Mercurial > hg > CbC > CbC_gcc
comparison gcc/config/v850/v850.h @ 0:a06113de4d67
first commit
author | kent <kent@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Jul 2009 14:47:48 +0900 |
parents | |
children | 77e2b8dfacca |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:a06113de4d67 |
---|---|
1 /* Definitions of target machine for GNU compiler. NEC V850 series | |
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, | |
3 2007, 2008 Free Software Foundation, Inc. | |
4 Contributed by Jeff Law (law@cygnus.com). | |
5 | |
6 This file is part of GCC. | |
7 | |
8 GCC is free software; you can redistribute it and/or modify | |
9 it under the terms of the GNU General Public License as published by | |
10 the Free Software Foundation; either version 3, or (at your option) | |
11 any later version. | |
12 | |
13 GCC is distributed in the hope that it will be useful, | |
14 but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 GNU General Public License for more details. | |
17 | |
18 You should have received a copy of the GNU General Public License | |
19 along with GCC; see the file COPYING3. If not see | |
20 <http://www.gnu.org/licenses/>. */ | |
21 | |
22 #ifndef GCC_V850_H | |
23 #define GCC_V850_H | |
24 | |
25 /* These are defined in svr4.h but we want to override them. */ | |
26 #undef LIB_SPEC | |
27 #undef ENDFILE_SPEC | |
28 #undef LINK_SPEC | |
29 #undef STARTFILE_SPEC | |
30 #undef ASM_SPEC | |
31 | |
32 #define TARGET_CPU_generic 1 | |
33 #define TARGET_CPU_v850e 2 | |
34 #define TARGET_CPU_v850e1 3 | |
35 | |
36 #ifndef TARGET_CPU_DEFAULT | |
37 #define TARGET_CPU_DEFAULT TARGET_CPU_generic | |
38 #endif | |
39 | |
40 #define MASK_DEFAULT MASK_V850 | |
41 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}" | |
42 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}" | |
43 #define TARGET_VERSION fprintf (stderr, " (NEC V850)"); | |
44 | |
45 /* Choose which processor will be the default. | |
46 We must pass a -mv850xx option to the assembler if no explicit -mv* option | |
47 is given, because the assembler's processor default may not be correct. */ | |
48 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e | |
49 #undef MASK_DEFAULT | |
50 #define MASK_DEFAULT MASK_V850E | |
51 #undef SUBTARGET_ASM_SPEC | |
52 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e}" | |
53 #undef SUBTARGET_CPP_SPEC | |
54 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e__}" | |
55 #undef TARGET_VERSION | |
56 #define TARGET_VERSION fprintf (stderr, " (NEC V850E)"); | |
57 #endif | |
58 | |
59 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1 | |
60 #undef MASK_DEFAULT | |
61 #define MASK_DEFAULT MASK_V850E /* No practical difference. */ | |
62 #undef SUBTARGET_ASM_SPEC | |
63 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e1}" | |
64 #undef SUBTARGET_CPP_SPEC | |
65 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}" | |
66 #undef TARGET_VERSION | |
67 #define TARGET_VERSION fprintf (stderr, " (NEC V850E1)"); | |
68 #endif | |
69 | |
70 #define ASM_SPEC "%{mv*:-mv%*}" | |
71 #define CPP_SPEC "%{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)" | |
72 | |
73 #define EXTRA_SPECS \ | |
74 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \ | |
75 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC } | |
76 | |
77 /* Names to predefine in the preprocessor for this target machine. */ | |
78 #define TARGET_CPU_CPP_BUILTINS() do { \ | |
79 builtin_define( "__v851__" ); \ | |
80 builtin_define( "__v850" ); \ | |
81 builtin_assert( "machine=v850" ); \ | |
82 builtin_assert( "cpu=v850" ); \ | |
83 if (TARGET_EP) \ | |
84 builtin_define ("__EP__"); \ | |
85 } while(0) | |
86 | |
87 #define MASK_CPU (MASK_V850 | MASK_V850E) | |
88 | |
89 /* Information about the various small memory areas. */ | |
90 struct small_memory_info { | |
91 const char *name; | |
92 long max; | |
93 long physical_max; | |
94 }; | |
95 | |
96 enum small_memory_type { | |
97 /* tiny data area, using EP as base register */ | |
98 SMALL_MEMORY_TDA = 0, | |
99 /* small data area using dp as base register */ | |
100 SMALL_MEMORY_SDA, | |
101 /* zero data area using r0 as base register */ | |
102 SMALL_MEMORY_ZDA, | |
103 SMALL_MEMORY_max | |
104 }; | |
105 | |
106 extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max]; | |
107 | |
108 /* Show we can debug even without a frame pointer. */ | |
109 #define CAN_DEBUG_WITHOUT_FP | |
110 | |
111 /* Some machines may desire to change what optimizations are | |
112 performed for various optimization levels. This macro, if | |
113 defined, is executed once just after the optimization level is | |
114 determined and before the remainder of the command options have | |
115 been parsed. Values set in this macro are used as the default | |
116 values for the other command line options. | |
117 | |
118 LEVEL is the optimization level specified; 2 if `-O2' is | |
119 specified, 1 if `-O' is specified, and 0 if neither is specified. | |
120 | |
121 SIZE is nonzero if `-Os' is specified, 0 otherwise. | |
122 | |
123 You should not use this macro to change options that are not | |
124 machine-specific. These should uniformly selected by the same | |
125 optimization level on all supported machines. Use this macro to | |
126 enable machine-specific optimizations. | |
127 | |
128 *Do not examine `write_symbols' in this macro!* The debugging | |
129 options are not supposed to alter the generated code. */ | |
130 | |
131 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \ | |
132 { \ | |
133 target_flags |= MASK_STRICT_ALIGN; \ | |
134 if (LEVEL) \ | |
135 /* Note - we no longer enable MASK_EP when optimizing. This is \ | |
136 because of a hardware bug which stops the SLD and SST instructions\ | |
137 from correctly detecting some hazards. If the user is sure that \ | |
138 their hardware is fixed or that their program will not encounter \ | |
139 the conditions that trigger the bug then they can enable -mep by \ | |
140 hand. */ \ | |
141 target_flags |= MASK_PROLOG_FUNCTION; \ | |
142 } | |
143 | |
144 | |
145 /* Target machine storage layout */ | |
146 | |
147 /* Define this if most significant bit is lowest numbered | |
148 in instructions that operate on numbered bit-fields. | |
149 This is not true on the NEC V850. */ | |
150 #define BITS_BIG_ENDIAN 0 | |
151 | |
152 /* Define this if most significant byte of a word is the lowest numbered. */ | |
153 /* This is not true on the NEC V850. */ | |
154 #define BYTES_BIG_ENDIAN 0 | |
155 | |
156 /* Define this if most significant word of a multiword number is lowest | |
157 numbered. | |
158 This is not true on the NEC V850. */ | |
159 #define WORDS_BIG_ENDIAN 0 | |
160 | |
161 /* Width of a word, in units (bytes). */ | |
162 #define UNITS_PER_WORD 4 | |
163 | |
164 /* Define this macro if it is advisable to hold scalars in registers | |
165 in a wider mode than that declared by the program. In such cases, | |
166 the value is constrained to be within the bounds of the declared | |
167 type, but kept valid in the wider mode. The signedness of the | |
168 extension may differ from that of the type. | |
169 | |
170 Some simple experiments have shown that leaving UNSIGNEDP alone | |
171 generates the best overall code. */ | |
172 | |
173 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \ | |
174 if (GET_MODE_CLASS (MODE) == MODE_INT \ | |
175 && GET_MODE_SIZE (MODE) < 4) \ | |
176 { (MODE) = SImode; } | |
177 | |
178 /* Allocation boundary (in *bits*) for storing arguments in argument list. */ | |
179 #define PARM_BOUNDARY 32 | |
180 | |
181 /* The stack goes in 32-bit lumps. */ | |
182 #define STACK_BOUNDARY 32 | |
183 | |
184 /* Allocation boundary (in *bits*) for the code of a function. | |
185 16 is the minimum boundary; 32 would give better performance. */ | |
186 #define FUNCTION_BOUNDARY 16 | |
187 | |
188 /* No data type wants to be aligned rounder than this. */ | |
189 #define BIGGEST_ALIGNMENT 32 | |
190 | |
191 /* Alignment of field after `int : 0' in a structure. */ | |
192 #define EMPTY_FIELD_BOUNDARY 32 | |
193 | |
194 /* No structure field wants to be aligned rounder than this. */ | |
195 #define BIGGEST_FIELD_ALIGNMENT 32 | |
196 | |
197 /* Define this if move instructions will actually fail to work | |
198 when given unaligned data. */ | |
199 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN | |
200 | |
201 /* Define this as 1 if `char' should by default be signed; else as 0. | |
202 | |
203 On the NEC V850, loads do sign extension, so make this default. */ | |
204 #define DEFAULT_SIGNED_CHAR 1 | |
205 | |
206 /* Standard register usage. */ | |
207 | |
208 /* Number of actual hardware registers. | |
209 The hardware registers are assigned numbers for the compiler | |
210 from 0 to just below FIRST_PSEUDO_REGISTER. | |
211 | |
212 All registers that the compiler knows about must be given numbers, | |
213 even those that are not normally considered general registers. */ | |
214 | |
215 #define FIRST_PSEUDO_REGISTER 34 | |
216 | |
217 /* 1 for registers that have pervasive standard uses | |
218 and are not available for the register allocator. */ | |
219 | |
220 #define FIXED_REGISTERS \ | |
221 { 1, 1, 0, 1, 1, 0, 0, 0, \ | |
222 0, 0, 0, 0, 0, 0, 0, 0, \ | |
223 0, 0, 0, 0, 0, 0, 0, 0, \ | |
224 0, 0, 0, 0, 0, 0, 1, 0, \ | |
225 1, 1} | |
226 | |
227 /* 1 for registers not available across function calls. | |
228 These must include the FIXED_REGISTERS and also any | |
229 registers that can be used without being saved. | |
230 The latter must include the registers where values are returned | |
231 and the register where structure-value addresses are passed. | |
232 Aside from that, you can include as many other registers as you | |
233 like. */ | |
234 | |
235 #define CALL_USED_REGISTERS \ | |
236 { 1, 1, 0, 1, 1, 1, 1, 1, \ | |
237 1, 1, 1, 1, 1, 1, 1, 1, \ | |
238 1, 1, 1, 1, 0, 0, 0, 0, \ | |
239 0, 0, 0, 0, 0, 0, 1, 1, \ | |
240 1, 1} | |
241 | |
242 /* List the order in which to allocate registers. Each register must be | |
243 listed once, even those in FIXED_REGISTERS. | |
244 | |
245 On the 850, we make the return registers first, then all of the volatile | |
246 registers, then the saved registers in reverse order to better save the | |
247 registers with an out of line function, and finally the fixed | |
248 registers. */ | |
249 | |
250 #define REG_ALLOC_ORDER \ | |
251 { \ | |
252 10, 11, /* return registers */ \ | |
253 12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \ | |
254 6, 7, 8, 9, 31, /* argument registers */ \ | |
255 29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \ | |
256 21, 20, 2, \ | |
257 0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \ | |
258 } | |
259 | |
260 /* If TARGET_APP_REGS is not defined then add r2 and r5 to | |
261 the pool of fixed registers. See PR 14505. */ | |
262 #define CONDITIONAL_REGISTER_USAGE \ | |
263 { \ | |
264 if (!TARGET_APP_REGS) \ | |
265 { \ | |
266 fixed_regs[2] = 1; call_used_regs[2] = 1; \ | |
267 fixed_regs[5] = 1; call_used_regs[5] = 1; \ | |
268 } \ | |
269 } | |
270 | |
271 /* Return number of consecutive hard regs needed starting at reg REGNO | |
272 to hold something of mode MODE. | |
273 | |
274 This is ordinarily the length in words of a value of mode MODE | |
275 but can be less for certain modes in special long registers. */ | |
276 | |
277 #define HARD_REGNO_NREGS(REGNO, MODE) \ | |
278 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) | |
279 | |
280 /* Value is 1 if hard register REGNO can hold a value of machine-mode | |
281 MODE. */ | |
282 | |
283 #define HARD_REGNO_MODE_OK(REGNO, MODE) \ | |
284 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4)) | |
285 | |
286 /* Value is 1 if it is a good idea to tie two pseudo registers | |
287 when one has mode MODE1 and one has mode MODE2. | |
288 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2, | |
289 for any hard reg, then this must be 0 for correct output. */ | |
290 #define MODES_TIEABLE_P(MODE1, MODE2) \ | |
291 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4)) | |
292 | |
293 | |
294 /* Define the classes of registers for register constraints in the | |
295 machine description. Also define ranges of constants. | |
296 | |
297 One of the classes must always be named ALL_REGS and include all hard regs. | |
298 If there is more than one class, another class must be named NO_REGS | |
299 and contain no registers. | |
300 | |
301 The name GENERAL_REGS must be the name of a class (or an alias for | |
302 another name such as ALL_REGS). This is the class of registers | |
303 that is allowed by "g" or "r" in a register constraint. | |
304 Also, registers outside this class are allocated only when | |
305 instructions express preferences for them. | |
306 | |
307 The classes must be numbered in nondecreasing order; that is, | |
308 a larger-numbered class must never be contained completely | |
309 in a smaller-numbered class. | |
310 | |
311 For any two classes, it is very desirable that there be another | |
312 class that represents their union. */ | |
313 | |
314 enum reg_class | |
315 { | |
316 NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES | |
317 }; | |
318 | |
319 #define N_REG_CLASSES (int) LIM_REG_CLASSES | |
320 | |
321 #define IRA_COVER_CLASSES \ | |
322 { \ | |
323 GENERAL_REGS, LIM_REG_CLASSES \ | |
324 } | |
325 | |
326 /* Give names of register classes as strings for dump file. */ | |
327 | |
328 #define REG_CLASS_NAMES \ | |
329 { "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" } | |
330 | |
331 /* Define which registers fit in which classes. | |
332 This is an initializer for a vector of HARD_REG_SET | |
333 of length N_REG_CLASSES. */ | |
334 | |
335 #define REG_CLASS_CONTENTS \ | |
336 { \ | |
337 { 0x00000000 }, /* NO_REGS */ \ | |
338 { 0xffffffff }, /* GENERAL_REGS */ \ | |
339 { 0xffffffff }, /* ALL_REGS */ \ | |
340 } | |
341 | |
342 /* The same information, inverted: | |
343 Return the class number of the smallest class containing | |
344 reg number REGNO. This could be a conditional expression | |
345 or could index an array. */ | |
346 | |
347 #define REGNO_REG_CLASS(REGNO) GENERAL_REGS | |
348 | |
349 /* The class value for index registers, and the one for base regs. */ | |
350 | |
351 #define INDEX_REG_CLASS NO_REGS | |
352 #define BASE_REG_CLASS GENERAL_REGS | |
353 | |
354 /* Get reg_class from a letter such as appears in the machine description. */ | |
355 | |
356 #define REG_CLASS_FROM_LETTER(C) (NO_REGS) | |
357 | |
358 /* Macros to check register numbers against specific register classes. */ | |
359 | |
360 /* These assume that REGNO is a hard or pseudo reg number. | |
361 They give nonzero only if REGNO is a hard reg of the suitable class | |
362 or a pseudo reg currently allocated to a suitable hard reg. | |
363 Since they use reg_renumber, they are safe only once reg_renumber | |
364 has been allocated, which happens in local-alloc.c. */ | |
365 | |
366 #define REGNO_OK_FOR_BASE_P(regno) \ | |
367 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0) | |
368 | |
369 #define REGNO_OK_FOR_INDEX_P(regno) 0 | |
370 | |
371 /* Given an rtx X being reloaded into a reg required to be | |
372 in class CLASS, return the class of reg to actually use. | |
373 In general this is just CLASS; but on some machines | |
374 in some cases it is preferable to use a more restrictive class. */ | |
375 | |
376 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS) | |
377 | |
378 /* Return the maximum number of consecutive registers | |
379 needed to represent mode MODE in a register of class CLASS. */ | |
380 | |
381 #define CLASS_MAX_NREGS(CLASS, MODE) \ | |
382 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) | |
383 | |
384 /* The letters I, J, K, L, M, N, O, P in a register constraint string | |
385 can be used to stand for particular ranges of immediate operands. | |
386 This macro defines what the ranges are. | |
387 C is the letter, and VALUE is a constant value. | |
388 Return 1 if VALUE is in the range specified by C. */ | |
389 | |
390 #define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80) | |
391 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100) | |
392 /* zero */ | |
393 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0) | |
394 /* 5-bit signed immediate */ | |
395 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20) | |
396 /* 16-bit signed immediate */ | |
397 #define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000) | |
398 /* valid constant for movhi instruction. */ | |
399 #define CONST_OK_FOR_L(VALUE) \ | |
400 (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \ | |
401 && CONST_OK_FOR_I ((VALUE & 0xffff))) | |
402 /* 16-bit unsigned immediate */ | |
403 #define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000) | |
404 /* 5-bit unsigned immediate in shift instructions */ | |
405 #define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31) | |
406 /* 9-bit signed immediate for word multiply instruction. */ | |
407 #define CONST_OK_FOR_O(VALUE) ((unsigned) (VALUE) + 0x100 < 0x200) | |
408 | |
409 #define CONST_OK_FOR_P(VALUE) 0 | |
410 | |
411 #define CONST_OK_FOR_LETTER_P(VALUE, C) \ | |
412 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \ | |
413 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \ | |
414 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \ | |
415 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \ | |
416 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \ | |
417 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \ | |
418 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \ | |
419 (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \ | |
420 0) | |
421 | |
422 /* Similar, but for floating constants, and defining letters G and H. | |
423 Here VALUE is the CONST_DOUBLE rtx itself. | |
424 | |
425 `G' is a zero of some form. */ | |
426 | |
427 #define CONST_DOUBLE_OK_FOR_G(VALUE) \ | |
428 ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \ | |
429 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \ | |
430 || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \ | |
431 && CONST_DOUBLE_LOW (VALUE) == 0 \ | |
432 && CONST_DOUBLE_HIGH (VALUE) == 0)) | |
433 | |
434 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0 | |
435 | |
436 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \ | |
437 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \ | |
438 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \ | |
439 : 0) | |
440 | |
441 | |
442 /* Stack layout; function entry, exit and calling. */ | |
443 | |
444 /* Define this if pushing a word on the stack | |
445 makes the stack pointer a smaller address. */ | |
446 | |
447 #define STACK_GROWS_DOWNWARD | |
448 | |
449 /* Define this to nonzero if the nominal address of the stack frame | |
450 is at the high-address end of the local variables; | |
451 that is, each additional local variable allocated | |
452 goes at a more negative offset in the frame. */ | |
453 | |
454 #define FRAME_GROWS_DOWNWARD 1 | |
455 | |
456 /* Offset within stack frame to start allocating local variables at. | |
457 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the | |
458 first local allocated. Otherwise, it is the offset to the BEGINNING | |
459 of the first local allocated. */ | |
460 | |
461 #define STARTING_FRAME_OFFSET 0 | |
462 | |
463 /* Offset of first parameter from the argument pointer register value. */ | |
464 /* Is equal to the size of the saved fp + pc, even if an fp isn't | |
465 saved since the value is used before we know. */ | |
466 | |
467 #define FIRST_PARM_OFFSET(FNDECL) 0 | |
468 | |
469 /* Specify the registers used for certain standard purposes. | |
470 The values of these macros are register numbers. */ | |
471 | |
472 /* Register to use for pushing function arguments. */ | |
473 #define STACK_POINTER_REGNUM 3 | |
474 | |
475 /* Base register for access to local variables of the function. */ | |
476 #define FRAME_POINTER_REGNUM 32 | |
477 | |
478 /* Register containing return address from latest function call. */ | |
479 #define LINK_POINTER_REGNUM 31 | |
480 | |
481 /* On some machines the offset between the frame pointer and starting | |
482 offset of the automatic variables is not known until after register | |
483 allocation has been done (for example, because the saved registers | |
484 are between these two locations). On those machines, define | |
485 `FRAME_POINTER_REGNUM' the number of a special, fixed register to | |
486 be used internally until the offset is known, and define | |
487 `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number | |
488 used for the frame pointer. | |
489 | |
490 You should define this macro only in the very rare circumstances | |
491 when it is not possible to calculate the offset between the frame | |
492 pointer and the automatic variables until after register | |
493 allocation has been completed. When this macro is defined, you | |
494 must also indicate in your definition of `ELIMINABLE_REGS' how to | |
495 eliminate `FRAME_POINTER_REGNUM' into either | |
496 `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'. | |
497 | |
498 Do not define this macro if it would be the same as | |
499 `FRAME_POINTER_REGNUM'. */ | |
500 #undef HARD_FRAME_POINTER_REGNUM | |
501 #define HARD_FRAME_POINTER_REGNUM 29 | |
502 | |
503 /* Base register for access to arguments of the function. */ | |
504 #define ARG_POINTER_REGNUM 33 | |
505 | |
506 /* Register in which static-chain is passed to a function. */ | |
507 #define STATIC_CHAIN_REGNUM 20 | |
508 | |
509 /* Value should be nonzero if functions must have frame pointers. | |
510 Zero means the frame pointer need not be set up (and parms | |
511 may be accessed via the stack pointer) in functions that seem suitable. | |
512 This is computed in `reload', in reload1.c. */ | |
513 #define FRAME_POINTER_REQUIRED 0 | |
514 | |
515 /* If defined, this macro specifies a table of register pairs used to | |
516 eliminate unneeded registers that point into the stack frame. If | |
517 it is not defined, the only elimination attempted by the compiler | |
518 is to replace references to the frame pointer with references to | |
519 the stack pointer. | |
520 | |
521 The definition of this macro is a list of structure | |
522 initializations, each of which specifies an original and | |
523 replacement register. | |
524 | |
525 On some machines, the position of the argument pointer is not | |
526 known until the compilation is completed. In such a case, a | |
527 separate hard register must be used for the argument pointer. | |
528 This register can be eliminated by replacing it with either the | |
529 frame pointer or the argument pointer, depending on whether or not | |
530 the frame pointer has been eliminated. | |
531 | |
532 In this case, you might specify: | |
533 #define ELIMINABLE_REGS \ | |
534 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ | |
535 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ | |
536 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} | |
537 | |
538 Note that the elimination of the argument pointer with the stack | |
539 pointer is specified first since that is the preferred elimination. */ | |
540 | |
541 #define ELIMINABLE_REGS \ | |
542 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ | |
543 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \ | |
544 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ | |
545 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \ | |
546 | |
547 /* A C expression that returns nonzero if the compiler is allowed to | |
548 try to replace register number FROM-REG with register number | |
549 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is | |
550 defined, and will usually be the constant 1, since most of the | |
551 cases preventing register elimination are things that the compiler | |
552 already knows about. */ | |
553 | |
554 #define CAN_ELIMINATE(FROM, TO) \ | |
555 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1) | |
556 | |
557 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It | |
558 specifies the initial difference between the specified pair of | |
559 registers. This macro must be defined if `ELIMINABLE_REGS' is | |
560 defined. */ | |
561 | |
562 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ | |
563 { \ | |
564 if ((FROM) == FRAME_POINTER_REGNUM) \ | |
565 (OFFSET) = get_frame_size () + crtl->outgoing_args_size; \ | |
566 else if ((FROM) == ARG_POINTER_REGNUM) \ | |
567 (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \ | |
568 else \ | |
569 gcc_unreachable (); \ | |
570 } | |
571 | |
572 /* Keep the stack pointer constant throughout the function. */ | |
573 #define ACCUMULATE_OUTGOING_ARGS 1 | |
574 | |
575 /* Value is the number of bytes of arguments automatically | |
576 popped when returning from a subroutine call. | |
577 FUNDECL is the declaration node of the function (as a tree), | |
578 FUNTYPE is the data type of the function (as a tree), | |
579 or for a library call it is an identifier node for the subroutine name. | |
580 SIZE is the number of bytes of arguments passed on the stack. */ | |
581 | |
582 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0 | |
583 | |
584 #define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT) | |
585 | |
586 /* Define a data type for recording info about an argument list | |
587 during the scan of that argument list. This data type should | |
588 hold all necessary information about the function itself | |
589 and about the args processed so far, enough to enable macros | |
590 such as FUNCTION_ARG to determine where the next arg should go. */ | |
591 | |
592 #define CUMULATIVE_ARGS struct cum_arg | |
593 struct cum_arg { int nbytes; int anonymous_args; }; | |
594 | |
595 /* Define where to put the arguments to a function. | |
596 Value is zero to push the argument on the stack, | |
597 or a hard register in which to store the argument. | |
598 | |
599 MODE is the argument's machine mode. | |
600 TYPE is the data type of the argument (as a tree). | |
601 This is null for libcalls where that information may | |
602 not be available. | |
603 CUM is a variable of type CUMULATIVE_ARGS which gives info about | |
604 the preceding args and about the function being called. | |
605 NAMED is nonzero if this argument is a named parameter | |
606 (otherwise it is an extra parameter matching an ellipsis). */ | |
607 | |
608 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ | |
609 function_arg (&CUM, MODE, TYPE, NAMED) | |
610 | |
611 /* Initialize a variable CUM of type CUMULATIVE_ARGS | |
612 for a call to a function whose data type is FNTYPE. | |
613 For a library call, FNTYPE is 0. */ | |
614 | |
615 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \ | |
616 ((CUM).nbytes = 0, (CUM).anonymous_args = 0) | |
617 | |
618 /* Update the data in CUM to advance over an argument | |
619 of mode MODE and data type TYPE. | |
620 (TYPE is null for libcalls where that information may not be available.) */ | |
621 | |
622 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ | |
623 ((CUM).nbytes += ((MODE) != BLKmode \ | |
624 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \ | |
625 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD)) | |
626 | |
627 /* When a parameter is passed in a register, stack space is still | |
628 allocated for it. */ | |
629 #define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0) | |
630 | |
631 /* Define this if the above stack space is to be considered part of the | |
632 space allocated by the caller. */ | |
633 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1 | |
634 | |
635 /* 1 if N is a possible register number for function argument passing. */ | |
636 | |
637 #define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9) | |
638 | |
639 /* Define how to find the value returned by a function. | |
640 VALTYPE is the data type of the value (as a tree). | |
641 If the precise function being called is known, FUNC is its FUNCTION_DECL; | |
642 otherwise, FUNC is 0. */ | |
643 | |
644 #define FUNCTION_VALUE(VALTYPE, FUNC) \ | |
645 gen_rtx_REG (TYPE_MODE (VALTYPE), 10) | |
646 | |
647 /* Define how to find the value returned by a library function | |
648 assuming the value has mode MODE. */ | |
649 | |
650 #define LIBCALL_VALUE(MODE) \ | |
651 gen_rtx_REG (MODE, 10) | |
652 | |
653 /* 1 if N is a possible register number for a function value. */ | |
654 | |
655 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 10) | |
656 | |
657 #define DEFAULT_PCC_STRUCT_RETURN 0 | |
658 | |
659 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, | |
660 the stack pointer does not matter. The value is tested only in | |
661 functions that have frame pointers. | |
662 No definition is equivalent to always zero. */ | |
663 | |
664 #define EXIT_IGNORE_STACK 1 | |
665 | |
666 /* Define this macro as a C expression that is nonzero for registers | |
667 used by the epilogue or the `return' pattern. */ | |
668 | |
669 #define EPILOGUE_USES(REGNO) \ | |
670 (reload_completed && (REGNO) == LINK_POINTER_REGNUM) | |
671 | |
672 /* Output assembler code to FILE to increment profiler label # LABELNO | |
673 for profiling a function entry. */ | |
674 | |
675 #define FUNCTION_PROFILER(FILE, LABELNO) ; | |
676 | |
677 #define TRAMPOLINE_TEMPLATE(FILE) \ | |
678 do { \ | |
679 fprintf (FILE, "\tjarl .+4,r12\n"); \ | |
680 fprintf (FILE, "\tld.w 12[r12],r20\n"); \ | |
681 fprintf (FILE, "\tld.w 16[r12],r12\n"); \ | |
682 fprintf (FILE, "\tjmp [r12]\n"); \ | |
683 fprintf (FILE, "\tnop\n"); \ | |
684 fprintf (FILE, "\t.long 0\n"); \ | |
685 fprintf (FILE, "\t.long 0\n"); \ | |
686 } while (0) | |
687 | |
688 /* Length in units of the trampoline for entering a nested function. */ | |
689 | |
690 #define TRAMPOLINE_SIZE 24 | |
691 | |
692 /* Emit RTL insns to initialize the variable parts of a trampoline. | |
693 FNADDR is an RTX for the address of the function's pure code. | |
694 CXT is an RTX for the static chain value for the function. */ | |
695 | |
696 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \ | |
697 { \ | |
698 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 16)), \ | |
699 (CXT)); \ | |
700 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 20)), \ | |
701 (FNADDR)); \ | |
702 } | |
703 | |
704 /* Addressing modes, and classification of registers for them. */ | |
705 | |
706 | |
707 /* 1 if X is an rtx for a constant that is a valid address. */ | |
708 | |
709 /* ??? This seems too exclusive. May get better code by accepting more | |
710 possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */ | |
711 | |
712 #define CONSTANT_ADDRESS_P(X) \ | |
713 (GET_CODE (X) == CONST_INT \ | |
714 && CONST_OK_FOR_K (INTVAL (X))) | |
715 | |
716 /* Maximum number of registers that can appear in a valid memory address. */ | |
717 | |
718 #define MAX_REGS_PER_ADDRESS 1 | |
719 | |
720 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx | |
721 and check its validity for a certain class. | |
722 We have two alternate definitions for each of them. | |
723 The usual definition accepts all pseudo regs; the other rejects | |
724 them unless they have been allocated suitable hard regs. | |
725 The symbol REG_OK_STRICT causes the latter definition to be used. | |
726 | |
727 Most source files want to accept pseudo regs in the hope that | |
728 they will get allocated to the class that the insn wants them to be in. | |
729 Source files for reload pass need to be strict. | |
730 After reload, it makes no difference, since pseudo regs have | |
731 been eliminated by then. */ | |
732 | |
733 #ifndef REG_OK_STRICT | |
734 | |
735 /* Nonzero if X is a hard reg that can be used as an index | |
736 or if it is a pseudo reg. */ | |
737 #define REG_OK_FOR_INDEX_P(X) 0 | |
738 /* Nonzero if X is a hard reg that can be used as a base reg | |
739 or if it is a pseudo reg. */ | |
740 #define REG_OK_FOR_BASE_P(X) 1 | |
741 #define REG_OK_FOR_INDEX_P_STRICT(X) 0 | |
742 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X)) | |
743 #define STRICT 0 | |
744 | |
745 #else | |
746 | |
747 /* Nonzero if X is a hard reg that can be used as an index. */ | |
748 #define REG_OK_FOR_INDEX_P(X) 0 | |
749 /* Nonzero if X is a hard reg that can be used as a base reg. */ | |
750 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X)) | |
751 #define STRICT 1 | |
752 | |
753 #endif | |
754 | |
755 /* A C expression that defines the optional machine-dependent | |
756 constraint letters that can be used to segregate specific types of | |
757 operands, usually memory references, for the target machine. | |
758 Normally this macro will not be defined. If it is required for a | |
759 particular target machine, it should return 1 if VALUE corresponds | |
760 to the operand type represented by the constraint letter C. If C | |
761 is not defined as an extra constraint, the value returned should | |
762 be 0 regardless of VALUE. | |
763 | |
764 For example, on the ROMP, load instructions cannot have their | |
765 output in r0 if the memory reference contains a symbolic address. | |
766 Constraint letter `Q' is defined as representing a memory address | |
767 that does *not* contain a symbolic address. An alternative is | |
768 specified with a `Q' constraint on the input and `r' on the | |
769 output. The next alternative specifies `m' on the input and a | |
770 register class that does not include r0 on the output. */ | |
771 | |
772 #define EXTRA_CONSTRAINT(OP, C) \ | |
773 ((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP), FALSE) \ | |
774 : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \ | |
775 : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF \ | |
776 && !SYMBOL_REF_ZDA_P (OP)) \ | |
777 : (C) == 'T' ? ep_memory_operand (OP, GET_MODE (OP), TRUE) \ | |
778 : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF \ | |
779 && SYMBOL_REF_ZDA_P (OP)) \ | |
780 || (GET_CODE (OP) == CONST \ | |
781 && GET_CODE (XEXP (OP, 0)) == PLUS \ | |
782 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \ | |
783 && SYMBOL_REF_ZDA_P (XEXP (XEXP (OP, 0), 0)))) \ | |
784 : 0) | |
785 | |
786 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression | |
787 that is a valid memory address for an instruction. | |
788 The MODE argument is the machine mode for the MEM expression | |
789 that wants to use this address. | |
790 | |
791 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS, | |
792 except for CONSTANT_ADDRESS_P which is actually | |
793 machine-independent. */ | |
794 | |
795 /* Accept either REG or SUBREG where a register is valid. */ | |
796 | |
797 #define RTX_OK_FOR_BASE_P(X) \ | |
798 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \ | |
799 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \ | |
800 && REG_OK_FOR_BASE_P (SUBREG_REG (X)))) | |
801 | |
802 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \ | |
803 do { \ | |
804 if (RTX_OK_FOR_BASE_P (X)) \ | |
805 goto ADDR; \ | |
806 if (CONSTANT_ADDRESS_P (X) \ | |
807 && (MODE == QImode || INTVAL (X) % 2 == 0) \ | |
808 && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0)) \ | |
809 goto ADDR; \ | |
810 if (GET_CODE (X) == LO_SUM \ | |
811 && REG_P (XEXP (X, 0)) \ | |
812 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \ | |
813 && CONSTANT_P (XEXP (X, 1)) \ | |
814 && (GET_CODE (XEXP (X, 1)) != CONST_INT \ | |
815 || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \ | |
816 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \ | |
817 && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \ | |
818 goto ADDR; \ | |
819 if (special_symbolref_operand (X, MODE) \ | |
820 && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \ | |
821 goto ADDR; \ | |
822 if (GET_CODE (X) == PLUS \ | |
823 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \ | |
824 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \ | |
825 && ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \ | |
826 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1)) \ | |
827 + (GET_MODE_NUNITS (MODE) * UNITS_PER_WORD)))) \ | |
828 goto ADDR; \ | |
829 } while (0) | |
830 | |
831 | |
832 /* Go to LABEL if ADDR (a legitimate address expression) | |
833 has an effect that depends on the machine mode it is used for. */ | |
834 | |
835 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {} | |
836 | |
837 /* Nonzero if the constant value X is a legitimate general operand. | |
838 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ | |
839 | |
840 #define LEGITIMATE_CONSTANT_P(X) \ | |
841 (GET_CODE (X) == CONST_DOUBLE \ | |
842 || !(GET_CODE (X) == CONST \ | |
843 && GET_CODE (XEXP (X, 0)) == PLUS \ | |
844 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \ | |
845 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \ | |
846 && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1))))) | |
847 | |
848 /* Tell final.c how to eliminate redundant test instructions. */ | |
849 | |
850 /* Here we define machine-dependent flags and fields in cc_status | |
851 (see `conditions.h'). No extra ones are needed for the VAX. */ | |
852 | |
853 /* Store in cc_status the expressions | |
854 that the condition codes will describe | |
855 after execution of an instruction whose pattern is EXP. | |
856 Do not alter them if the instruction would not alter the cc's. */ | |
857 | |
858 #define CC_OVERFLOW_UNUSABLE 0x200 | |
859 #define CC_NO_CARRY CC_NO_OVERFLOW | |
860 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN) | |
861 | |
862 /* Nonzero if access to memory by bytes or half words is no faster | |
863 than accessing full words. */ | |
864 #define SLOW_BYTE_ACCESS 1 | |
865 | |
866 /* According expr.c, a value of around 6 should minimize code size, and | |
867 for the V850 series, that's our primary concern. */ | |
868 #define MOVE_RATIO(speed) 6 | |
869 | |
870 /* Indirect calls are expensive, never turn a direct call | |
871 into an indirect call. */ | |
872 #define NO_FUNCTION_CSE | |
873 | |
874 /* The four different data regions on the v850. */ | |
875 typedef enum | |
876 { | |
877 DATA_AREA_NORMAL, | |
878 DATA_AREA_SDA, | |
879 DATA_AREA_TDA, | |
880 DATA_AREA_ZDA | |
881 } v850_data_area; | |
882 | |
883 #define TEXT_SECTION_ASM_OP "\t.section .text" | |
884 #define DATA_SECTION_ASM_OP "\t.section .data" | |
885 #define BSS_SECTION_ASM_OP "\t.section .bss" | |
886 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\"" | |
887 #define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\"" | |
888 | |
889 #define SCOMMON_ASM_OP "\t.scomm\t" | |
890 #define ZCOMMON_ASM_OP "\t.zcomm\t" | |
891 #define TCOMMON_ASM_OP "\t.tcomm\t" | |
892 | |
893 #define ASM_COMMENT_START "#" | |
894 | |
895 /* Output to assembler file text saying following lines | |
896 may contain character constants, extra white space, comments, etc. */ | |
897 | |
898 #define ASM_APP_ON "#APP\n" | |
899 | |
900 /* Output to assembler file text saying following lines | |
901 no longer contain unusual constructs. */ | |
902 | |
903 #define ASM_APP_OFF "#NO_APP\n" | |
904 | |
905 #undef USER_LABEL_PREFIX | |
906 #define USER_LABEL_PREFIX "_" | |
907 | |
908 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \ | |
909 if (! v850_output_addr_const_extra (FILE, X)) \ | |
910 goto FAIL | |
911 | |
912 /* This says how to output the assembler to define a global | |
913 uninitialized but not common symbol. */ | |
914 | |
915 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \ | |
916 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN)) | |
917 | |
918 #undef ASM_OUTPUT_ALIGNED_BSS | |
919 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \ | |
920 v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN) | |
921 | |
922 /* This says how to output the assembler to define a global | |
923 uninitialized, common symbol. */ | |
924 #undef ASM_OUTPUT_ALIGNED_COMMON | |
925 #undef ASM_OUTPUT_COMMON | |
926 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \ | |
927 v850_output_common (FILE, DECL, NAME, SIZE, ALIGN) | |
928 | |
929 /* This says how to output the assembler to define a local | |
930 uninitialized symbol. */ | |
931 #undef ASM_OUTPUT_ALIGNED_LOCAL | |
932 #undef ASM_OUTPUT_LOCAL | |
933 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \ | |
934 v850_output_local (FILE, DECL, NAME, SIZE, ALIGN) | |
935 | |
936 /* Globalizing directive for a label. */ | |
937 #define GLOBAL_ASM_OP "\t.global " | |
938 | |
939 #define ASM_PN_FORMAT "%s___%lu" | |
940 | |
941 /* This is how we tell the assembler that two symbols have the same value. */ | |
942 | |
943 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \ | |
944 do { assemble_name(FILE, NAME1); \ | |
945 fputs(" = ", FILE); \ | |
946 assemble_name(FILE, NAME2); \ | |
947 fputc('\n', FILE); } while (0) | |
948 | |
949 | |
950 /* How to refer to registers in assembler output. | |
951 This sequence is indexed by compiler's hard-register-number (see above). */ | |
952 | |
953 #define REGISTER_NAMES \ | |
954 { "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \ | |
955 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \ | |
956 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \ | |
957 "r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \ | |
958 ".fp", ".ap"} | |
959 | |
960 #define ADDITIONAL_REGISTER_NAMES \ | |
961 { { "zero", 0 }, \ | |
962 { "hp", 2 }, \ | |
963 { "r3", 3 }, \ | |
964 { "r4", 4 }, \ | |
965 { "tp", 5 }, \ | |
966 { "fp", 29 }, \ | |
967 { "r30", 30 }, \ | |
968 { "lp", 31} } | |
969 | |
970 /* Print an instruction operand X on file FILE. | |
971 look in v850.c for details */ | |
972 | |
973 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) | |
974 | |
975 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ | |
976 ((CODE) == '.') | |
977 | |
978 /* Print a memory operand whose address is X, on file FILE. | |
979 This uses a function in output-vax.c. */ | |
980 | |
981 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) | |
982 | |
983 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) | |
984 #define ASM_OUTPUT_REG_POP(FILE,REGNO) | |
985 | |
986 /* This is how to output an element of a case-vector that is absolute. */ | |
987 | |
988 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ | |
989 fprintf (FILE, "\t%s .L%d\n", \ | |
990 (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE) | |
991 | |
992 /* This is how to output an element of a case-vector that is relative. */ | |
993 | |
994 /* Disable the shift, which is for the currently disabled "switch" | |
995 opcode. Se casesi in v850.md. */ | |
996 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \ | |
997 fprintf (FILE, "\t%s %s.L%d-.L%d%s\n", \ | |
998 (TARGET_BIG_SWITCH ? ".long" : ".short"), \ | |
999 (0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? "(" : ""), \ | |
1000 VALUE, REL, \ | |
1001 (0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? ")>>1" : "")) | |
1002 | |
1003 #define ASM_OUTPUT_ALIGN(FILE, LOG) \ | |
1004 if ((LOG) != 0) \ | |
1005 fprintf (FILE, "\t.align %d\n", (LOG)) | |
1006 | |
1007 /* We don't have to worry about dbx compatibility for the v850. */ | |
1008 #define DEFAULT_GDB_EXTENSIONS 1 | |
1009 | |
1010 /* Use stabs debugging info by default. */ | |
1011 #undef PREFERRED_DEBUGGING_TYPE | |
1012 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG | |
1013 | |
1014 /* Specify the machine mode that this machine uses | |
1015 for the index in the tablejump instruction. */ | |
1016 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode) | |
1017 | |
1018 /* Define as C expression which evaluates to nonzero if the tablejump | |
1019 instruction expects the table to contain offsets from the address of the | |
1020 table. | |
1021 Do not define this if the table should contain absolute addresses. */ | |
1022 #define CASE_VECTOR_PC_RELATIVE 1 | |
1023 | |
1024 /* The switch instruction requires that the jump table immediately follow | |
1025 it. */ | |
1026 #define JUMP_TABLES_IN_TEXT_SECTION 1 | |
1027 | |
1028 /* svr4.h defines this assuming that 4 byte alignment is required. */ | |
1029 #undef ASM_OUTPUT_BEFORE_CASE_LABEL | |
1030 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \ | |
1031 ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1)); | |
1032 | |
1033 #define WORD_REGISTER_OPERATIONS | |
1034 | |
1035 /* Byte and short loads sign extend the value to a word. */ | |
1036 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND | |
1037 | |
1038 /* This flag, if defined, says the same insns that convert to a signed fixnum | |
1039 also convert validly to an unsigned one. */ | |
1040 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC | |
1041 | |
1042 /* Max number of bytes we can move from memory to memory | |
1043 in one reasonably fast instruction. */ | |
1044 #define MOVE_MAX 4 | |
1045 | |
1046 /* Define if shifts truncate the shift count | |
1047 which implies one can omit a sign-extension or zero-extension | |
1048 of a shift count. */ | |
1049 #define SHIFT_COUNT_TRUNCATED 1 | |
1050 | |
1051 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits | |
1052 is done just by pretending it is already truncated. */ | |
1053 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 | |
1054 | |
1055 /* Specify the machine mode that pointers have. | |
1056 After generation of rtl, the compiler makes no further distinction | |
1057 between pointers and any other objects of this machine mode. */ | |
1058 #define Pmode SImode | |
1059 | |
1060 /* A function address in a call instruction | |
1061 is a byte address (for indexing purposes) | |
1062 so give the MEM rtx a byte's mode. */ | |
1063 #define FUNCTION_MODE QImode | |
1064 | |
1065 /* Tell compiler we want to support GHS pragmas */ | |
1066 #define REGISTER_TARGET_PRAGMAS() do { \ | |
1067 c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt); \ | |
1068 c_register_pragma ("ghs", "section", ghs_pragma_section); \ | |
1069 c_register_pragma ("ghs", "starttda", ghs_pragma_starttda); \ | |
1070 c_register_pragma ("ghs", "startsda", ghs_pragma_startsda); \ | |
1071 c_register_pragma ("ghs", "startzda", ghs_pragma_startzda); \ | |
1072 c_register_pragma ("ghs", "endtda", ghs_pragma_endtda); \ | |
1073 c_register_pragma ("ghs", "endsda", ghs_pragma_endsda); \ | |
1074 c_register_pragma ("ghs", "endzda", ghs_pragma_endzda); \ | |
1075 } while (0) | |
1076 | |
1077 /* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that | |
1078 can appear in the "ghs section" pragma. These names are used to index | |
1079 into the GHS_default_section_names[] and GHS_current_section_names[] | |
1080 that are defined in v850.c, and so the ordering of each must remain | |
1081 consistent. | |
1082 | |
1083 These arrays give the default and current names for each kind of | |
1084 section defined by the GHS pragmas. The current names can be changed | |
1085 by the "ghs section" pragma. If the current names are null, use | |
1086 the default names. Note that the two arrays have different types. | |
1087 | |
1088 For the *normal* section kinds (like .data, .text, etc.) we do not | |
1089 want to explicitly force the name of these sections, but would rather | |
1090 let the linker (or at least the back end) choose the name of the | |
1091 section, UNLESS the user has force a specific name for these section | |
1092 kinds. To accomplish this set the name in ghs_default_section_names | |
1093 to null. */ | |
1094 | |
1095 enum GHS_section_kind | |
1096 { | |
1097 GHS_SECTION_KIND_DEFAULT, | |
1098 | |
1099 GHS_SECTION_KIND_TEXT, | |
1100 GHS_SECTION_KIND_DATA, | |
1101 GHS_SECTION_KIND_RODATA, | |
1102 GHS_SECTION_KIND_BSS, | |
1103 GHS_SECTION_KIND_SDATA, | |
1104 GHS_SECTION_KIND_ROSDATA, | |
1105 GHS_SECTION_KIND_TDATA, | |
1106 GHS_SECTION_KIND_ZDATA, | |
1107 GHS_SECTION_KIND_ROZDATA, | |
1108 | |
1109 COUNT_OF_GHS_SECTION_KINDS /* must be last */ | |
1110 }; | |
1111 | |
1112 /* The following code is for handling pragmas supported by the | |
1113 v850 compiler produced by Green Hills Software. This is at | |
1114 the specific request of a customer. */ | |
1115 | |
1116 typedef struct data_area_stack_element | |
1117 { | |
1118 struct data_area_stack_element * prev; | |
1119 v850_data_area data_area; /* Current default data area. */ | |
1120 } data_area_stack_element; | |
1121 | |
1122 /* Track the current data area set by the | |
1123 data area pragma (which can be nested). */ | |
1124 extern data_area_stack_element * data_area_stack; | |
1125 | |
1126 /* Names of the various data areas used on the v850. */ | |
1127 extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS]; | |
1128 extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS]; | |
1129 | |
1130 /* The assembler op to start the file. */ | |
1131 | |
1132 #define FILE_ASM_OP "\t.file\n" | |
1133 | |
1134 /* Enable the register move pass to improve code. */ | |
1135 #define ENABLE_REGMOVE_PASS | |
1136 | |
1137 | |
1138 /* Implement ZDA, TDA, and SDA */ | |
1139 | |
1140 #define EP_REGNUM 30 /* ep register number */ | |
1141 | |
1142 #define SYMBOL_FLAG_ZDA (SYMBOL_FLAG_MACH_DEP << 0) | |
1143 #define SYMBOL_FLAG_TDA (SYMBOL_FLAG_MACH_DEP << 1) | |
1144 #define SYMBOL_FLAG_SDA (SYMBOL_FLAG_MACH_DEP << 2) | |
1145 #define SYMBOL_REF_ZDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0) | |
1146 #define SYMBOL_REF_TDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0) | |
1147 #define SYMBOL_REF_SDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0) | |
1148 | |
1149 #define TARGET_ASM_INIT_SECTIONS v850_asm_init_sections | |
1150 | |
1151 #endif /* ! GCC_V850_H */ |