Mercurial > hg > CbC > CbC_gcc
comparison libquadmath/math/csqrtq.c @ 111:04ced10e8804
gcc 7
author | kono |
---|---|
date | Fri, 27 Oct 2017 22:46:09 +0900 |
parents | |
children | 1830386684a0 |
comparison
equal
deleted
inserted
replaced
68:561a7518be6b | 111:04ced10e8804 |
---|---|
1 /* Complex square root of __float128 value. | |
2 Copyright (C) 1997-2012 Free Software Foundation, Inc. | |
3 This file is part of the GNU C Library. | |
4 Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>. | |
5 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. | |
6 | |
7 The GNU C Library is free software; you can redistribute it and/or | |
8 modify it under the terms of the GNU Lesser General Public | |
9 License as published by the Free Software Foundation; either | |
10 version 2.1 of the License, or (at your option) any later version. | |
11 | |
12 The GNU C Library is distributed in the hope that it will be useful, | |
13 but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
15 Lesser General Public License for more details. | |
16 | |
17 You should have received a copy of the GNU Lesser General Public | |
18 License along with the GNU C Library; if not, see | |
19 <http://www.gnu.org/licenses/>. */ | |
20 | |
21 #include "quadmath-imp.h" | |
22 | |
23 #ifdef HAVE_FENV_H | |
24 # include <fenv.h> | |
25 #endif | |
26 | |
27 | |
28 __complex128 | |
29 csqrtq (__complex128 x) | |
30 { | |
31 __complex128 res; | |
32 int rcls = fpclassifyq (__real__ x); | |
33 int icls = fpclassifyq (__imag__ x); | |
34 | |
35 if (__builtin_expect (rcls <= QUADFP_INFINITE || icls <= QUADFP_INFINITE, 0)) | |
36 { | |
37 if (icls == QUADFP_INFINITE) | |
38 { | |
39 __real__ res = HUGE_VALQ; | |
40 __imag__ res = __imag__ x; | |
41 } | |
42 else if (rcls == QUADFP_INFINITE) | |
43 { | |
44 if (__real__ x < 0.0Q) | |
45 { | |
46 __real__ res = icls == QUADFP_NAN ? nanq ("") : 0; | |
47 __imag__ res = copysignq (HUGE_VALQ, __imag__ x); | |
48 } | |
49 else | |
50 { | |
51 __real__ res = __real__ x; | |
52 __imag__ res = (icls == QUADFP_NAN | |
53 ? nanq ("") : copysignq (0.0Q, __imag__ x)); | |
54 } | |
55 } | |
56 else | |
57 { | |
58 __real__ res = nanq (""); | |
59 __imag__ res = nanq (""); | |
60 } | |
61 } | |
62 else | |
63 { | |
64 if (__builtin_expect (icls == QUADFP_ZERO, 0)) | |
65 { | |
66 if (__real__ x < 0.0Q) | |
67 { | |
68 __real__ res = 0.0Q; | |
69 __imag__ res = copysignq (sqrtq (-__real__ x), | |
70 __imag__ x); | |
71 } | |
72 else | |
73 { | |
74 __real__ res = fabsq (sqrtq (__real__ x)); | |
75 __imag__ res = copysignq (0.0Q, __imag__ x); | |
76 } | |
77 } | |
78 else if (__builtin_expect (rcls == QUADFP_ZERO, 0)) | |
79 { | |
80 __float128 r; | |
81 if (fabsq (__imag__ x) >= 2.0Q * FLT128_MIN) | |
82 r = sqrtq (0.5Q * fabsq (__imag__ x)); | |
83 else | |
84 r = 0.5Q * sqrtq (2.0Q * fabsq (__imag__ x)); | |
85 | |
86 __real__ res = r; | |
87 __imag__ res = copysignq (r, __imag__ x); | |
88 } | |
89 else | |
90 { | |
91 __float128 d, r, s; | |
92 int scale = 0; | |
93 | |
94 if (fabsq (__real__ x) > FLT128_MAX / 4.0Q) | |
95 { | |
96 scale = 1; | |
97 __real__ x = scalbnq (__real__ x, -2 * scale); | |
98 __imag__ x = scalbnq (__imag__ x, -2 * scale); | |
99 } | |
100 else if (fabsq (__imag__ x) > FLT128_MAX / 4.0Q) | |
101 { | |
102 scale = 1; | |
103 if (fabsq (__real__ x) >= 4.0Q * FLT128_MIN) | |
104 __real__ x = scalbnq (__real__ x, -2 * scale); | |
105 else | |
106 __real__ x = 0.0Q; | |
107 __imag__ x = scalbnq (__imag__ x, -2 * scale); | |
108 } | |
109 else if (fabsq (__real__ x) < FLT128_MIN | |
110 && fabsq (__imag__ x) < FLT128_MIN) | |
111 { | |
112 scale = -(FLT128_MANT_DIG / 2); | |
113 __real__ x = scalbnq (__real__ x, -2 * scale); | |
114 __imag__ x = scalbnq (__imag__ x, -2 * scale); | |
115 } | |
116 | |
117 d = hypotq (__real__ x, __imag__ x); | |
118 /* Use the identity 2 Re res Im res = Im x | |
119 to avoid cancellation error in d +/- Re x. */ | |
120 if (__real__ x > 0) | |
121 { | |
122 r = sqrtq (0.5Q * (d + __real__ x)); | |
123 s = 0.5Q * (__imag__ x / r); | |
124 } | |
125 else | |
126 { | |
127 s = sqrtq (0.5Q * (d - __real__ x)); | |
128 r = fabsq (0.5Q * (__imag__ x / s)); | |
129 } | |
130 | |
131 if (scale) | |
132 { | |
133 r = scalbnq (r, scale); | |
134 s = scalbnq (s, scale); | |
135 } | |
136 | |
137 __real__ res = r; | |
138 __imag__ res = copysignq (s, __imag__ x); | |
139 } | |
140 } | |
141 | |
142 return res; | |
143 } |