
parents:
0
diff
changeset
|
1069 |
0 | 1070 /* Make sure we can generate a move from register avail_reg to |
1071 dest. */ | |
111 | 1072 rtx_insn *move = gen_move_insn (copy_rtx (dest), |
1073 copy_rtx (avail_reg)); | |
1074 extract_insn (move); | |
1075 if (! constrain_operands (1, get_preferred_alternatives (insn, | |
1076 pred_bb)) | |
0 | 1077 || reg_killed_on_edge (avail_reg, pred) |
1078 || reg_used_on_edge (dest, pred)) | |
1079 { | |
1080 avail_insn = NULL; | |
1081 continue; | |
1082 } | |
111 | 1083 next_pred_bb_end = NEXT_INSN (BB_END (BLOCK_FOR_INSN (avail_insn))); |
0 | 1084 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end)) |
1085 /* AVAIL_INSN remains non-null. */ | |
1086 break; | |
1087 else | |
1088 avail_insn = NULL; | |
1089 } | |
1090 | |
111 | 1091 if (EDGE_CRITICAL_P (pred) && pred->count ().initialized_p ()) |
1092 critical_count += pred->count (); | |
0 | 1093 |
1094 if (avail_insn != NULL_RTX) | |
1095 { | |
1096 npred_ok++; | |
111 | 1097 if (pred->count ().initialized_p ()) |
1098 ok_count = ok_count + pred->count (); | |
0 | 1099 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest), |
1100 copy_rtx (avail_reg))))) | |
1101 { | |
1102 /* Check if there is going to be a split. */ | |
1103 if (EDGE_CRITICAL_P (pred)) | |
1104 critical_edge_split = true; | |
1105 } | |
1106 else /* Its a dead move no need to generate. */ | |
1107 continue; | |
1108 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack, | |
1109 sizeof (struct unoccr)); | |
1110 occr->insn = avail_insn; | |
1111 occr->pred = pred; | |
1112 occr->next = avail_occrs; | |
1113 avail_occrs = occr; | |
1114 if (! rollback_unoccr) | |
1115 rollback_unoccr = occr; | |
1116 } | |
1117 else | |
1118 { | |
1119 /* Adding a load on a critical edge will cause a split. */ | |
1120 if (EDGE_CRITICAL_P (pred)) | |
1121 critical_edge_split = true; | |
111 | 1122 if (pred->count ().initialized_p ()) |
1123 not_ok_count = not_ok_count + pred->count (); | |
0 | 1124 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack, |
1125 sizeof (struct unoccr)); | |
111 | 1126 unoccr->insn = NULL; |
0 | 1127 unoccr->pred = pred; |
1128 unoccr->next = unavail_occrs; | |
1129 unavail_occrs = unoccr; | |
1130 if (! rollback_unoccr) | |
1131 rollback_unoccr = unoccr; | |
1132 } | |
1133 } | |
1134 | |
1135 if (/* No load can be replaced by copy. */ | |
1136 npred_ok == 0 | |
55
77e2b8dfacca
update it from 4.4.3 to 4.5.0
ryoma <e075725@ie.u-ryukyu.ac.jp>
parents:
0
diff
changeset
|
1137 /* Prevent exploding the code. */ |
0 | 1138 || (optimize_bb_for_size_p (bb) && npred_ok > 1) |
55
77e2b8dfacca
update it from 4.4.3 to 4.5.0
ryoma <e075725@ie.u-ryukyu.ac.jp>
parents:
0
diff
changeset
|
1139 /* If we don't have profile information we cannot tell if splitting |
0 | 1140 a critical edge is profitable or not so don't do it. */ |
131 | 1141 || ((!profile_info || profile_status_for_fn (cfun) != PROFILE_READ |
0 | 1142 || targetm.cannot_modify_jumps_p ()) |
1143 && critical_edge_split)) | |
1144 goto cleanup; | |
1145 | |
1146 /* Check if it's worth applying the partial redundancy elimination. */ | |
111 | 1147 if (ok_count.to_gcov_type () |
145 | 1148 < param_gcse_after_reload_partial_fraction * not_ok_count.to_gcov_type ()) |
0 | 1149 goto cleanup; |
145 | 1150 |
1151 gcov_type threshold; | |
1152 #if (GCC_VERSION >= 5000) | |
1153 if (__builtin_mul_overflow (param_gcse_after_reload_critical_fraction, | |
1154 critical_count.to_gcov_type (), &threshold)) | |
1155 threshold = profile_count::max_count; | |
1156 #else | |
1157 threshold | |
1158 = (param_gcse_after_reload_critical_fraction | |
1159 * critical_count.to_gcov_type ()); | |
1160 #endif | |
1161 | |
1162 if (ok_count.to_gcov_type () < threshold) | |
0 | 1163 goto cleanup; |
1164 | |
1165 /* Generate moves to the loaded register from where | |
1166 the memory is available. */ | |
1167 for (occr = avail_occrs; occr; occr = occr->next) | |
1168 { | |
1169 avail_insn = occr->insn; | |
1170 pred = occr->pred; | |
1171 /* Set avail_reg to be the register having the value of the | |
1172 memory. */ | |
1173 avail_reg = get_avail_load_store_reg (avail_insn); | |
1174 gcc_assert (avail_reg); | |
1175 | |
1176 insert_insn_on_edge (gen_move_insn (copy_rtx (dest), | |
1177 copy_rtx (avail_reg)), | |
1178 pred); | |
1179 stats.moves_inserted++; | |
1180 | |
1181 if (dump_file) | |
1182 fprintf (dump_file, | |
1183 "generating move from %d to %d on edge from %d to %d\n", | |
1184 REGNO (avail_reg), | |
1185 REGNO (dest), | |
1186 pred->src->index, | |
1187 pred->dest->index); | |
1188 } | |
1189 | |
1190 /* Regenerate loads where the memory is unavailable. */ | |
1191 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next) | |
1192 { | |
1193 pred = unoccr->pred; | |
1194 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred); | |
1195 stats.copies_inserted++; | |
1196 | |
1197 if (dump_file) | |
1198 { | |
1199 fprintf (dump_file, | |
1200 "generating on edge from %d to %d a copy of load: ", | |
1201 pred->src->index, | |
1202 pred->dest->index); | |
1203 print_rtl (dump_file, PATTERN (insn)); | |
1204 fprintf (dump_file, "\n"); | |
1205 } | |
1206 } | |
1207 | |
1208 /* Delete the insn if it is not available in this block and mark it | |
1209 for deletion if it is available. If insn is available it may help | |
1210 discover additional redundancies, so mark it for later deletion. */ | |
111 | 1211 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr, expr->bitmap_index); |
0 | 1212 a_occr && (a_occr->insn != insn); |
111 | 1213 a_occr = get_bb_avail_insn (bb, a_occr->next, expr->bitmap_index)) |
1214 ; | |
0 | 1215 |
1216 if (!a_occr) | |
1217 { | |
1218 stats.insns_deleted++; | |
1219 | |
1220 if (dump_file) | |
1221 { | |
1222 fprintf (dump_file, "deleting insn:\n"); | |
1223 print_rtl_single (dump_file, insn); | |
1224 fprintf (dump_file, "\n"); | |
1225 } | |
1226 delete_insn (insn); | |
1227 } | |
1228 else | |
1229 a_occr->deleted_p = 1; | |
1230 | |
1231 cleanup: | |
1232 if (rollback_unoccr) | |
1233 obstack_free (&unoccr_obstack, rollback_unoccr); | |
1234 } | |
1235 | |
1236 /* Performing the redundancy elimination as described before. */ | |
1237 | |
1238 static void | |
1239 eliminate_partially_redundant_loads (void) | |
1240 { | |
111 | 1241 rtx_insn *insn; |
0 | 1242 basic_block bb; |
1243 | |
1244 /* Note we start at block 1. */ | |
1245 | |
111 | 1246 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)) |
0 | 1247 return; |
1248 | |
1249 FOR_BB_BETWEEN (bb, | |
111 | 1250 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->next_bb, |
1251 EXIT_BLOCK_PTR_FOR_FN (cfun), | |
0 | 1252 next_bb) |
1253 { | |
1254 /* Don't try anything on basic blocks with strange predecessors. */ | |
1255 if (! bb_has_well_behaved_predecessors (bb)) | |
1256 continue; | |
1257 | |
1258 /* Do not try anything on cold basic blocks. */ | |
1259 if (optimize_bb_for_size_p (bb)) | |
1260 continue; | |
1261 | |
1262 /* Reset the table of things changed since the start of the current | |
1263 basic block. */ | |
1264 reset_opr_set_tables (); | |
1265 | |
1266 /* Look at all insns in the current basic block and see if there are | |
1267 any loads in it that we can record. */ | |
1268 FOR_BB_INSNS (bb, insn) | |
1269 { | |
1270 /* Is it a load - of the form (set (reg) (mem))? */ | |
1271 if (NONJUMP_INSN_P (insn) | |
1272 && GET_CODE (PATTERN (insn)) == SET | |
1273 && REG_P (SET_DEST (PATTERN (insn))) | |
1274 && MEM_P (SET_SRC (PATTERN (insn)))) | |
1275 { | |
1276 rtx pat = PATTERN (insn); | |
1277 rtx src = SET_SRC (pat); | |
1278 struct expr *expr; | |
1279 | |
1280 if (!MEM_VOLATILE_P (src) | |
1281 && GET_MODE (src) != BLKmode | |
1282 && general_operand (src, GET_MODE (src)) | |
1283 /* Are the operands unchanged since the start of the | |
1284 block? */ | |
1285 && oprs_unchanged_p (src, insn, false) | |
67
f6334be47118
update gcc from gcc-4.6-20100522 to gcc-4.6-20110318
nobuyasu <dimolto@cr.ie.u-ryukyu.ac.jp>
parents:
63
diff
changeset
|
1286 && !(cfun->can_throw_non_call_exceptions && may_trap_p (src)) |
0 | 1287 && !side_effects_p (src) |
1288 /* Is the expression recorded? */ | |
1289 && (expr = lookup_expr_in_table (src)) != NULL) | |
1290 { | |
1291 /* We now have a load (insn) and an available memory at | |
1292 its BB start (expr). Try to remove the loads if it is | |
1293 redundant. */ | |
1294 eliminate_partially_redundant_load (bb, insn, expr); | |
1295 } | |
1296 } | |
1297 | |
1298 /* Keep track of everything modified by this insn, so that we | |
1299 know what has been modified since the start of the current | |
1300 basic block. */ | |
1301 if (INSN_P (insn)) | |
1302 record_opr_changes (insn); | |
1303 } | |
1304 } | |
1305 | |
1306 commit_edge_insertions (); | |
1307 } | |
1308 | |
1309 /* Go over the expression hash table and delete insns that were | |
1310 marked for later deletion. */ | |
1311 | |
1312 /* This helper is called via htab_traverse. */ | |
111 | 1313 int |
1314 delete_redundant_insns_1 (expr **slot, void *data ATTRIBUTE_UNUSED) | |
0 | 1315 { |
111 | 1316 struct expr *exprs = *slot; |
0 | 1317 struct occr *occr; |
1318 | |
111 | 1319 for (occr = exprs->avail_occr; occr != NULL; occr = occr->next) |
0 | 1320 { |
1321 if (occr->deleted_p && dbg_cnt (gcse2_delete)) | |
1322 { | |
1323 delete_insn (occr->insn); | |
1324 stats.insns_deleted++; | |
1325 | |
1326 if (dump_file) | |
1327 { | |
1328 fprintf (dump_file, "deleting insn:\n"); | |
1329 print_rtl_single (dump_file, occr->insn); | |
1330 fprintf (dump_file, "\n"); | |
1331 } | |
1332 } | |
1333 } | |
1334 | |
1335 return 1; | |
1336 } | |
1337 | |
1338 static void | |
1339 delete_redundant_insns (void) | |
1340 { | |
111 | 1341 expr_table->traverse <void *, delete_redundant_insns_1> (NULL); |
0 | 1342 if (dump_file) |
1343 fprintf (dump_file, "\n"); | |
1344 } | |
1345 | |
1346 /* Main entry point of the GCSE after reload - clean some redundant loads | |
1347 due to spilling. */ | |
1348 | |
1349 static void | |
1350 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED) | |
1351 { | |
145 | 1352 /* Disable computing transparentness if it is too expensive. */ |
1353 bool do_transp | |
1354 = !gcse_or_cprop_is_too_expensive (_("using simple load CSE after register " | |
1355 "allocation")); | |
0 | 1356 |
1357 memset (&stats, 0, sizeof (stats)); | |
1358 | |
1359 /* Allocate memory for this pass. | |
1360 Also computes and initializes the insns' CUIDs. */ | |
1361 alloc_mem (); | |
1362 | |
1363 /* We need alias analysis. */ | |
1364 init_alias_analysis (); | |
1365 | |
1366 compute_hash_table (); | |
1367 | |
1368 if (dump_file) | |
1369 dump_hash_table (dump_file); | |
1370 | |
145 | 1371 if (!expr_table->is_empty ()) |
0 | 1372 { |
111 | 1373 /* Knowing which MEMs are transparent through a block can signifiantly |
1374 increase the number of redundant loads found. So compute transparency | |
1375 information for each memory expression in the hash table. */ | |
1376 df_analyze (); | |
145 | 1377 if (do_transp) |
1378 { | |
1379 /* This cannot be part of the normal allocation routine because | |
1380 we have to know the number of elements in the hash table. */ | |
1381 transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), | |
1382 expr_table->elements ()); | |
1383 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun)); | |
1384 expr_table->traverse <FILE *, compute_expr_transp> (dump_file); | |
1385 } | |
1386 else | |
1387 transp = NULL; | |
0 | 1388 eliminate_partially_redundant_loads (); |
1389 delete_redundant_insns (); | |
145 | 1390 if (do_transp) |
1391 sbitmap_vector_free (transp); | |
0 | 1392 |
1393 if (dump_file) | |
1394 { | |
1395 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n"); | |
1396 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted); | |
1397 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted); | |
1398 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted); | |
1399 fprintf (dump_file, "\n\n"); | |
1400 } | |
111 | 1401 |
1402 statistics_counter_event (cfun, "copies inserted", | |
1403 stats.copies_inserted); | |
1404 statistics_counter_event (cfun, "moves inserted", | |
1405 stats.moves_inserted); | |
1406 statistics_counter_event (cfun, "insns deleted", | |
1407 stats.insns_deleted); | |
0 | 1408 } |
55
77e2b8dfacca
update it from 4.4.3 to 4.5.0
ryoma <e075725@ie.u-ryukyu.ac.jp>
parents:
0
diff
changeset
|
1409 |
0 | 1410 /* We are finished with alias. */ |
1411 end_alias_analysis (); | |
1412 | |
1413 free_mem (); | |
1414 } | |
1415 | |
1416 | |
1417 | |
1418 static unsigned int | |
1419 rest_of_handle_gcse2 (void) | |
1420 { | |
1421 gcse_after_reload_main (get_insns ()); | |
1422 rebuild_jump_labels (get_insns ()); | |
1423 return 0; | |
1424 } | |
1425 | |
111 | 1426 namespace { |
1427 | |
1428 const pass_data pass_data_gcse2 = | |
0 | 1429 { |
111 | 1430 RTL_PASS, /* type */ |
1431 "gcse2", /* name */ | |
1432 OPTGROUP_NONE, /* optinfo_flags */ | |
1433 TV_GCSE_AFTER_RELOAD, /* tv_id */ | |
1434 0, /* properties_required */ | |
1435 0, /* properties_provided */ | |
1436 0, /* properties_destroyed */ | |
1437 0, /* todo_flags_start */ | |
1438 0, /* todo_flags_finish */ | |
0 | 1439 }; |
1440 | |
111 | 1441 class pass_gcse2 : public rtl_opt_pass |
1442 { | |
1443 public: | |
1444 pass_gcse2 (gcc::context *ctxt) | |
1445 : rtl_opt_pass (pass_data_gcse2, ctxt) | |
1446 {} | |
1447 | |
1448 /* opt_pass methods: */ | |
1449 virtual bool gate (function *fun) | |
1450 { | |
1451 return (optimize > 0 && flag_gcse_after_reload | |
1452 && optimize_function_for_speed_p (fun)); | |
1453 } | |
1454 | |
1455 virtual unsigned int execute (function *) { return rest_of_handle_gcse2 (); } | |
1456 | |
1457 }; // class pass_gcse2 | |
1458 | |
1459 } // anon namespace | |
1460 | |
1461 rtl_opt_pass * | |
1462 make_pass_gcse2 (gcc::context *ctxt) | |
1463 { | |
1464 return new pass_gcse2 (ctxt); | |
1465 } |