Mercurial > hg > CbC > CbC_gcc
comparison gcc/tree-ssa-dom.c @ 0:a06113de4d67
first commit
author | kent <kent@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Jul 2009 14:47:48 +0900 |
parents | |
children | 3bfb6c00c1e0 |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:a06113de4d67 |
---|---|
1 /* SSA Dominator optimizations for trees | |
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 | |
3 Free Software Foundation, Inc. | |
4 Contributed by Diego Novillo <dnovillo@redhat.com> | |
5 | |
6 This file is part of GCC. | |
7 | |
8 GCC is free software; you can redistribute it and/or modify | |
9 it under the terms of the GNU General Public License as published by | |
10 the Free Software Foundation; either version 3, or (at your option) | |
11 any later version. | |
12 | |
13 GCC is distributed in the hope that it will be useful, | |
14 but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 GNU General Public License for more details. | |
17 | |
18 You should have received a copy of the GNU General Public License | |
19 along with GCC; see the file COPYING3. If not see | |
20 <http://www.gnu.org/licenses/>. */ | |
21 | |
22 #include "config.h" | |
23 #include "system.h" | |
24 #include "coretypes.h" | |
25 #include "tm.h" | |
26 #include "tree.h" | |
27 #include "flags.h" | |
28 #include "rtl.h" | |
29 #include "tm_p.h" | |
30 #include "ggc.h" | |
31 #include "basic-block.h" | |
32 #include "cfgloop.h" | |
33 #include "output.h" | |
34 #include "expr.h" | |
35 #include "function.h" | |
36 #include "diagnostic.h" | |
37 #include "timevar.h" | |
38 #include "tree-dump.h" | |
39 #include "tree-flow.h" | |
40 #include "domwalk.h" | |
41 #include "real.h" | |
42 #include "tree-pass.h" | |
43 #include "tree-ssa-propagate.h" | |
44 #include "langhooks.h" | |
45 #include "params.h" | |
46 | |
47 /* This file implements optimizations on the dominator tree. */ | |
48 | |
49 /* Representation of a "naked" right-hand-side expression, to be used | |
50 in recording available expressions in the expression hash table. */ | |
51 | |
52 enum expr_kind | |
53 { | |
54 EXPR_SINGLE, | |
55 EXPR_UNARY, | |
56 EXPR_BINARY, | |
57 EXPR_CALL | |
58 }; | |
59 | |
60 struct hashable_expr | |
61 { | |
62 tree type; | |
63 enum expr_kind kind; | |
64 union { | |
65 struct { tree rhs; } single; | |
66 struct { enum tree_code op; tree opnd; } unary; | |
67 struct { enum tree_code op; tree opnd0; tree opnd1; } binary; | |
68 struct { tree fn; bool pure; size_t nargs; tree *args; } call; | |
69 } ops; | |
70 }; | |
71 | |
72 /* Structure for recording known values of a conditional expression | |
73 at the exits from its block. */ | |
74 | |
75 struct cond_equivalence | |
76 { | |
77 struct hashable_expr cond; | |
78 tree value; | |
79 }; | |
80 | |
81 /* Structure for recording edge equivalences as well as any pending | |
82 edge redirections during the dominator optimizer. | |
83 | |
84 Computing and storing the edge equivalences instead of creating | |
85 them on-demand can save significant amounts of time, particularly | |
86 for pathological cases involving switch statements. | |
87 | |
88 These structures live for a single iteration of the dominator | |
89 optimizer in the edge's AUX field. At the end of an iteration we | |
90 free each of these structures and update the AUX field to point | |
91 to any requested redirection target (the code for updating the | |
92 CFG and SSA graph for edge redirection expects redirection edge | |
93 targets to be in the AUX field for each edge. */ | |
94 | |
95 struct edge_info | |
96 { | |
97 /* If this edge creates a simple equivalence, the LHS and RHS of | |
98 the equivalence will be stored here. */ | |
99 tree lhs; | |
100 tree rhs; | |
101 | |
102 /* Traversing an edge may also indicate one or more particular conditions | |
103 are true or false. The number of recorded conditions can vary, but | |
104 can be determined by the condition's code. So we have an array | |
105 and its maximum index rather than use a varray. */ | |
106 struct cond_equivalence *cond_equivalences; | |
107 unsigned int max_cond_equivalences; | |
108 }; | |
109 | |
110 /* Hash table with expressions made available during the renaming process. | |
111 When an assignment of the form X_i = EXPR is found, the statement is | |
112 stored in this table. If the same expression EXPR is later found on the | |
113 RHS of another statement, it is replaced with X_i (thus performing | |
114 global redundancy elimination). Similarly as we pass through conditionals | |
115 we record the conditional itself as having either a true or false value | |
116 in this table. */ | |
117 static htab_t avail_exprs; | |
118 | |
119 /* Stack of available expressions in AVAIL_EXPRs. Each block pushes any | |
120 expressions it enters into the hash table along with a marker entry | |
121 (null). When we finish processing the block, we pop off entries and | |
122 remove the expressions from the global hash table until we hit the | |
123 marker. */ | |
124 typedef struct expr_hash_elt * expr_hash_elt_t; | |
125 DEF_VEC_P(expr_hash_elt_t); | |
126 DEF_VEC_ALLOC_P(expr_hash_elt_t,heap); | |
127 | |
128 static VEC(expr_hash_elt_t,heap) *avail_exprs_stack; | |
129 | |
130 /* Stack of statements we need to rescan during finalization for newly | |
131 exposed variables. | |
132 | |
133 Statement rescanning must occur after the current block's available | |
134 expressions are removed from AVAIL_EXPRS. Else we may change the | |
135 hash code for an expression and be unable to find/remove it from | |
136 AVAIL_EXPRS. */ | |
137 typedef gimple *gimple_p; | |
138 DEF_VEC_P(gimple_p); | |
139 DEF_VEC_ALLOC_P(gimple_p,heap); | |
140 | |
141 static VEC(gimple_p,heap) *stmts_to_rescan; | |
142 | |
143 /* Structure for entries in the expression hash table. */ | |
144 | |
145 struct expr_hash_elt | |
146 { | |
147 /* The value (lhs) of this expression. */ | |
148 tree lhs; | |
149 | |
150 /* The expression (rhs) we want to record. */ | |
151 struct hashable_expr expr; | |
152 | |
153 /* The stmt pointer if this element corresponds to a statement. */ | |
154 gimple stmt; | |
155 | |
156 /* The hash value for RHS. */ | |
157 hashval_t hash; | |
158 | |
159 /* A unique stamp, typically the address of the hash | |
160 element itself, used in removing entries from the table. */ | |
161 struct expr_hash_elt *stamp; | |
162 }; | |
163 | |
164 /* Stack of dest,src pairs that need to be restored during finalization. | |
165 | |
166 A NULL entry is used to mark the end of pairs which need to be | |
167 restored during finalization of this block. */ | |
168 static VEC(tree,heap) *const_and_copies_stack; | |
169 | |
170 /* Track whether or not we have changed the control flow graph. */ | |
171 static bool cfg_altered; | |
172 | |
173 /* Bitmap of blocks that have had EH statements cleaned. We should | |
174 remove their dead edges eventually. */ | |
175 static bitmap need_eh_cleanup; | |
176 | |
177 /* Statistics for dominator optimizations. */ | |
178 struct opt_stats_d | |
179 { | |
180 long num_stmts; | |
181 long num_exprs_considered; | |
182 long num_re; | |
183 long num_const_prop; | |
184 long num_copy_prop; | |
185 }; | |
186 | |
187 static struct opt_stats_d opt_stats; | |
188 | |
189 /* Local functions. */ | |
190 static void optimize_stmt (struct dom_walk_data *, | |
191 basic_block, | |
192 gimple_stmt_iterator); | |
193 static tree lookup_avail_expr (gimple, bool); | |
194 static hashval_t avail_expr_hash (const void *); | |
195 static hashval_t real_avail_expr_hash (const void *); | |
196 static int avail_expr_eq (const void *, const void *); | |
197 static void htab_statistics (FILE *, htab_t); | |
198 static void record_cond (struct cond_equivalence *); | |
199 static void record_const_or_copy (tree, tree); | |
200 static void record_equality (tree, tree); | |
201 static void record_equivalences_from_phis (basic_block); | |
202 static void record_equivalences_from_incoming_edge (basic_block); | |
203 static bool eliminate_redundant_computations (gimple_stmt_iterator *); | |
204 static void record_equivalences_from_stmt (gimple, int); | |
205 static void dom_thread_across_edge (struct dom_walk_data *, edge); | |
206 static void dom_opt_finalize_block (struct dom_walk_data *, basic_block); | |
207 static void dom_opt_initialize_block (struct dom_walk_data *, basic_block); | |
208 static void propagate_to_outgoing_edges (struct dom_walk_data *, basic_block); | |
209 static void remove_local_expressions_from_table (void); | |
210 static void restore_vars_to_original_value (void); | |
211 static edge single_incoming_edge_ignoring_loop_edges (basic_block); | |
212 | |
213 | |
214 /* Given a statement STMT, initialize the hash table element pointed to | |
215 by ELEMENT. */ | |
216 | |
217 static void | |
218 initialize_hash_element (gimple stmt, tree lhs, | |
219 struct expr_hash_elt *element) | |
220 { | |
221 enum gimple_code code = gimple_code (stmt); | |
222 struct hashable_expr *expr = &element->expr; | |
223 | |
224 if (code == GIMPLE_ASSIGN) | |
225 { | |
226 enum tree_code subcode = gimple_assign_rhs_code (stmt); | |
227 | |
228 expr->type = NULL_TREE; | |
229 | |
230 switch (get_gimple_rhs_class (subcode)) | |
231 { | |
232 case GIMPLE_SINGLE_RHS: | |
233 expr->kind = EXPR_SINGLE; | |
234 expr->ops.single.rhs = gimple_assign_rhs1 (stmt); | |
235 break; | |
236 case GIMPLE_UNARY_RHS: | |
237 expr->kind = EXPR_UNARY; | |
238 expr->type = TREE_TYPE (gimple_assign_lhs (stmt)); | |
239 expr->ops.unary.op = subcode; | |
240 expr->ops.unary.opnd = gimple_assign_rhs1 (stmt); | |
241 break; | |
242 case GIMPLE_BINARY_RHS: | |
243 expr->kind = EXPR_BINARY; | |
244 expr->type = TREE_TYPE (gimple_assign_lhs (stmt)); | |
245 expr->ops.binary.op = subcode; | |
246 expr->ops.binary.opnd0 = gimple_assign_rhs1 (stmt); | |
247 expr->ops.binary.opnd1 = gimple_assign_rhs2 (stmt); | |
248 break; | |
249 default: | |
250 gcc_unreachable (); | |
251 } | |
252 } | |
253 else if (code == GIMPLE_COND) | |
254 { | |
255 expr->type = boolean_type_node; | |
256 expr->kind = EXPR_BINARY; | |
257 expr->ops.binary.op = gimple_cond_code (stmt); | |
258 expr->ops.binary.opnd0 = gimple_cond_lhs (stmt); | |
259 expr->ops.binary.opnd1 = gimple_cond_rhs (stmt); | |
260 } | |
261 else if (code == GIMPLE_CALL) | |
262 { | |
263 size_t nargs = gimple_call_num_args (stmt); | |
264 size_t i; | |
265 | |
266 gcc_assert (gimple_call_lhs (stmt)); | |
267 | |
268 expr->type = TREE_TYPE (gimple_call_lhs (stmt)); | |
269 expr->kind = EXPR_CALL; | |
270 expr->ops.call.fn = gimple_call_fn (stmt); | |
271 | |
272 if (gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)) | |
273 expr->ops.call.pure = true; | |
274 else | |
275 expr->ops.call.pure = false; | |
276 | |
277 expr->ops.call.nargs = nargs; | |
278 expr->ops.call.args = (tree *) xcalloc (nargs, sizeof (tree)); | |
279 for (i = 0; i < nargs; i++) | |
280 expr->ops.call.args[i] = gimple_call_arg (stmt, i); | |
281 } | |
282 else if (code == GIMPLE_SWITCH) | |
283 { | |
284 expr->type = TREE_TYPE (gimple_switch_index (stmt)); | |
285 expr->kind = EXPR_SINGLE; | |
286 expr->ops.single.rhs = gimple_switch_index (stmt); | |
287 } | |
288 else if (code == GIMPLE_GOTO) | |
289 { | |
290 expr->type = TREE_TYPE (gimple_goto_dest (stmt)); | |
291 expr->kind = EXPR_SINGLE; | |
292 expr->ops.single.rhs = gimple_goto_dest (stmt); | |
293 } | |
294 else | |
295 gcc_unreachable (); | |
296 | |
297 element->lhs = lhs; | |
298 element->stmt = stmt; | |
299 element->hash = avail_expr_hash (element); | |
300 element->stamp = element; | |
301 } | |
302 | |
303 /* Given a conditional expression COND as a tree, initialize | |
304 a hashable_expr expression EXPR. The conditional must be a | |
305 comparison or logical negation. A constant or a variable is | |
306 not permitted. */ | |
307 | |
308 static void | |
309 initialize_expr_from_cond (tree cond, struct hashable_expr *expr) | |
310 { | |
311 expr->type = boolean_type_node; | |
312 | |
313 if (COMPARISON_CLASS_P (cond)) | |
314 { | |
315 expr->kind = EXPR_BINARY; | |
316 expr->ops.binary.op = TREE_CODE (cond); | |
317 expr->ops.binary.opnd0 = TREE_OPERAND (cond, 0); | |
318 expr->ops.binary.opnd1 = TREE_OPERAND (cond, 1); | |
319 } | |
320 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR) | |
321 { | |
322 expr->kind = EXPR_UNARY; | |
323 expr->ops.unary.op = TRUTH_NOT_EXPR; | |
324 expr->ops.unary.opnd = TREE_OPERAND (cond, 0); | |
325 } | |
326 else | |
327 gcc_unreachable (); | |
328 } | |
329 | |
330 /* Given a hashable_expr expression EXPR and an LHS, | |
331 initialize the hash table element pointed to by ELEMENT. */ | |
332 | |
333 static void | |
334 initialize_hash_element_from_expr (struct hashable_expr *expr, | |
335 tree lhs, | |
336 struct expr_hash_elt *element) | |
337 { | |
338 element->expr = *expr; | |
339 element->lhs = lhs; | |
340 element->stmt = NULL; | |
341 element->hash = avail_expr_hash (element); | |
342 element->stamp = element; | |
343 } | |
344 | |
345 /* Compare two hashable_expr structures for equivalence. | |
346 They are considered equivalent when the the expressions | |
347 they denote must necessarily be equal. The logic is intended | |
348 to follow that of operand_equal_p in fold-const.c */ | |
349 | |
350 static bool | |
351 hashable_expr_equal_p (const struct hashable_expr *expr0, | |
352 const struct hashable_expr *expr1) | |
353 { | |
354 tree type0 = expr0->type; | |
355 tree type1 = expr1->type; | |
356 | |
357 /* If either type is NULL, there is nothing to check. */ | |
358 if ((type0 == NULL_TREE) ^ (type1 == NULL_TREE)) | |
359 return false; | |
360 | |
361 /* If both types don't have the same signedness, precision, and mode, | |
362 then we can't consider them equal. */ | |
363 if (type0 != type1 | |
364 && (TREE_CODE (type0) == ERROR_MARK | |
365 || TREE_CODE (type1) == ERROR_MARK | |
366 || TYPE_UNSIGNED (type0) != TYPE_UNSIGNED (type1) | |
367 || TYPE_PRECISION (type0) != TYPE_PRECISION (type1) | |
368 || TYPE_MODE (type0) != TYPE_MODE (type1))) | |
369 return false; | |
370 | |
371 if (expr0->kind != expr1->kind) | |
372 return false; | |
373 | |
374 switch (expr0->kind) | |
375 { | |
376 case EXPR_SINGLE: | |
377 return operand_equal_p (expr0->ops.single.rhs, | |
378 expr1->ops.single.rhs, 0); | |
379 | |
380 case EXPR_UNARY: | |
381 if (expr0->ops.unary.op != expr1->ops.unary.op) | |
382 return false; | |
383 | |
384 if ((CONVERT_EXPR_CODE_P (expr0->ops.unary.op) | |
385 || expr0->ops.unary.op == NON_LVALUE_EXPR) | |
386 && TYPE_UNSIGNED (expr0->type) != TYPE_UNSIGNED (expr1->type)) | |
387 return false; | |
388 | |
389 return operand_equal_p (expr0->ops.unary.opnd, | |
390 expr1->ops.unary.opnd, 0); | |
391 | |
392 case EXPR_BINARY: | |
393 { | |
394 if (expr0->ops.binary.op != expr1->ops.binary.op) | |
395 return false; | |
396 | |
397 if (operand_equal_p (expr0->ops.binary.opnd0, | |
398 expr1->ops.binary.opnd0, 0) | |
399 && operand_equal_p (expr0->ops.binary.opnd1, | |
400 expr1->ops.binary.opnd1, 0)) | |
401 return true; | |
402 | |
403 /* For commutative ops, allow the other order. */ | |
404 return (commutative_tree_code (expr0->ops.binary.op) | |
405 && operand_equal_p (expr0->ops.binary.opnd0, | |
406 expr1->ops.binary.opnd1, 0) | |
407 && operand_equal_p (expr0->ops.binary.opnd1, | |
408 expr1->ops.binary.opnd0, 0)); | |
409 } | |
410 | |
411 case EXPR_CALL: | |
412 { | |
413 size_t i; | |
414 | |
415 /* If the calls are to different functions, then they | |
416 clearly cannot be equal. */ | |
417 if (! operand_equal_p (expr0->ops.call.fn, | |
418 expr1->ops.call.fn, 0)) | |
419 return false; | |
420 | |
421 if (! expr0->ops.call.pure) | |
422 return false; | |
423 | |
424 if (expr0->ops.call.nargs != expr1->ops.call.nargs) | |
425 return false; | |
426 | |
427 for (i = 0; i < expr0->ops.call.nargs; i++) | |
428 if (! operand_equal_p (expr0->ops.call.args[i], | |
429 expr1->ops.call.args[i], 0)) | |
430 return false; | |
431 | |
432 return true; | |
433 } | |
434 | |
435 default: | |
436 gcc_unreachable (); | |
437 } | |
438 } | |
439 | |
440 /* Compute a hash value for a hashable_expr value EXPR and a | |
441 previously accumulated hash value VAL. If two hashable_expr | |
442 values compare equal with hashable_expr_equal_p, they must | |
443 hash to the same value, given an identical value of VAL. | |
444 The logic is intended to follow iterative_hash_expr in tree.c. */ | |
445 | |
446 static hashval_t | |
447 iterative_hash_hashable_expr (const struct hashable_expr *expr, hashval_t val) | |
448 { | |
449 switch (expr->kind) | |
450 { | |
451 case EXPR_SINGLE: | |
452 val = iterative_hash_expr (expr->ops.single.rhs, val); | |
453 break; | |
454 | |
455 case EXPR_UNARY: | |
456 val = iterative_hash_object (expr->ops.unary.op, val); | |
457 | |
458 /* Make sure to include signedness in the hash computation. | |
459 Don't hash the type, that can lead to having nodes which | |
460 compare equal according to operand_equal_p, but which | |
461 have different hash codes. */ | |
462 if (CONVERT_EXPR_CODE_P (expr->ops.unary.op) | |
463 || expr->ops.unary.op == NON_LVALUE_EXPR) | |
464 val += TYPE_UNSIGNED (expr->type); | |
465 | |
466 val = iterative_hash_expr (expr->ops.unary.opnd, val); | |
467 break; | |
468 | |
469 case EXPR_BINARY: | |
470 val = iterative_hash_object (expr->ops.binary.op, val); | |
471 if (commutative_tree_code (expr->ops.binary.op)) | |
472 val = iterative_hash_exprs_commutative (expr->ops.binary.opnd0, | |
473 expr->ops.binary.opnd1, val); | |
474 else | |
475 { | |
476 val = iterative_hash_expr (expr->ops.binary.opnd0, val); | |
477 val = iterative_hash_expr (expr->ops.binary.opnd1, val); | |
478 } | |
479 break; | |
480 | |
481 case EXPR_CALL: | |
482 { | |
483 size_t i; | |
484 enum tree_code code = CALL_EXPR; | |
485 | |
486 val = iterative_hash_object (code, val); | |
487 val = iterative_hash_expr (expr->ops.call.fn, val); | |
488 for (i = 0; i < expr->ops.call.nargs; i++) | |
489 val = iterative_hash_expr (expr->ops.call.args[i], val); | |
490 } | |
491 break; | |
492 | |
493 default: | |
494 gcc_unreachable (); | |
495 } | |
496 | |
497 return val; | |
498 } | |
499 | |
500 /* Print a diagnostic dump of an expression hash table entry. */ | |
501 | |
502 static void | |
503 print_expr_hash_elt (FILE * stream, const struct expr_hash_elt *element) | |
504 { | |
505 if (element->stmt) | |
506 fprintf (stream, "STMT "); | |
507 else | |
508 fprintf (stream, "COND "); | |
509 | |
510 if (element->lhs) | |
511 { | |
512 print_generic_expr (stream, element->lhs, 0); | |
513 fprintf (stream, " = "); | |
514 } | |
515 | |
516 switch (element->expr.kind) | |
517 { | |
518 case EXPR_SINGLE: | |
519 print_generic_expr (stream, element->expr.ops.single.rhs, 0); | |
520 break; | |
521 | |
522 case EXPR_UNARY: | |
523 fprintf (stream, "%s ", tree_code_name[element->expr.ops.unary.op]); | |
524 print_generic_expr (stream, element->expr.ops.unary.opnd, 0); | |
525 break; | |
526 | |
527 case EXPR_BINARY: | |
528 print_generic_expr (stream, element->expr.ops.binary.opnd0, 0); | |
529 fprintf (stream, " %s ", tree_code_name[element->expr.ops.binary.op]); | |
530 print_generic_expr (stream, element->expr.ops.binary.opnd1, 0); | |
531 break; | |
532 | |
533 case EXPR_CALL: | |
534 { | |
535 size_t i; | |
536 size_t nargs = element->expr.ops.call.nargs; | |
537 | |
538 print_generic_expr (stream, element->expr.ops.call.fn, 0); | |
539 fprintf (stream, " ("); | |
540 for (i = 0; i < nargs; i++) | |
541 { | |
542 print_generic_expr (stream, element->expr.ops.call.args[i], 0); | |
543 if (i + 1 < nargs) | |
544 fprintf (stream, ", "); | |
545 } | |
546 fprintf (stream, ")"); | |
547 } | |
548 break; | |
549 } | |
550 fprintf (stream, "\n"); | |
551 | |
552 if (element->stmt) | |
553 { | |
554 fprintf (stream, " "); | |
555 print_gimple_stmt (stream, element->stmt, 0, 0); | |
556 } | |
557 } | |
558 | |
559 /* Delete an expr_hash_elt and reclaim its storage. */ | |
560 | |
561 static void | |
562 free_expr_hash_elt (void *elt) | |
563 { | |
564 struct expr_hash_elt *element = ((struct expr_hash_elt *)elt); | |
565 | |
566 if (element->expr.kind == EXPR_CALL) | |
567 free (element->expr.ops.call.args); | |
568 | |
569 free (element); | |
570 } | |
571 | |
572 /* Allocate an EDGE_INFO for edge E and attach it to E. | |
573 Return the new EDGE_INFO structure. */ | |
574 | |
575 static struct edge_info * | |
576 allocate_edge_info (edge e) | |
577 { | |
578 struct edge_info *edge_info; | |
579 | |
580 edge_info = XCNEW (struct edge_info); | |
581 | |
582 e->aux = edge_info; | |
583 return edge_info; | |
584 } | |
585 | |
586 /* Free all EDGE_INFO structures associated with edges in the CFG. | |
587 If a particular edge can be threaded, copy the redirection | |
588 target from the EDGE_INFO structure into the edge's AUX field | |
589 as required by code to update the CFG and SSA graph for | |
590 jump threading. */ | |
591 | |
592 static void | |
593 free_all_edge_infos (void) | |
594 { | |
595 basic_block bb; | |
596 edge_iterator ei; | |
597 edge e; | |
598 | |
599 FOR_EACH_BB (bb) | |
600 { | |
601 FOR_EACH_EDGE (e, ei, bb->preds) | |
602 { | |
603 struct edge_info *edge_info = (struct edge_info *) e->aux; | |
604 | |
605 if (edge_info) | |
606 { | |
607 if (edge_info->cond_equivalences) | |
608 free (edge_info->cond_equivalences); | |
609 free (edge_info); | |
610 e->aux = NULL; | |
611 } | |
612 } | |
613 } | |
614 } | |
615 | |
616 /* Jump threading, redundancy elimination and const/copy propagation. | |
617 | |
618 This pass may expose new symbols that need to be renamed into SSA. For | |
619 every new symbol exposed, its corresponding bit will be set in | |
620 VARS_TO_RENAME. */ | |
621 | |
622 static unsigned int | |
623 tree_ssa_dominator_optimize (void) | |
624 { | |
625 struct dom_walk_data walk_data; | |
626 unsigned int i; | |
627 | |
628 memset (&opt_stats, 0, sizeof (opt_stats)); | |
629 | |
630 /* Create our hash tables. */ | |
631 avail_exprs = htab_create (1024, real_avail_expr_hash, avail_expr_eq, free_expr_hash_elt); | |
632 avail_exprs_stack = VEC_alloc (expr_hash_elt_t, heap, 20); | |
633 const_and_copies_stack = VEC_alloc (tree, heap, 20); | |
634 stmts_to_rescan = VEC_alloc (gimple_p, heap, 20); | |
635 need_eh_cleanup = BITMAP_ALLOC (NULL); | |
636 | |
637 /* Setup callbacks for the generic dominator tree walker. */ | |
638 walk_data.walk_stmts_backward = false; | |
639 walk_data.dom_direction = CDI_DOMINATORS; | |
640 walk_data.initialize_block_local_data = NULL; | |
641 walk_data.before_dom_children_before_stmts = dom_opt_initialize_block; | |
642 walk_data.before_dom_children_walk_stmts = optimize_stmt; | |
643 walk_data.before_dom_children_after_stmts = propagate_to_outgoing_edges; | |
644 walk_data.after_dom_children_before_stmts = NULL; | |
645 walk_data.after_dom_children_walk_stmts = NULL; | |
646 walk_data.after_dom_children_after_stmts = dom_opt_finalize_block; | |
647 /* Right now we only attach a dummy COND_EXPR to the global data pointer. | |
648 When we attach more stuff we'll need to fill this out with a real | |
649 structure. */ | |
650 walk_data.global_data = NULL; | |
651 walk_data.block_local_data_size = 0; | |
652 walk_data.interesting_blocks = NULL; | |
653 | |
654 /* Now initialize the dominator walker. */ | |
655 init_walk_dominator_tree (&walk_data); | |
656 | |
657 calculate_dominance_info (CDI_DOMINATORS); | |
658 cfg_altered = false; | |
659 | |
660 /* We need to know loop structures in order to avoid destroying them | |
661 in jump threading. Note that we still can e.g. thread through loop | |
662 headers to an exit edge, or through loop header to the loop body, assuming | |
663 that we update the loop info. */ | |
664 loop_optimizer_init (LOOPS_HAVE_SIMPLE_LATCHES); | |
665 | |
666 /* We need accurate information regarding back edges in the CFG | |
667 for jump threading; this may include back edges that are not part of | |
668 a single loop. */ | |
669 mark_dfs_back_edges (); | |
670 | |
671 /* Recursively walk the dominator tree optimizing statements. */ | |
672 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR); | |
673 | |
674 { | |
675 gimple_stmt_iterator gsi; | |
676 basic_block bb; | |
677 FOR_EACH_BB (bb) | |
678 {for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) | |
679 update_stmt_if_modified (gsi_stmt (gsi)); | |
680 } | |
681 } | |
682 | |
683 /* If we exposed any new variables, go ahead and put them into | |
684 SSA form now, before we handle jump threading. This simplifies | |
685 interactions between rewriting of _DECL nodes into SSA form | |
686 and rewriting SSA_NAME nodes into SSA form after block | |
687 duplication and CFG manipulation. */ | |
688 update_ssa (TODO_update_ssa); | |
689 | |
690 free_all_edge_infos (); | |
691 | |
692 /* Thread jumps, creating duplicate blocks as needed. */ | |
693 cfg_altered |= thread_through_all_blocks (first_pass_instance); | |
694 | |
695 if (cfg_altered) | |
696 free_dominance_info (CDI_DOMINATORS); | |
697 | |
698 /* Removal of statements may make some EH edges dead. Purge | |
699 such edges from the CFG as needed. */ | |
700 if (!bitmap_empty_p (need_eh_cleanup)) | |
701 { | |
702 unsigned i; | |
703 bitmap_iterator bi; | |
704 | |
705 /* Jump threading may have created forwarder blocks from blocks | |
706 needing EH cleanup; the new successor of these blocks, which | |
707 has inherited from the original block, needs the cleanup. */ | |
708 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi) | |
709 { | |
710 basic_block bb = BASIC_BLOCK (i); | |
711 if (single_succ_p (bb) == 1 | |
712 && (single_succ_edge (bb)->flags & EDGE_EH) == 0) | |
713 { | |
714 bitmap_clear_bit (need_eh_cleanup, i); | |
715 bitmap_set_bit (need_eh_cleanup, single_succ (bb)->index); | |
716 } | |
717 } | |
718 | |
719 gimple_purge_all_dead_eh_edges (need_eh_cleanup); | |
720 bitmap_zero (need_eh_cleanup); | |
721 } | |
722 | |
723 /* Finally, remove everything except invariants in SSA_NAME_VALUE. | |
724 | |
725 Long term we will be able to let everything in SSA_NAME_VALUE | |
726 persist. However, for now, we know this is the safe thing to do. */ | |
727 for (i = 0; i < num_ssa_names; i++) | |
728 { | |
729 tree name = ssa_name (i); | |
730 tree value; | |
731 | |
732 if (!name) | |
733 continue; | |
734 | |
735 value = SSA_NAME_VALUE (name); | |
736 if (value && !is_gimple_min_invariant (value)) | |
737 SSA_NAME_VALUE (name) = NULL; | |
738 } | |
739 | |
740 statistics_counter_event (cfun, "Redundant expressions eliminated", | |
741 opt_stats.num_re); | |
742 statistics_counter_event (cfun, "Constants propagated", | |
743 opt_stats.num_const_prop); | |
744 statistics_counter_event (cfun, "Copies propagated", | |
745 opt_stats.num_copy_prop); | |
746 | |
747 /* Debugging dumps. */ | |
748 if (dump_file && (dump_flags & TDF_STATS)) | |
749 dump_dominator_optimization_stats (dump_file); | |
750 | |
751 loop_optimizer_finalize (); | |
752 | |
753 /* Delete our main hashtable. */ | |
754 htab_delete (avail_exprs); | |
755 | |
756 /* And finalize the dominator walker. */ | |
757 fini_walk_dominator_tree (&walk_data); | |
758 | |
759 /* Free asserted bitmaps and stacks. */ | |
760 BITMAP_FREE (need_eh_cleanup); | |
761 | |
762 VEC_free (expr_hash_elt_t, heap, avail_exprs_stack); | |
763 VEC_free (tree, heap, const_and_copies_stack); | |
764 VEC_free (gimple_p, heap, stmts_to_rescan); | |
765 | |
766 return 0; | |
767 } | |
768 | |
769 static bool | |
770 gate_dominator (void) | |
771 { | |
772 return flag_tree_dom != 0; | |
773 } | |
774 | |
775 struct gimple_opt_pass pass_dominator = | |
776 { | |
777 { | |
778 GIMPLE_PASS, | |
779 "dom", /* name */ | |
780 gate_dominator, /* gate */ | |
781 tree_ssa_dominator_optimize, /* execute */ | |
782 NULL, /* sub */ | |
783 NULL, /* next */ | |
784 0, /* static_pass_number */ | |
785 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */ | |
786 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */ | |
787 0, /* properties_provided */ | |
788 0, /* properties_destroyed */ | |
789 0, /* todo_flags_start */ | |
790 TODO_dump_func | |
791 | TODO_update_ssa | |
792 | TODO_cleanup_cfg | |
793 | TODO_verify_ssa /* todo_flags_finish */ | |
794 } | |
795 }; | |
796 | |
797 | |
798 /* Given a conditional statement CONDSTMT, convert the | |
799 condition to a canonical form. */ | |
800 | |
801 static void | |
802 canonicalize_comparison (gimple condstmt) | |
803 { | |
804 tree op0; | |
805 tree op1; | |
806 enum tree_code code; | |
807 | |
808 gcc_assert (gimple_code (condstmt) == GIMPLE_COND); | |
809 | |
810 op0 = gimple_cond_lhs (condstmt); | |
811 op1 = gimple_cond_rhs (condstmt); | |
812 | |
813 code = gimple_cond_code (condstmt); | |
814 | |
815 /* If it would be profitable to swap the operands, then do so to | |
816 canonicalize the statement, enabling better optimization. | |
817 | |
818 By placing canonicalization of such expressions here we | |
819 transparently keep statements in canonical form, even | |
820 when the statement is modified. */ | |
821 if (tree_swap_operands_p (op0, op1, false)) | |
822 { | |
823 /* For relationals we need to swap the operands | |
824 and change the code. */ | |
825 if (code == LT_EXPR | |
826 || code == GT_EXPR | |
827 || code == LE_EXPR | |
828 || code == GE_EXPR) | |
829 { | |
830 code = swap_tree_comparison (code); | |
831 | |
832 gimple_cond_set_code (condstmt, code); | |
833 gimple_cond_set_lhs (condstmt, op1); | |
834 gimple_cond_set_rhs (condstmt, op0); | |
835 | |
836 update_stmt (condstmt); | |
837 } | |
838 } | |
839 } | |
840 | |
841 /* Initialize local stacks for this optimizer and record equivalences | |
842 upon entry to BB. Equivalences can come from the edge traversed to | |
843 reach BB or they may come from PHI nodes at the start of BB. */ | |
844 | |
845 static void | |
846 dom_opt_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED, | |
847 basic_block bb) | |
848 { | |
849 if (dump_file && (dump_flags & TDF_DETAILS)) | |
850 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index); | |
851 | |
852 /* Push a marker on the stacks of local information so that we know how | |
853 far to unwind when we finalize this block. */ | |
854 VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, NULL); | |
855 VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE); | |
856 | |
857 record_equivalences_from_incoming_edge (bb); | |
858 | |
859 /* PHI nodes can create equivalences too. */ | |
860 record_equivalences_from_phis (bb); | |
861 } | |
862 | |
863 /* Remove all the expressions in LOCALS from TABLE, stopping when there are | |
864 LIMIT entries left in LOCALs. */ | |
865 | |
866 static void | |
867 remove_local_expressions_from_table (void) | |
868 { | |
869 /* Remove all the expressions made available in this block. */ | |
870 while (VEC_length (expr_hash_elt_t, avail_exprs_stack) > 0) | |
871 { | |
872 struct expr_hash_elt element; | |
873 expr_hash_elt_t victim = VEC_pop (expr_hash_elt_t, avail_exprs_stack); | |
874 | |
875 if (victim == NULL) | |
876 break; | |
877 | |
878 element = *victim; | |
879 | |
880 /* This must precede the actual removal from the hash table, | |
881 as ELEMENT and the table entry may share a call argument | |
882 vector which will be freed during removal. */ | |
883 if (dump_file && (dump_flags & TDF_DETAILS)) | |
884 { | |
885 fprintf (dump_file, "<<<< "); | |
886 print_expr_hash_elt (dump_file, &element); | |
887 } | |
888 | |
889 htab_remove_elt_with_hash (avail_exprs, &element, element.hash); | |
890 } | |
891 } | |
892 | |
893 /* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore | |
894 CONST_AND_COPIES to its original state, stopping when we hit a | |
895 NULL marker. */ | |
896 | |
897 static void | |
898 restore_vars_to_original_value (void) | |
899 { | |
900 while (VEC_length (tree, const_and_copies_stack) > 0) | |
901 { | |
902 tree prev_value, dest; | |
903 | |
904 dest = VEC_pop (tree, const_and_copies_stack); | |
905 | |
906 if (dest == NULL) | |
907 break; | |
908 | |
909 if (dump_file && (dump_flags & TDF_DETAILS)) | |
910 { | |
911 fprintf (dump_file, "<<<< COPY "); | |
912 print_generic_expr (dump_file, dest, 0); | |
913 fprintf (dump_file, " = "); | |
914 print_generic_expr (dump_file, SSA_NAME_VALUE (dest), 0); | |
915 fprintf (dump_file, "\n"); | |
916 } | |
917 | |
918 prev_value = VEC_pop (tree, const_and_copies_stack); | |
919 SSA_NAME_VALUE (dest) = prev_value; | |
920 } | |
921 } | |
922 | |
923 /* A trivial wrapper so that we can present the generic jump | |
924 threading code with a simple API for simplifying statements. */ | |
925 static tree | |
926 simplify_stmt_for_jump_threading (gimple stmt, | |
927 gimple within_stmt ATTRIBUTE_UNUSED) | |
928 { | |
929 return lookup_avail_expr (stmt, false); | |
930 } | |
931 | |
932 /* Wrapper for common code to attempt to thread an edge. For example, | |
933 it handles lazily building the dummy condition and the bookkeeping | |
934 when jump threading is successful. */ | |
935 | |
936 static void | |
937 dom_thread_across_edge (struct dom_walk_data *walk_data, edge e) | |
938 { | |
939 if (! walk_data->global_data) | |
940 { | |
941 gimple dummy_cond = | |
942 gimple_build_cond (NE_EXPR, | |
943 integer_zero_node, integer_zero_node, | |
944 NULL, NULL); | |
945 walk_data->global_data = dummy_cond; | |
946 } | |
947 | |
948 thread_across_edge ((gimple) walk_data->global_data, e, false, | |
949 &const_and_copies_stack, | |
950 simplify_stmt_for_jump_threading); | |
951 } | |
952 | |
953 /* We have finished processing the dominator children of BB, perform | |
954 any finalization actions in preparation for leaving this node in | |
955 the dominator tree. */ | |
956 | |
957 static void | |
958 dom_opt_finalize_block (struct dom_walk_data *walk_data, basic_block bb) | |
959 { | |
960 gimple last; | |
961 | |
962 /* If we have an outgoing edge to a block with multiple incoming and | |
963 outgoing edges, then we may be able to thread the edge, i.e., we | |
964 may be able to statically determine which of the outgoing edges | |
965 will be traversed when the incoming edge from BB is traversed. */ | |
966 if (single_succ_p (bb) | |
967 && (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0 | |
968 && potentially_threadable_block (single_succ (bb))) | |
969 { | |
970 dom_thread_across_edge (walk_data, single_succ_edge (bb)); | |
971 } | |
972 else if ((last = last_stmt (bb)) | |
973 && gimple_code (last) == GIMPLE_COND | |
974 && EDGE_COUNT (bb->succs) == 2 | |
975 && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0 | |
976 && (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0) | |
977 { | |
978 edge true_edge, false_edge; | |
979 | |
980 extract_true_false_edges_from_block (bb, &true_edge, &false_edge); | |
981 | |
982 /* Only try to thread the edge if it reaches a target block with | |
983 more than one predecessor and more than one successor. */ | |
984 if (potentially_threadable_block (true_edge->dest)) | |
985 { | |
986 struct edge_info *edge_info; | |
987 unsigned int i; | |
988 | |
989 /* Push a marker onto the available expression stack so that we | |
990 unwind any expressions related to the TRUE arm before processing | |
991 the false arm below. */ | |
992 VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, NULL); | |
993 VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE); | |
994 | |
995 edge_info = (struct edge_info *) true_edge->aux; | |
996 | |
997 /* If we have info associated with this edge, record it into | |
998 our equivalence tables. */ | |
999 if (edge_info) | |
1000 { | |
1001 struct cond_equivalence *cond_equivalences = edge_info->cond_equivalences; | |
1002 tree lhs = edge_info->lhs; | |
1003 tree rhs = edge_info->rhs; | |
1004 | |
1005 /* If we have a simple NAME = VALUE equivalence, record it. */ | |
1006 if (lhs && TREE_CODE (lhs) == SSA_NAME) | |
1007 record_const_or_copy (lhs, rhs); | |
1008 | |
1009 /* If we have 0 = COND or 1 = COND equivalences, record them | |
1010 into our expression hash tables. */ | |
1011 if (cond_equivalences) | |
1012 for (i = 0; i < edge_info->max_cond_equivalences; i++) | |
1013 record_cond (&cond_equivalences[i]); | |
1014 } | |
1015 | |
1016 dom_thread_across_edge (walk_data, true_edge); | |
1017 | |
1018 /* And restore the various tables to their state before | |
1019 we threaded this edge. */ | |
1020 remove_local_expressions_from_table (); | |
1021 } | |
1022 | |
1023 /* Similarly for the ELSE arm. */ | |
1024 if (potentially_threadable_block (false_edge->dest)) | |
1025 { | |
1026 struct edge_info *edge_info; | |
1027 unsigned int i; | |
1028 | |
1029 VEC_safe_push (tree, heap, const_and_copies_stack, NULL_TREE); | |
1030 edge_info = (struct edge_info *) false_edge->aux; | |
1031 | |
1032 /* If we have info associated with this edge, record it into | |
1033 our equivalence tables. */ | |
1034 if (edge_info) | |
1035 { | |
1036 struct cond_equivalence *cond_equivalences = edge_info->cond_equivalences; | |
1037 tree lhs = edge_info->lhs; | |
1038 tree rhs = edge_info->rhs; | |
1039 | |
1040 /* If we have a simple NAME = VALUE equivalence, record it. */ | |
1041 if (lhs && TREE_CODE (lhs) == SSA_NAME) | |
1042 record_const_or_copy (lhs, rhs); | |
1043 | |
1044 /* If we have 0 = COND or 1 = COND equivalences, record them | |
1045 into our expression hash tables. */ | |
1046 if (cond_equivalences) | |
1047 for (i = 0; i < edge_info->max_cond_equivalences; i++) | |
1048 record_cond (&cond_equivalences[i]); | |
1049 } | |
1050 | |
1051 /* Now thread the edge. */ | |
1052 dom_thread_across_edge (walk_data, false_edge); | |
1053 | |
1054 /* No need to remove local expressions from our tables | |
1055 or restore vars to their original value as that will | |
1056 be done immediately below. */ | |
1057 } | |
1058 } | |
1059 | |
1060 remove_local_expressions_from_table (); | |
1061 restore_vars_to_original_value (); | |
1062 | |
1063 /* If we queued any statements to rescan in this block, then | |
1064 go ahead and rescan them now. */ | |
1065 while (VEC_length (gimple_p, stmts_to_rescan) > 0) | |
1066 { | |
1067 gimple *stmt_p = VEC_last (gimple_p, stmts_to_rescan); | |
1068 gimple stmt = *stmt_p; | |
1069 basic_block stmt_bb = gimple_bb (stmt); | |
1070 | |
1071 if (stmt_bb != bb) | |
1072 break; | |
1073 | |
1074 VEC_pop (gimple_p, stmts_to_rescan); | |
1075 pop_stmt_changes (stmt_p); | |
1076 } | |
1077 } | |
1078 | |
1079 /* PHI nodes can create equivalences too. | |
1080 | |
1081 Ignoring any alternatives which are the same as the result, if | |
1082 all the alternatives are equal, then the PHI node creates an | |
1083 equivalence. */ | |
1084 | |
1085 static void | |
1086 record_equivalences_from_phis (basic_block bb) | |
1087 { | |
1088 gimple_stmt_iterator gsi; | |
1089 | |
1090 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) | |
1091 { | |
1092 gimple phi = gsi_stmt (gsi); | |
1093 | |
1094 tree lhs = gimple_phi_result (phi); | |
1095 tree rhs = NULL; | |
1096 size_t i; | |
1097 | |
1098 for (i = 0; i < gimple_phi_num_args (phi); i++) | |
1099 { | |
1100 tree t = gimple_phi_arg_def (phi, i); | |
1101 | |
1102 /* Ignore alternatives which are the same as our LHS. Since | |
1103 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we | |
1104 can simply compare pointers. */ | |
1105 if (lhs == t) | |
1106 continue; | |
1107 | |
1108 /* If we have not processed an alternative yet, then set | |
1109 RHS to this alternative. */ | |
1110 if (rhs == NULL) | |
1111 rhs = t; | |
1112 /* If we have processed an alternative (stored in RHS), then | |
1113 see if it is equal to this one. If it isn't, then stop | |
1114 the search. */ | |
1115 else if (! operand_equal_for_phi_arg_p (rhs, t)) | |
1116 break; | |
1117 } | |
1118 | |
1119 /* If we had no interesting alternatives, then all the RHS alternatives | |
1120 must have been the same as LHS. */ | |
1121 if (!rhs) | |
1122 rhs = lhs; | |
1123 | |
1124 /* If we managed to iterate through each PHI alternative without | |
1125 breaking out of the loop, then we have a PHI which may create | |
1126 a useful equivalence. We do not need to record unwind data for | |
1127 this, since this is a true assignment and not an equivalence | |
1128 inferred from a comparison. All uses of this ssa name are dominated | |
1129 by this assignment, so unwinding just costs time and space. */ | |
1130 if (i == gimple_phi_num_args (phi) && may_propagate_copy (lhs, rhs)) | |
1131 SSA_NAME_VALUE (lhs) = rhs; | |
1132 } | |
1133 } | |
1134 | |
1135 /* Ignoring loop backedges, if BB has precisely one incoming edge then | |
1136 return that edge. Otherwise return NULL. */ | |
1137 static edge | |
1138 single_incoming_edge_ignoring_loop_edges (basic_block bb) | |
1139 { | |
1140 edge retval = NULL; | |
1141 edge e; | |
1142 edge_iterator ei; | |
1143 | |
1144 FOR_EACH_EDGE (e, ei, bb->preds) | |
1145 { | |
1146 /* A loop back edge can be identified by the destination of | |
1147 the edge dominating the source of the edge. */ | |
1148 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest)) | |
1149 continue; | |
1150 | |
1151 /* If we have already seen a non-loop edge, then we must have | |
1152 multiple incoming non-loop edges and thus we return NULL. */ | |
1153 if (retval) | |
1154 return NULL; | |
1155 | |
1156 /* This is the first non-loop incoming edge we have found. Record | |
1157 it. */ | |
1158 retval = e; | |
1159 } | |
1160 | |
1161 return retval; | |
1162 } | |
1163 | |
1164 /* Record any equivalences created by the incoming edge to BB. If BB | |
1165 has more than one incoming edge, then no equivalence is created. */ | |
1166 | |
1167 static void | |
1168 record_equivalences_from_incoming_edge (basic_block bb) | |
1169 { | |
1170 edge e; | |
1171 basic_block parent; | |
1172 struct edge_info *edge_info; | |
1173 | |
1174 /* If our parent block ended with a control statement, then we may be | |
1175 able to record some equivalences based on which outgoing edge from | |
1176 the parent was followed. */ | |
1177 parent = get_immediate_dominator (CDI_DOMINATORS, bb); | |
1178 | |
1179 e = single_incoming_edge_ignoring_loop_edges (bb); | |
1180 | |
1181 /* If we had a single incoming edge from our parent block, then enter | |
1182 any data associated with the edge into our tables. */ | |
1183 if (e && e->src == parent) | |
1184 { | |
1185 unsigned int i; | |
1186 | |
1187 edge_info = (struct edge_info *) e->aux; | |
1188 | |
1189 if (edge_info) | |
1190 { | |
1191 tree lhs = edge_info->lhs; | |
1192 tree rhs = edge_info->rhs; | |
1193 struct cond_equivalence *cond_equivalences = edge_info->cond_equivalences; | |
1194 | |
1195 if (lhs) | |
1196 record_equality (lhs, rhs); | |
1197 | |
1198 if (cond_equivalences) | |
1199 for (i = 0; i < edge_info->max_cond_equivalences; i++) | |
1200 record_cond (&cond_equivalences[i]); | |
1201 } | |
1202 } | |
1203 } | |
1204 | |
1205 /* Dump SSA statistics on FILE. */ | |
1206 | |
1207 void | |
1208 dump_dominator_optimization_stats (FILE *file) | |
1209 { | |
1210 fprintf (file, "Total number of statements: %6ld\n\n", | |
1211 opt_stats.num_stmts); | |
1212 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n", | |
1213 opt_stats.num_exprs_considered); | |
1214 | |
1215 fprintf (file, "\nHash table statistics:\n"); | |
1216 | |
1217 fprintf (file, " avail_exprs: "); | |
1218 htab_statistics (file, avail_exprs); | |
1219 } | |
1220 | |
1221 | |
1222 /* Dump SSA statistics on stderr. */ | |
1223 | |
1224 void | |
1225 debug_dominator_optimization_stats (void) | |
1226 { | |
1227 dump_dominator_optimization_stats (stderr); | |
1228 } | |
1229 | |
1230 | |
1231 /* Dump statistics for the hash table HTAB. */ | |
1232 | |
1233 static void | |
1234 htab_statistics (FILE *file, htab_t htab) | |
1235 { | |
1236 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n", | |
1237 (long) htab_size (htab), | |
1238 (long) htab_elements (htab), | |
1239 htab_collisions (htab)); | |
1240 } | |
1241 | |
1242 | |
1243 /* Enter condition equivalence into the expression hash table. | |
1244 This indicates that a conditional expression has a known | |
1245 boolean value. */ | |
1246 | |
1247 static void | |
1248 record_cond (struct cond_equivalence *p) | |
1249 { | |
1250 struct expr_hash_elt *element = XCNEW (struct expr_hash_elt); | |
1251 void **slot; | |
1252 | |
1253 initialize_hash_element_from_expr (&p->cond, p->value, element); | |
1254 | |
1255 slot = htab_find_slot_with_hash (avail_exprs, (void *)element, | |
1256 element->hash, INSERT); | |
1257 if (*slot == NULL) | |
1258 { | |
1259 *slot = (void *) element; | |
1260 | |
1261 if (dump_file && (dump_flags & TDF_DETAILS)) | |
1262 { | |
1263 fprintf (dump_file, "1>>> "); | |
1264 print_expr_hash_elt (dump_file, element); | |
1265 } | |
1266 | |
1267 VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, element); | |
1268 } | |
1269 else | |
1270 free (element); | |
1271 } | |
1272 | |
1273 /* Build a cond_equivalence record indicating that the comparison | |
1274 CODE holds between operands OP0 and OP1. */ | |
1275 | |
1276 static void | |
1277 build_and_record_new_cond (enum tree_code code, | |
1278 tree op0, tree op1, | |
1279 struct cond_equivalence *p) | |
1280 { | |
1281 struct hashable_expr *cond = &p->cond; | |
1282 | |
1283 gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison); | |
1284 | |
1285 cond->type = boolean_type_node; | |
1286 cond->kind = EXPR_BINARY; | |
1287 cond->ops.binary.op = code; | |
1288 cond->ops.binary.opnd0 = op0; | |
1289 cond->ops.binary.opnd1 = op1; | |
1290 | |
1291 p->value = boolean_true_node; | |
1292 } | |
1293 | |
1294 /* Record that COND is true and INVERTED is false into the edge information | |
1295 structure. Also record that any conditions dominated by COND are true | |
1296 as well. | |
1297 | |
1298 For example, if a < b is true, then a <= b must also be true. */ | |
1299 | |
1300 static void | |
1301 record_conditions (struct edge_info *edge_info, tree cond, tree inverted) | |
1302 { | |
1303 tree op0, op1; | |
1304 | |
1305 if (!COMPARISON_CLASS_P (cond)) | |
1306 return; | |
1307 | |
1308 op0 = TREE_OPERAND (cond, 0); | |
1309 op1 = TREE_OPERAND (cond, 1); | |
1310 | |
1311 switch (TREE_CODE (cond)) | |
1312 { | |
1313 case LT_EXPR: | |
1314 case GT_EXPR: | |
1315 if (FLOAT_TYPE_P (TREE_TYPE (op0))) | |
1316 { | |
1317 edge_info->max_cond_equivalences = 6; | |
1318 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 6); | |
1319 build_and_record_new_cond (ORDERED_EXPR, op0, op1, | |
1320 &edge_info->cond_equivalences[4]); | |
1321 build_and_record_new_cond (LTGT_EXPR, op0, op1, | |
1322 &edge_info->cond_equivalences[5]); | |
1323 } | |
1324 else | |
1325 { | |
1326 edge_info->max_cond_equivalences = 4; | |
1327 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4); | |
1328 } | |
1329 | |
1330 build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR | |
1331 ? LE_EXPR : GE_EXPR), | |
1332 op0, op1, &edge_info->cond_equivalences[2]); | |
1333 build_and_record_new_cond (NE_EXPR, op0, op1, | |
1334 &edge_info->cond_equivalences[3]); | |
1335 break; | |
1336 | |
1337 case GE_EXPR: | |
1338 case LE_EXPR: | |
1339 if (FLOAT_TYPE_P (TREE_TYPE (op0))) | |
1340 { | |
1341 edge_info->max_cond_equivalences = 3; | |
1342 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 3); | |
1343 build_and_record_new_cond (ORDERED_EXPR, op0, op1, | |
1344 &edge_info->cond_equivalences[2]); | |
1345 } | |
1346 else | |
1347 { | |
1348 edge_info->max_cond_equivalences = 2; | |
1349 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 2); | |
1350 } | |
1351 break; | |
1352 | |
1353 case EQ_EXPR: | |
1354 if (FLOAT_TYPE_P (TREE_TYPE (op0))) | |
1355 { | |
1356 edge_info->max_cond_equivalences = 5; | |
1357 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 5); | |
1358 build_and_record_new_cond (ORDERED_EXPR, op0, op1, | |
1359 &edge_info->cond_equivalences[4]); | |
1360 } | |
1361 else | |
1362 { | |
1363 edge_info->max_cond_equivalences = 4; | |
1364 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4); | |
1365 } | |
1366 build_and_record_new_cond (LE_EXPR, op0, op1, | |
1367 &edge_info->cond_equivalences[2]); | |
1368 build_and_record_new_cond (GE_EXPR, op0, op1, | |
1369 &edge_info->cond_equivalences[3]); | |
1370 break; | |
1371 | |
1372 case UNORDERED_EXPR: | |
1373 edge_info->max_cond_equivalences = 8; | |
1374 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 8); | |
1375 build_and_record_new_cond (NE_EXPR, op0, op1, | |
1376 &edge_info->cond_equivalences[2]); | |
1377 build_and_record_new_cond (UNLE_EXPR, op0, op1, | |
1378 &edge_info->cond_equivalences[3]); | |
1379 build_and_record_new_cond (UNGE_EXPR, op0, op1, | |
1380 &edge_info->cond_equivalences[4]); | |
1381 build_and_record_new_cond (UNEQ_EXPR, op0, op1, | |
1382 &edge_info->cond_equivalences[5]); | |
1383 build_and_record_new_cond (UNLT_EXPR, op0, op1, | |
1384 &edge_info->cond_equivalences[6]); | |
1385 build_and_record_new_cond (UNGT_EXPR, op0, op1, | |
1386 &edge_info->cond_equivalences[7]); | |
1387 break; | |
1388 | |
1389 case UNLT_EXPR: | |
1390 case UNGT_EXPR: | |
1391 edge_info->max_cond_equivalences = 4; | |
1392 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4); | |
1393 build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR | |
1394 ? UNLE_EXPR : UNGE_EXPR), | |
1395 op0, op1, &edge_info->cond_equivalences[2]); | |
1396 build_and_record_new_cond (NE_EXPR, op0, op1, | |
1397 &edge_info->cond_equivalences[3]); | |
1398 break; | |
1399 | |
1400 case UNEQ_EXPR: | |
1401 edge_info->max_cond_equivalences = 4; | |
1402 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4); | |
1403 build_and_record_new_cond (UNLE_EXPR, op0, op1, | |
1404 &edge_info->cond_equivalences[2]); | |
1405 build_and_record_new_cond (UNGE_EXPR, op0, op1, | |
1406 &edge_info->cond_equivalences[3]); | |
1407 break; | |
1408 | |
1409 case LTGT_EXPR: | |
1410 edge_info->max_cond_equivalences = 4; | |
1411 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 4); | |
1412 build_and_record_new_cond (NE_EXPR, op0, op1, | |
1413 &edge_info->cond_equivalences[2]); | |
1414 build_and_record_new_cond (ORDERED_EXPR, op0, op1, | |
1415 &edge_info->cond_equivalences[3]); | |
1416 break; | |
1417 | |
1418 default: | |
1419 edge_info->max_cond_equivalences = 2; | |
1420 edge_info->cond_equivalences = XNEWVEC (struct cond_equivalence, 2); | |
1421 break; | |
1422 } | |
1423 | |
1424 /* Now store the original true and false conditions into the first | |
1425 two slots. */ | |
1426 initialize_expr_from_cond (cond, &edge_info->cond_equivalences[0].cond); | |
1427 edge_info->cond_equivalences[0].value = boolean_true_node; | |
1428 | |
1429 /* It is possible for INVERTED to be the negation of a comparison, | |
1430 and not a valid RHS or GIMPLE_COND condition. This happens because | |
1431 invert_truthvalue may return such an expression when asked to invert | |
1432 a floating-point comparison. These comparisons are not assumed to | |
1433 obey the trichotomy law. */ | |
1434 initialize_expr_from_cond (inverted, &edge_info->cond_equivalences[1].cond); | |
1435 edge_info->cond_equivalences[1].value = boolean_false_node; | |
1436 } | |
1437 | |
1438 /* A helper function for record_const_or_copy and record_equality. | |
1439 Do the work of recording the value and undo info. */ | |
1440 | |
1441 static void | |
1442 record_const_or_copy_1 (tree x, tree y, tree prev_x) | |
1443 { | |
1444 SSA_NAME_VALUE (x) = y; | |
1445 | |
1446 if (dump_file && (dump_flags & TDF_DETAILS)) | |
1447 { | |
1448 fprintf (dump_file, "0>>> COPY "); | |
1449 print_generic_expr (dump_file, x, 0); | |
1450 fprintf (dump_file, " = "); | |
1451 print_generic_expr (dump_file, y, 0); | |
1452 fprintf (dump_file, "\n"); | |
1453 } | |
1454 | |
1455 VEC_reserve (tree, heap, const_and_copies_stack, 2); | |
1456 VEC_quick_push (tree, const_and_copies_stack, prev_x); | |
1457 VEC_quick_push (tree, const_and_copies_stack, x); | |
1458 } | |
1459 | |
1460 /* Return the loop depth of the basic block of the defining statement of X. | |
1461 This number should not be treated as absolutely correct because the loop | |
1462 information may not be completely up-to-date when dom runs. However, it | |
1463 will be relatively correct, and as more passes are taught to keep loop info | |
1464 up to date, the result will become more and more accurate. */ | |
1465 | |
1466 int | |
1467 loop_depth_of_name (tree x) | |
1468 { | |
1469 gimple defstmt; | |
1470 basic_block defbb; | |
1471 | |
1472 /* If it's not an SSA_NAME, we have no clue where the definition is. */ | |
1473 if (TREE_CODE (x) != SSA_NAME) | |
1474 return 0; | |
1475 | |
1476 /* Otherwise return the loop depth of the defining statement's bb. | |
1477 Note that there may not actually be a bb for this statement, if the | |
1478 ssa_name is live on entry. */ | |
1479 defstmt = SSA_NAME_DEF_STMT (x); | |
1480 defbb = gimple_bb (defstmt); | |
1481 if (!defbb) | |
1482 return 0; | |
1483 | |
1484 return defbb->loop_depth; | |
1485 } | |
1486 | |
1487 /* Record that X is equal to Y in const_and_copies. Record undo | |
1488 information in the block-local vector. */ | |
1489 | |
1490 static void | |
1491 record_const_or_copy (tree x, tree y) | |
1492 { | |
1493 tree prev_x = SSA_NAME_VALUE (x); | |
1494 | |
1495 gcc_assert (TREE_CODE (x) == SSA_NAME); | |
1496 | |
1497 if (TREE_CODE (y) == SSA_NAME) | |
1498 { | |
1499 tree tmp = SSA_NAME_VALUE (y); | |
1500 if (tmp) | |
1501 y = tmp; | |
1502 } | |
1503 | |
1504 record_const_or_copy_1 (x, y, prev_x); | |
1505 } | |
1506 | |
1507 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR. | |
1508 This constrains the cases in which we may treat this as assignment. */ | |
1509 | |
1510 static void | |
1511 record_equality (tree x, tree y) | |
1512 { | |
1513 tree prev_x = NULL, prev_y = NULL; | |
1514 | |
1515 if (TREE_CODE (x) == SSA_NAME) | |
1516 prev_x = SSA_NAME_VALUE (x); | |
1517 if (TREE_CODE (y) == SSA_NAME) | |
1518 prev_y = SSA_NAME_VALUE (y); | |
1519 | |
1520 /* If one of the previous values is invariant, or invariant in more loops | |
1521 (by depth), then use that. | |
1522 Otherwise it doesn't matter which value we choose, just so | |
1523 long as we canonicalize on one value. */ | |
1524 if (is_gimple_min_invariant (y)) | |
1525 ; | |
1526 else if (is_gimple_min_invariant (x) | |
1527 || (loop_depth_of_name (x) <= loop_depth_of_name (y))) | |
1528 prev_x = x, x = y, y = prev_x, prev_x = prev_y; | |
1529 else if (prev_x && is_gimple_min_invariant (prev_x)) | |
1530 x = y, y = prev_x, prev_x = prev_y; | |
1531 else if (prev_y) | |
1532 y = prev_y; | |
1533 | |
1534 /* After the swapping, we must have one SSA_NAME. */ | |
1535 if (TREE_CODE (x) != SSA_NAME) | |
1536 return; | |
1537 | |
1538 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a | |
1539 variable compared against zero. If we're honoring signed zeros, | |
1540 then we cannot record this value unless we know that the value is | |
1541 nonzero. */ | |
1542 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x))) | |
1543 && (TREE_CODE (y) != REAL_CST | |
1544 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y)))) | |
1545 return; | |
1546 | |
1547 record_const_or_copy_1 (x, y, prev_x); | |
1548 } | |
1549 | |
1550 /* Returns true when STMT is a simple iv increment. It detects the | |
1551 following situation: | |
1552 | |
1553 i_1 = phi (..., i_2) | |
1554 i_2 = i_1 +/- ... */ | |
1555 | |
1556 static bool | |
1557 simple_iv_increment_p (gimple stmt) | |
1558 { | |
1559 tree lhs, preinc; | |
1560 gimple phi; | |
1561 size_t i; | |
1562 | |
1563 if (gimple_code (stmt) != GIMPLE_ASSIGN) | |
1564 return false; | |
1565 | |
1566 lhs = gimple_assign_lhs (stmt); | |
1567 if (TREE_CODE (lhs) != SSA_NAME) | |
1568 return false; | |
1569 | |
1570 if (gimple_assign_rhs_code (stmt) != PLUS_EXPR | |
1571 && gimple_assign_rhs_code (stmt) != MINUS_EXPR) | |
1572 return false; | |
1573 | |
1574 preinc = gimple_assign_rhs1 (stmt); | |
1575 | |
1576 if (TREE_CODE (preinc) != SSA_NAME) | |
1577 return false; | |
1578 | |
1579 phi = SSA_NAME_DEF_STMT (preinc); | |
1580 if (gimple_code (phi) != GIMPLE_PHI) | |
1581 return false; | |
1582 | |
1583 for (i = 0; i < gimple_phi_num_args (phi); i++) | |
1584 if (gimple_phi_arg_def (phi, i) == lhs) | |
1585 return true; | |
1586 | |
1587 return false; | |
1588 } | |
1589 | |
1590 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current | |
1591 known value for that SSA_NAME (or NULL if no value is known). | |
1592 | |
1593 Propagate values from CONST_AND_COPIES into the PHI nodes of the | |
1594 successors of BB. */ | |
1595 | |
1596 static void | |
1597 cprop_into_successor_phis (basic_block bb) | |
1598 { | |
1599 edge e; | |
1600 edge_iterator ei; | |
1601 | |
1602 FOR_EACH_EDGE (e, ei, bb->succs) | |
1603 { | |
1604 int indx; | |
1605 gimple_stmt_iterator gsi; | |
1606 | |
1607 /* If this is an abnormal edge, then we do not want to copy propagate | |
1608 into the PHI alternative associated with this edge. */ | |
1609 if (e->flags & EDGE_ABNORMAL) | |
1610 continue; | |
1611 | |
1612 gsi = gsi_start_phis (e->dest); | |
1613 if (gsi_end_p (gsi)) | |
1614 continue; | |
1615 | |
1616 indx = e->dest_idx; | |
1617 for ( ; !gsi_end_p (gsi); gsi_next (&gsi)) | |
1618 { | |
1619 tree new_val; | |
1620 use_operand_p orig_p; | |
1621 tree orig_val; | |
1622 gimple phi = gsi_stmt (gsi); | |
1623 | |
1624 /* The alternative may be associated with a constant, so verify | |
1625 it is an SSA_NAME before doing anything with it. */ | |
1626 orig_p = gimple_phi_arg_imm_use_ptr (phi, indx); | |
1627 orig_val = get_use_from_ptr (orig_p); | |
1628 if (TREE_CODE (orig_val) != SSA_NAME) | |
1629 continue; | |
1630 | |
1631 /* If we have *ORIG_P in our constant/copy table, then replace | |
1632 ORIG_P with its value in our constant/copy table. */ | |
1633 new_val = SSA_NAME_VALUE (orig_val); | |
1634 if (new_val | |
1635 && new_val != orig_val | |
1636 && (TREE_CODE (new_val) == SSA_NAME | |
1637 || is_gimple_min_invariant (new_val)) | |
1638 && may_propagate_copy (orig_val, new_val)) | |
1639 propagate_value (orig_p, new_val); | |
1640 } | |
1641 } | |
1642 } | |
1643 | |
1644 /* We have finished optimizing BB, record any information implied by | |
1645 taking a specific outgoing edge from BB. */ | |
1646 | |
1647 static void | |
1648 record_edge_info (basic_block bb) | |
1649 { | |
1650 gimple_stmt_iterator gsi = gsi_last_bb (bb); | |
1651 struct edge_info *edge_info; | |
1652 | |
1653 if (! gsi_end_p (gsi)) | |
1654 { | |
1655 gimple stmt = gsi_stmt (gsi); | |
1656 | |
1657 if (gimple_code (stmt) == GIMPLE_SWITCH) | |
1658 { | |
1659 tree index = gimple_switch_index (stmt); | |
1660 | |
1661 if (TREE_CODE (index) == SSA_NAME) | |
1662 { | |
1663 int i; | |
1664 int n_labels = gimple_switch_num_labels (stmt); | |
1665 tree *info = XCNEWVEC (tree, last_basic_block); | |
1666 edge e; | |
1667 edge_iterator ei; | |
1668 | |
1669 for (i = 0; i < n_labels; i++) | |
1670 { | |
1671 tree label = gimple_switch_label (stmt, i); | |
1672 basic_block target_bb = label_to_block (CASE_LABEL (label)); | |
1673 if (CASE_HIGH (label) | |
1674 || !CASE_LOW (label) | |
1675 || info[target_bb->index]) | |
1676 info[target_bb->index] = error_mark_node; | |
1677 else | |
1678 info[target_bb->index] = label; | |
1679 } | |
1680 | |
1681 FOR_EACH_EDGE (e, ei, bb->succs) | |
1682 { | |
1683 basic_block target_bb = e->dest; | |
1684 tree label = info[target_bb->index]; | |
1685 | |
1686 if (label != NULL && label != error_mark_node) | |
1687 { | |
1688 tree x = fold_convert (TREE_TYPE (index), CASE_LOW (label)); | |
1689 edge_info = allocate_edge_info (e); | |
1690 edge_info->lhs = index; | |
1691 edge_info->rhs = x; | |
1692 } | |
1693 } | |
1694 free (info); | |
1695 } | |
1696 } | |
1697 | |
1698 /* A COND_EXPR may create equivalences too. */ | |
1699 if (gimple_code (stmt) == GIMPLE_COND) | |
1700 { | |
1701 edge true_edge; | |
1702 edge false_edge; | |
1703 | |
1704 tree op0 = gimple_cond_lhs (stmt); | |
1705 tree op1 = gimple_cond_rhs (stmt); | |
1706 enum tree_code code = gimple_cond_code (stmt); | |
1707 | |
1708 extract_true_false_edges_from_block (bb, &true_edge, &false_edge); | |
1709 | |
1710 /* Special case comparing booleans against a constant as we | |
1711 know the value of OP0 on both arms of the branch. i.e., we | |
1712 can record an equivalence for OP0 rather than COND. */ | |
1713 if ((code == EQ_EXPR || code == NE_EXPR) | |
1714 && TREE_CODE (op0) == SSA_NAME | |
1715 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE | |
1716 && is_gimple_min_invariant (op1)) | |
1717 { | |
1718 if (code == EQ_EXPR) | |
1719 { | |
1720 edge_info = allocate_edge_info (true_edge); | |
1721 edge_info->lhs = op0; | |
1722 edge_info->rhs = (integer_zerop (op1) | |
1723 ? boolean_false_node | |
1724 : boolean_true_node); | |
1725 | |
1726 edge_info = allocate_edge_info (false_edge); | |
1727 edge_info->lhs = op0; | |
1728 edge_info->rhs = (integer_zerop (op1) | |
1729 ? boolean_true_node | |
1730 : boolean_false_node); | |
1731 } | |
1732 else | |
1733 { | |
1734 edge_info = allocate_edge_info (true_edge); | |
1735 edge_info->lhs = op0; | |
1736 edge_info->rhs = (integer_zerop (op1) | |
1737 ? boolean_true_node | |
1738 : boolean_false_node); | |
1739 | |
1740 edge_info = allocate_edge_info (false_edge); | |
1741 edge_info->lhs = op0; | |
1742 edge_info->rhs = (integer_zerop (op1) | |
1743 ? boolean_false_node | |
1744 : boolean_true_node); | |
1745 } | |
1746 } | |
1747 else if (is_gimple_min_invariant (op0) | |
1748 && (TREE_CODE (op1) == SSA_NAME | |
1749 || is_gimple_min_invariant (op1))) | |
1750 { | |
1751 tree cond = build2 (code, boolean_type_node, op0, op1); | |
1752 tree inverted = invert_truthvalue (cond); | |
1753 struct edge_info *edge_info; | |
1754 | |
1755 edge_info = allocate_edge_info (true_edge); | |
1756 record_conditions (edge_info, cond, inverted); | |
1757 | |
1758 if (code == EQ_EXPR) | |
1759 { | |
1760 edge_info->lhs = op1; | |
1761 edge_info->rhs = op0; | |
1762 } | |
1763 | |
1764 edge_info = allocate_edge_info (false_edge); | |
1765 record_conditions (edge_info, inverted, cond); | |
1766 | |
1767 if (code == NE_EXPR) | |
1768 { | |
1769 edge_info->lhs = op1; | |
1770 edge_info->rhs = op0; | |
1771 } | |
1772 } | |
1773 | |
1774 else if (TREE_CODE (op0) == SSA_NAME | |
1775 && (is_gimple_min_invariant (op1) | |
1776 || TREE_CODE (op1) == SSA_NAME)) | |
1777 { | |
1778 tree cond = build2 (code, boolean_type_node, op0, op1); | |
1779 tree inverted = invert_truthvalue (cond); | |
1780 struct edge_info *edge_info; | |
1781 | |
1782 edge_info = allocate_edge_info (true_edge); | |
1783 record_conditions (edge_info, cond, inverted); | |
1784 | |
1785 if (code == EQ_EXPR) | |
1786 { | |
1787 edge_info->lhs = op0; | |
1788 edge_info->rhs = op1; | |
1789 } | |
1790 | |
1791 edge_info = allocate_edge_info (false_edge); | |
1792 record_conditions (edge_info, inverted, cond); | |
1793 | |
1794 if (TREE_CODE (cond) == NE_EXPR) | |
1795 { | |
1796 edge_info->lhs = op0; | |
1797 edge_info->rhs = op1; | |
1798 } | |
1799 } | |
1800 } | |
1801 | |
1802 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */ | |
1803 } | |
1804 } | |
1805 | |
1806 /* Propagate information from BB to its outgoing edges. | |
1807 | |
1808 This can include equivalence information implied by control statements | |
1809 at the end of BB and const/copy propagation into PHIs in BB's | |
1810 successor blocks. */ | |
1811 | |
1812 static void | |
1813 propagate_to_outgoing_edges (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED, | |
1814 basic_block bb) | |
1815 { | |
1816 record_edge_info (bb); | |
1817 cprop_into_successor_phis (bb); | |
1818 } | |
1819 | |
1820 /* Search for redundant computations in STMT. If any are found, then | |
1821 replace them with the variable holding the result of the computation. | |
1822 | |
1823 If safe, record this expression into the available expression hash | |
1824 table. */ | |
1825 | |
1826 static bool | |
1827 eliminate_redundant_computations (gimple_stmt_iterator* gsi) | |
1828 { | |
1829 tree expr_type; | |
1830 tree cached_lhs; | |
1831 bool insert = true; | |
1832 bool retval = false; | |
1833 bool assigns_var_p = false; | |
1834 | |
1835 gimple stmt = gsi_stmt (*gsi); | |
1836 | |
1837 tree def = gimple_get_lhs (stmt); | |
1838 | |
1839 /* Certain expressions on the RHS can be optimized away, but can not | |
1840 themselves be entered into the hash tables. */ | |
1841 if (! def | |
1842 || TREE_CODE (def) != SSA_NAME | |
1843 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def) | |
1844 || !ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF) | |
1845 /* Do not record equivalences for increments of ivs. This would create | |
1846 overlapping live ranges for a very questionable gain. */ | |
1847 || simple_iv_increment_p (stmt)) | |
1848 insert = false; | |
1849 | |
1850 /* Check if the expression has been computed before. */ | |
1851 cached_lhs = lookup_avail_expr (stmt, insert); | |
1852 | |
1853 opt_stats.num_exprs_considered++; | |
1854 | |
1855 /* Get the type of the expression we are trying to optimize. */ | |
1856 if (is_gimple_assign (stmt)) | |
1857 { | |
1858 expr_type = TREE_TYPE (gimple_assign_lhs (stmt)); | |
1859 assigns_var_p = true; | |
1860 } | |
1861 else if (gimple_code (stmt) == GIMPLE_COND) | |
1862 expr_type = boolean_type_node; | |
1863 else if (is_gimple_call (stmt)) | |
1864 { | |
1865 gcc_assert (gimple_call_lhs (stmt)); | |
1866 expr_type = TREE_TYPE (gimple_call_lhs (stmt)); | |
1867 assigns_var_p = true; | |
1868 } | |
1869 else if (gimple_code (stmt) == GIMPLE_SWITCH) | |
1870 expr_type = TREE_TYPE (gimple_switch_index (stmt)); | |
1871 else | |
1872 gcc_unreachable (); | |
1873 | |
1874 if (!cached_lhs) | |
1875 return false; | |
1876 | |
1877 /* It is safe to ignore types here since we have already done | |
1878 type checking in the hashing and equality routines. In fact | |
1879 type checking here merely gets in the way of constant | |
1880 propagation. Also, make sure that it is safe to propagate | |
1881 CACHED_LHS into the expression in STMT. */ | |
1882 if ((TREE_CODE (cached_lhs) != SSA_NAME | |
1883 && (assigns_var_p | |
1884 || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))) | |
1885 || may_propagate_copy_into_stmt (stmt, cached_lhs)) | |
1886 { | |
1887 #if defined ENABLE_CHECKING | |
1888 gcc_assert (TREE_CODE (cached_lhs) == SSA_NAME | |
1889 || is_gimple_min_invariant (cached_lhs)); | |
1890 #endif | |
1891 | |
1892 if (dump_file && (dump_flags & TDF_DETAILS)) | |
1893 { | |
1894 fprintf (dump_file, " Replaced redundant expr '"); | |
1895 print_gimple_expr (dump_file, stmt, 0, dump_flags); | |
1896 fprintf (dump_file, "' with '"); | |
1897 print_generic_expr (dump_file, cached_lhs, dump_flags); | |
1898 fprintf (dump_file, "'\n"); | |
1899 } | |
1900 | |
1901 opt_stats.num_re++; | |
1902 | |
1903 if (TREE_CODE (cached_lhs) == ADDR_EXPR | |
1904 || (POINTER_TYPE_P (expr_type) | |
1905 && is_gimple_min_invariant (cached_lhs))) | |
1906 retval = true; | |
1907 | |
1908 if (assigns_var_p | |
1909 && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))) | |
1910 cached_lhs = fold_convert (expr_type, cached_lhs); | |
1911 | |
1912 propagate_tree_value_into_stmt (gsi, cached_lhs); | |
1913 | |
1914 /* Since it is always necessary to mark the result as modified, | |
1915 perhaps we should move this into propagate_tree_value_into_stmt | |
1916 itself. */ | |
1917 gimple_set_modified (gsi_stmt (*gsi), true); | |
1918 } | |
1919 return retval; | |
1920 } | |
1921 | |
1922 /* Return true if statement GS is an assignment that peforms a useless | |
1923 type conversion. It is is intended to be a tuples analog of function | |
1924 tree_ssa_useless_type_conversion. */ | |
1925 | |
1926 static bool | |
1927 gimple_assign_unary_useless_conversion_p (gimple gs) | |
1928 { | |
1929 if (is_gimple_assign (gs) | |
1930 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)) | |
1931 || gimple_assign_rhs_code (gs) == VIEW_CONVERT_EXPR | |
1932 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)) | |
1933 { | |
1934 tree lhs_type = TREE_TYPE (gimple_assign_lhs (gs)); | |
1935 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (gs)); | |
1936 return useless_type_conversion_p (lhs_type, rhs_type); | |
1937 } | |
1938 | |
1939 return false; | |
1940 } | |
1941 | |
1942 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either | |
1943 the available expressions table or the const_and_copies table. | |
1944 Detect and record those equivalences. */ | |
1945 /* We handle only very simple copy equivalences here. The heavy | |
1946 lifing is done by eliminate_redundant_computations. */ | |
1947 | |
1948 static void | |
1949 record_equivalences_from_stmt (gimple stmt, int may_optimize_p) | |
1950 { | |
1951 tree lhs; | |
1952 enum tree_code lhs_code; | |
1953 | |
1954 gcc_assert (is_gimple_assign (stmt)); | |
1955 | |
1956 lhs = gimple_assign_lhs (stmt); | |
1957 lhs_code = TREE_CODE (lhs); | |
1958 | |
1959 if (lhs_code == SSA_NAME | |
1960 && (gimple_assign_single_p (stmt) | |
1961 || gimple_assign_unary_useless_conversion_p (stmt))) | |
1962 { | |
1963 tree rhs = gimple_assign_rhs1 (stmt); | |
1964 | |
1965 /* Strip away any useless type conversions. */ | |
1966 STRIP_USELESS_TYPE_CONVERSION (rhs); | |
1967 | |
1968 /* If the RHS of the assignment is a constant or another variable that | |
1969 may be propagated, register it in the CONST_AND_COPIES table. We | |
1970 do not need to record unwind data for this, since this is a true | |
1971 assignment and not an equivalence inferred from a comparison. All | |
1972 uses of this ssa name are dominated by this assignment, so unwinding | |
1973 just costs time and space. */ | |
1974 if (may_optimize_p | |
1975 && (TREE_CODE (rhs) == SSA_NAME | |
1976 || is_gimple_min_invariant (rhs))) | |
1977 { | |
1978 if (dump_file && (dump_flags & TDF_DETAILS)) | |
1979 { | |
1980 fprintf (dump_file, "==== ASGN "); | |
1981 print_generic_expr (dump_file, lhs, 0); | |
1982 fprintf (dump_file, " = "); | |
1983 print_generic_expr (dump_file, rhs, 0); | |
1984 fprintf (dump_file, "\n"); | |
1985 } | |
1986 | |
1987 SSA_NAME_VALUE (lhs) = rhs; | |
1988 } | |
1989 } | |
1990 | |
1991 /* A memory store, even an aliased store, creates a useful | |
1992 equivalence. By exchanging the LHS and RHS, creating suitable | |
1993 vops and recording the result in the available expression table, | |
1994 we may be able to expose more redundant loads. */ | |
1995 if (!gimple_has_volatile_ops (stmt) | |
1996 && gimple_references_memory_p (stmt) | |
1997 && gimple_assign_single_p (stmt) | |
1998 && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME | |
1999 || is_gimple_min_invariant (gimple_assign_rhs1 (stmt))) | |
2000 && !is_gimple_reg (lhs)) | |
2001 { | |
2002 tree rhs = gimple_assign_rhs1 (stmt); | |
2003 gimple new_stmt; | |
2004 | |
2005 /* Build a new statement with the RHS and LHS exchanged. */ | |
2006 if (TREE_CODE (rhs) == SSA_NAME) | |
2007 { | |
2008 /* NOTE tuples. The call to gimple_build_assign below replaced | |
2009 a call to build_gimple_modify_stmt, which did not set the | |
2010 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so | |
2011 may cause an SSA validation failure, as the LHS may be a | |
2012 default-initialized name and should have no definition. I'm | |
2013 a bit dubious of this, as the artificial statement that we | |
2014 generate here may in fact be ill-formed, but it is simply | |
2015 used as an internal device in this pass, and never becomes | |
2016 part of the CFG. */ | |
2017 gimple defstmt = SSA_NAME_DEF_STMT (rhs); | |
2018 new_stmt = gimple_build_assign (rhs, lhs); | |
2019 SSA_NAME_DEF_STMT (rhs) = defstmt; | |
2020 } | |
2021 else | |
2022 new_stmt = gimple_build_assign (rhs, lhs); | |
2023 | |
2024 create_ssa_artificial_load_stmt (new_stmt, stmt, true); | |
2025 | |
2026 /* Finally enter the statement into the available expression | |
2027 table. */ | |
2028 lookup_avail_expr (new_stmt, true); | |
2029 } | |
2030 } | |
2031 | |
2032 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from | |
2033 CONST_AND_COPIES. */ | |
2034 | |
2035 static bool | |
2036 cprop_operand (gimple stmt, use_operand_p op_p) | |
2037 { | |
2038 bool may_have_exposed_new_symbols = false; | |
2039 tree val; | |
2040 tree op = USE_FROM_PTR (op_p); | |
2041 | |
2042 /* If the operand has a known constant value or it is known to be a | |
2043 copy of some other variable, use the value or copy stored in | |
2044 CONST_AND_COPIES. */ | |
2045 val = SSA_NAME_VALUE (op); | |
2046 if (val && val != op) | |
2047 { | |
2048 /* Do not change the base variable in the virtual operand | |
2049 tables. That would make it impossible to reconstruct | |
2050 the renamed virtual operand if we later modify this | |
2051 statement. Also only allow the new value to be an SSA_NAME | |
2052 for propagation into virtual operands. */ | |
2053 if (!is_gimple_reg (op) | |
2054 && (TREE_CODE (val) != SSA_NAME | |
2055 || is_gimple_reg (val) | |
2056 || get_virtual_var (val) != get_virtual_var (op))) | |
2057 return false; | |
2058 | |
2059 /* Do not replace hard register operands in asm statements. */ | |
2060 if (gimple_code (stmt) == GIMPLE_ASM | |
2061 && !may_propagate_copy_into_asm (op)) | |
2062 return false; | |
2063 | |
2064 /* Certain operands are not allowed to be copy propagated due | |
2065 to their interaction with exception handling and some GCC | |
2066 extensions. */ | |
2067 if (!may_propagate_copy (op, val)) | |
2068 return false; | |
2069 | |
2070 /* Do not propagate addresses that point to volatiles into memory | |
2071 stmts without volatile operands. */ | |
2072 if (POINTER_TYPE_P (TREE_TYPE (val)) | |
2073 && TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (val))) | |
2074 && gimple_has_mem_ops (stmt) | |
2075 && !gimple_has_volatile_ops (stmt)) | |
2076 return false; | |
2077 | |
2078 /* Do not propagate copies if the propagated value is at a deeper loop | |
2079 depth than the propagatee. Otherwise, this may move loop variant | |
2080 variables outside of their loops and prevent coalescing | |
2081 opportunities. If the value was loop invariant, it will be hoisted | |
2082 by LICM and exposed for copy propagation. */ | |
2083 if (loop_depth_of_name (val) > loop_depth_of_name (op)) | |
2084 return false; | |
2085 | |
2086 /* Dump details. */ | |
2087 if (dump_file && (dump_flags & TDF_DETAILS)) | |
2088 { | |
2089 fprintf (dump_file, " Replaced '"); | |
2090 print_generic_expr (dump_file, op, dump_flags); | |
2091 fprintf (dump_file, "' with %s '", | |
2092 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable")); | |
2093 print_generic_expr (dump_file, val, dump_flags); | |
2094 fprintf (dump_file, "'\n"); | |
2095 } | |
2096 | |
2097 /* If VAL is an ADDR_EXPR or a constant of pointer type, note | |
2098 that we may have exposed a new symbol for SSA renaming. */ | |
2099 if (TREE_CODE (val) == ADDR_EXPR | |
2100 || (POINTER_TYPE_P (TREE_TYPE (op)) | |
2101 && is_gimple_min_invariant (val))) | |
2102 may_have_exposed_new_symbols = true; | |
2103 | |
2104 if (TREE_CODE (val) != SSA_NAME) | |
2105 opt_stats.num_const_prop++; | |
2106 else | |
2107 opt_stats.num_copy_prop++; | |
2108 | |
2109 propagate_value (op_p, val); | |
2110 | |
2111 /* And note that we modified this statement. This is now | |
2112 safe, even if we changed virtual operands since we will | |
2113 rescan the statement and rewrite its operands again. */ | |
2114 gimple_set_modified (stmt, true); | |
2115 } | |
2116 return may_have_exposed_new_symbols; | |
2117 } | |
2118 | |
2119 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current | |
2120 known value for that SSA_NAME (or NULL if no value is known). | |
2121 | |
2122 Propagate values from CONST_AND_COPIES into the uses, vuses and | |
2123 vdef_ops of STMT. */ | |
2124 | |
2125 static bool | |
2126 cprop_into_stmt (gimple stmt) | |
2127 { | |
2128 bool may_have_exposed_new_symbols = false; | |
2129 use_operand_p op_p; | |
2130 ssa_op_iter iter; | |
2131 | |
2132 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_ALL_USES) | |
2133 { | |
2134 if (TREE_CODE (USE_FROM_PTR (op_p)) == SSA_NAME) | |
2135 may_have_exposed_new_symbols |= cprop_operand (stmt, op_p); | |
2136 } | |
2137 | |
2138 return may_have_exposed_new_symbols; | |
2139 } | |
2140 | |
2141 /* Optimize the statement pointed to by iterator SI. | |
2142 | |
2143 We try to perform some simplistic global redundancy elimination and | |
2144 constant propagation: | |
2145 | |
2146 1- To detect global redundancy, we keep track of expressions that have | |
2147 been computed in this block and its dominators. If we find that the | |
2148 same expression is computed more than once, we eliminate repeated | |
2149 computations by using the target of the first one. | |
2150 | |
2151 2- Constant values and copy assignments. This is used to do very | |
2152 simplistic constant and copy propagation. When a constant or copy | |
2153 assignment is found, we map the value on the RHS of the assignment to | |
2154 the variable in the LHS in the CONST_AND_COPIES table. */ | |
2155 | |
2156 static void | |
2157 optimize_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED, | |
2158 basic_block bb, gimple_stmt_iterator si) | |
2159 { | |
2160 gimple stmt, old_stmt; | |
2161 bool may_optimize_p; | |
2162 bool may_have_exposed_new_symbols; | |
2163 bool modified_p = false; | |
2164 | |
2165 old_stmt = stmt = gsi_stmt (si); | |
2166 | |
2167 if (gimple_code (stmt) == GIMPLE_COND) | |
2168 canonicalize_comparison (stmt); | |
2169 | |
2170 update_stmt_if_modified (stmt); | |
2171 opt_stats.num_stmts++; | |
2172 push_stmt_changes (gsi_stmt_ptr (&si)); | |
2173 | |
2174 if (dump_file && (dump_flags & TDF_DETAILS)) | |
2175 { | |
2176 fprintf (dump_file, "Optimizing statement "); | |
2177 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); | |
2178 } | |
2179 | |
2180 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */ | |
2181 may_have_exposed_new_symbols = cprop_into_stmt (stmt); | |
2182 | |
2183 /* If the statement has been modified with constant replacements, | |
2184 fold its RHS before checking for redundant computations. */ | |
2185 if (gimple_modified_p (stmt)) | |
2186 { | |
2187 tree rhs = NULL; | |
2188 | |
2189 /* Try to fold the statement making sure that STMT is kept | |
2190 up to date. */ | |
2191 if (fold_stmt (&si)) | |
2192 { | |
2193 stmt = gsi_stmt (si); | |
2194 | |
2195 if (dump_file && (dump_flags & TDF_DETAILS)) | |
2196 { | |
2197 fprintf (dump_file, " Folded to: "); | |
2198 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); | |
2199 } | |
2200 } | |
2201 | |
2202 /* We only need to consider cases that can yield a gimple operand. */ | |
2203 if (gimple_assign_single_p (stmt)) | |
2204 rhs = gimple_assign_rhs1 (stmt); | |
2205 else if (gimple_code (stmt) == GIMPLE_GOTO) | |
2206 rhs = gimple_goto_dest (stmt); | |
2207 else if (gimple_code (stmt) == GIMPLE_SWITCH) | |
2208 /* This should never be an ADDR_EXPR. */ | |
2209 rhs = gimple_switch_index (stmt); | |
2210 | |
2211 if (rhs && TREE_CODE (rhs) == ADDR_EXPR) | |
2212 recompute_tree_invariant_for_addr_expr (rhs); | |
2213 | |
2214 /* Constant/copy propagation above may change the set of | |
2215 virtual operands associated with this statement. Folding | |
2216 may remove the need for some virtual operands. | |
2217 | |
2218 Indicate we will need to rescan and rewrite the statement. */ | |
2219 may_have_exposed_new_symbols = true; | |
2220 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called, | |
2221 even if fold_stmt updated the stmt already and thus cleared | |
2222 gimple_modified_p flag on it. */ | |
2223 modified_p = true; | |
2224 } | |
2225 | |
2226 /* Check for redundant computations. Do this optimization only | |
2227 for assignments that have no volatile ops and conditionals. */ | |
2228 may_optimize_p = (!gimple_has_volatile_ops (stmt) | |
2229 && ((is_gimple_assign (stmt) | |
2230 && !gimple_rhs_has_side_effects (stmt)) | |
2231 || (is_gimple_call (stmt) | |
2232 && gimple_call_lhs (stmt) != NULL_TREE | |
2233 && !gimple_rhs_has_side_effects (stmt)) | |
2234 || gimple_code (stmt) == GIMPLE_COND | |
2235 || gimple_code (stmt) == GIMPLE_SWITCH)); | |
2236 | |
2237 if (may_optimize_p) | |
2238 { | |
2239 may_have_exposed_new_symbols |= eliminate_redundant_computations (&si); | |
2240 stmt = gsi_stmt (si); | |
2241 } | |
2242 | |
2243 /* Record any additional equivalences created by this statement. */ | |
2244 if (is_gimple_assign (stmt)) | |
2245 record_equivalences_from_stmt (stmt, may_optimize_p); | |
2246 | |
2247 /* If STMT is a COND_EXPR and it was modified, then we may know | |
2248 where it goes. If that is the case, then mark the CFG as altered. | |
2249 | |
2250 This will cause us to later call remove_unreachable_blocks and | |
2251 cleanup_tree_cfg when it is safe to do so. It is not safe to | |
2252 clean things up here since removal of edges and such can trigger | |
2253 the removal of PHI nodes, which in turn can release SSA_NAMEs to | |
2254 the manager. | |
2255 | |
2256 That's all fine and good, except that once SSA_NAMEs are released | |
2257 to the manager, we must not call create_ssa_name until all references | |
2258 to released SSA_NAMEs have been eliminated. | |
2259 | |
2260 All references to the deleted SSA_NAMEs can not be eliminated until | |
2261 we remove unreachable blocks. | |
2262 | |
2263 We can not remove unreachable blocks until after we have completed | |
2264 any queued jump threading. | |
2265 | |
2266 We can not complete any queued jump threads until we have taken | |
2267 appropriate variables out of SSA form. Taking variables out of | |
2268 SSA form can call create_ssa_name and thus we lose. | |
2269 | |
2270 Ultimately I suspect we're going to need to change the interface | |
2271 into the SSA_NAME manager. */ | |
2272 if (gimple_modified_p (stmt) || modified_p) | |
2273 { | |
2274 tree val = NULL; | |
2275 | |
2276 if (gimple_code (stmt) == GIMPLE_COND) | |
2277 val = fold_binary (gimple_cond_code (stmt), boolean_type_node, | |
2278 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt)); | |
2279 else if (gimple_code (stmt) == GIMPLE_SWITCH) | |
2280 val = gimple_switch_index (stmt); | |
2281 | |
2282 if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val)) | |
2283 cfg_altered = true; | |
2284 | |
2285 /* If we simplified a statement in such a way as to be shown that it | |
2286 cannot trap, update the eh information and the cfg to match. */ | |
2287 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) | |
2288 { | |
2289 bitmap_set_bit (need_eh_cleanup, bb->index); | |
2290 if (dump_file && (dump_flags & TDF_DETAILS)) | |
2291 fprintf (dump_file, " Flagged to clear EH edges.\n"); | |
2292 } | |
2293 } | |
2294 | |
2295 if (may_have_exposed_new_symbols) | |
2296 { | |
2297 /* Queue the statement to be re-scanned after all the | |
2298 AVAIL_EXPRS have been processed. The change buffer stack for | |
2299 all the pushed statements will be processed when this queue | |
2300 is emptied. */ | |
2301 VEC_safe_push (gimple_p, heap, stmts_to_rescan, gsi_stmt_ptr (&si)); | |
2302 } | |
2303 else | |
2304 { | |
2305 /* Otherwise, just discard the recently pushed change buffer. If | |
2306 not, the STMTS_TO_RESCAN queue will get out of synch with the | |
2307 change buffer stack. */ | |
2308 discard_stmt_changes (gsi_stmt_ptr (&si)); | |
2309 } | |
2310 } | |
2311 | |
2312 /* Search for an existing instance of STMT in the AVAIL_EXPRS table. | |
2313 If found, return its LHS. Otherwise insert STMT in the table and | |
2314 return NULL_TREE. | |
2315 | |
2316 Also, when an expression is first inserted in the table, it is also | |
2317 is also added to AVAIL_EXPRS_STACK, so that it can be removed when | |
2318 we finish processing this block and its children. */ | |
2319 | |
2320 static tree | |
2321 lookup_avail_expr (gimple stmt, bool insert) | |
2322 { | |
2323 void **slot; | |
2324 tree lhs; | |
2325 tree temp; | |
2326 struct expr_hash_elt *element = XNEW (struct expr_hash_elt); | |
2327 | |
2328 /* Get LHS of assignment or call, else NULL_TREE. */ | |
2329 lhs = gimple_get_lhs (stmt); | |
2330 | |
2331 initialize_hash_element (stmt, lhs, element); | |
2332 | |
2333 if (dump_file && (dump_flags & TDF_DETAILS)) | |
2334 { | |
2335 fprintf (dump_file, "LKUP "); | |
2336 print_expr_hash_elt (dump_file, element); | |
2337 } | |
2338 | |
2339 /* Don't bother remembering constant assignments and copy operations. | |
2340 Constants and copy operations are handled by the constant/copy propagator | |
2341 in optimize_stmt. */ | |
2342 if (element->expr.kind == EXPR_SINGLE | |
2343 && (TREE_CODE (element->expr.ops.single.rhs) == SSA_NAME | |
2344 || is_gimple_min_invariant (element->expr.ops.single.rhs))) | |
2345 { | |
2346 free (element); | |
2347 return NULL_TREE; | |
2348 } | |
2349 | |
2350 /* Finally try to find the expression in the main expression hash table. */ | |
2351 slot = htab_find_slot_with_hash (avail_exprs, element, element->hash, | |
2352 (insert ? INSERT : NO_INSERT)); | |
2353 if (slot == NULL) | |
2354 { | |
2355 free (element); | |
2356 return NULL_TREE; | |
2357 } | |
2358 | |
2359 if (*slot == NULL) | |
2360 { | |
2361 *slot = (void *) element; | |
2362 | |
2363 if (dump_file && (dump_flags & TDF_DETAILS)) | |
2364 { | |
2365 fprintf (dump_file, "2>>> "); | |
2366 print_expr_hash_elt (dump_file, element); | |
2367 } | |
2368 | |
2369 VEC_safe_push (expr_hash_elt_t, heap, avail_exprs_stack, element); | |
2370 return NULL_TREE; | |
2371 } | |
2372 | |
2373 /* Extract the LHS of the assignment so that it can be used as the current | |
2374 definition of another variable. */ | |
2375 lhs = ((struct expr_hash_elt *)*slot)->lhs; | |
2376 | |
2377 /* See if the LHS appears in the CONST_AND_COPIES table. If it does, then | |
2378 use the value from the const_and_copies table. */ | |
2379 if (TREE_CODE (lhs) == SSA_NAME) | |
2380 { | |
2381 temp = SSA_NAME_VALUE (lhs); | |
2382 if (temp) | |
2383 lhs = temp; | |
2384 } | |
2385 | |
2386 free (element); | |
2387 | |
2388 if (dump_file && (dump_flags & TDF_DETAILS)) | |
2389 { | |
2390 fprintf (dump_file, "FIND: "); | |
2391 print_generic_expr (dump_file, lhs, 0); | |
2392 fprintf (dump_file, "\n"); | |
2393 } | |
2394 | |
2395 return lhs; | |
2396 } | |
2397 | |
2398 /* Hashing and equality functions for AVAIL_EXPRS. We compute a value number | |
2399 for expressions using the code of the expression and the SSA numbers of | |
2400 its operands. */ | |
2401 | |
2402 static hashval_t | |
2403 avail_expr_hash (const void *p) | |
2404 { | |
2405 gimple stmt = ((const struct expr_hash_elt *)p)->stmt; | |
2406 const struct hashable_expr *expr = &((const struct expr_hash_elt *)p)->expr; | |
2407 tree vuse; | |
2408 ssa_op_iter iter; | |
2409 hashval_t val = 0; | |
2410 | |
2411 val = iterative_hash_hashable_expr (expr, val); | |
2412 | |
2413 /* If the hash table entry is not associated with a statement, then we | |
2414 can just hash the expression and not worry about virtual operands | |
2415 and such. */ | |
2416 if (!stmt) | |
2417 return val; | |
2418 | |
2419 /* Add the SSA version numbers of every vuse operand. This is important | |
2420 because compound variables like arrays are not renamed in the | |
2421 operands. Rather, the rename is done on the virtual variable | |
2422 representing all the elements of the array. */ | |
2423 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, iter, SSA_OP_VUSE) | |
2424 val = iterative_hash_expr (vuse, val); | |
2425 | |
2426 return val; | |
2427 } | |
2428 | |
2429 static hashval_t | |
2430 real_avail_expr_hash (const void *p) | |
2431 { | |
2432 return ((const struct expr_hash_elt *)p)->hash; | |
2433 } | |
2434 | |
2435 static int | |
2436 avail_expr_eq (const void *p1, const void *p2) | |
2437 { | |
2438 gimple stmt1 = ((const struct expr_hash_elt *)p1)->stmt; | |
2439 const struct hashable_expr *expr1 = &((const struct expr_hash_elt *)p1)->expr; | |
2440 const struct expr_hash_elt *stamp1 = ((const struct expr_hash_elt *)p1)->stamp; | |
2441 gimple stmt2 = ((const struct expr_hash_elt *)p2)->stmt; | |
2442 const struct hashable_expr *expr2 = &((const struct expr_hash_elt *)p2)->expr; | |
2443 const struct expr_hash_elt *stamp2 = ((const struct expr_hash_elt *)p2)->stamp; | |
2444 | |
2445 /* This case should apply only when removing entries from the table. */ | |
2446 if (stamp1 == stamp2) | |
2447 return true; | |
2448 | |
2449 /* FIXME tuples: | |
2450 We add stmts to a hash table and them modify them. To detect the case | |
2451 that we modify a stmt and then search for it, we assume that the hash | |
2452 is always modified by that change. | |
2453 We have to fully check why this doesn't happen on trunk or rewrite | |
2454 this in a more reliable (and easier to understand) way. */ | |
2455 if (((const struct expr_hash_elt *)p1)->hash | |
2456 != ((const struct expr_hash_elt *)p2)->hash) | |
2457 return false; | |
2458 | |
2459 /* In case of a collision, both RHS have to be identical and have the | |
2460 same VUSE operands. */ | |
2461 if (hashable_expr_equal_p (expr1, expr2) | |
2462 && types_compatible_p (expr1->type, expr2->type)) | |
2463 { | |
2464 /* Note that STMT1 and/or STMT2 may be NULL. */ | |
2465 bool ret = compare_ssa_operands_equal (stmt1, stmt2, SSA_OP_VUSE); | |
2466 return ret; | |
2467 } | |
2468 | |
2469 return false; | |
2470 } | |
2471 | |
2472 /* PHI-ONLY copy and constant propagation. This pass is meant to clean | |
2473 up degenerate PHIs created by or exposed by jump threading. */ | |
2474 | |
2475 /* Given PHI, return its RHS if the PHI is a degenerate, otherwise return | |
2476 NULL. */ | |
2477 | |
2478 static tree | |
2479 degenerate_phi_result (gimple phi) | |
2480 { | |
2481 tree lhs = gimple_phi_result (phi); | |
2482 tree val = NULL; | |
2483 size_t i; | |
2484 | |
2485 /* Ignoring arguments which are the same as LHS, if all the remaining | |
2486 arguments are the same, then the PHI is a degenerate and has the | |
2487 value of that common argument. */ | |
2488 for (i = 0; i < gimple_phi_num_args (phi); i++) | |
2489 { | |
2490 tree arg = gimple_phi_arg_def (phi, i); | |
2491 | |
2492 if (arg == lhs) | |
2493 continue; | |
2494 else if (!val) | |
2495 val = arg; | |
2496 else if (!operand_equal_p (arg, val, 0)) | |
2497 break; | |
2498 } | |
2499 return (i == gimple_phi_num_args (phi) ? val : NULL); | |
2500 } | |
2501 | |
2502 /* Given a statement STMT, which is either a PHI node or an assignment, | |
2503 remove it from the IL. */ | |
2504 | |
2505 static void | |
2506 remove_stmt_or_phi (gimple stmt) | |
2507 { | |
2508 gimple_stmt_iterator gsi = gsi_for_stmt (stmt); | |
2509 | |
2510 if (gimple_code (stmt) == GIMPLE_PHI) | |
2511 remove_phi_node (&gsi, true); | |
2512 else | |
2513 { | |
2514 gsi_remove (&gsi, true); | |
2515 release_defs (stmt); | |
2516 } | |
2517 } | |
2518 | |
2519 /* Given a statement STMT, which is either a PHI node or an assignment, | |
2520 return the "rhs" of the node, in the case of a non-degenerate | |
2521 phi, NULL is returned. */ | |
2522 | |
2523 static tree | |
2524 get_rhs_or_phi_arg (gimple stmt) | |
2525 { | |
2526 if (gimple_code (stmt) == GIMPLE_PHI) | |
2527 return degenerate_phi_result (stmt); | |
2528 else if (gimple_assign_single_p (stmt)) | |
2529 return gimple_assign_rhs1 (stmt); | |
2530 else | |
2531 gcc_unreachable (); | |
2532 } | |
2533 | |
2534 | |
2535 /* Given a statement STMT, which is either a PHI node or an assignment, | |
2536 return the "lhs" of the node. */ | |
2537 | |
2538 static tree | |
2539 get_lhs_or_phi_result (gimple stmt) | |
2540 { | |
2541 if (gimple_code (stmt) == GIMPLE_PHI) | |
2542 return gimple_phi_result (stmt); | |
2543 else if (is_gimple_assign (stmt)) | |
2544 return gimple_assign_lhs (stmt); | |
2545 else | |
2546 gcc_unreachable (); | |
2547 } | |
2548 | |
2549 /* Propagate RHS into all uses of LHS (when possible). | |
2550 | |
2551 RHS and LHS are derived from STMT, which is passed in solely so | |
2552 that we can remove it if propagation is successful. | |
2553 | |
2554 When propagating into a PHI node or into a statement which turns | |
2555 into a trivial copy or constant initialization, set the | |
2556 appropriate bit in INTERESTING_NAMEs so that we will visit those | |
2557 nodes as well in an effort to pick up secondary optimization | |
2558 opportunities. */ | |
2559 | |
2560 static void | |
2561 propagate_rhs_into_lhs (gimple stmt, tree lhs, tree rhs, bitmap interesting_names) | |
2562 { | |
2563 /* First verify that propagation is valid and isn't going to move a | |
2564 loop variant variable outside its loop. */ | |
2565 if (! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) | |
2566 && (TREE_CODE (rhs) != SSA_NAME | |
2567 || ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs)) | |
2568 && may_propagate_copy (lhs, rhs) | |
2569 && loop_depth_of_name (lhs) >= loop_depth_of_name (rhs)) | |
2570 { | |
2571 use_operand_p use_p; | |
2572 imm_use_iterator iter; | |
2573 gimple use_stmt; | |
2574 bool all = true; | |
2575 | |
2576 /* Dump details. */ | |
2577 if (dump_file && (dump_flags & TDF_DETAILS)) | |
2578 { | |
2579 fprintf (dump_file, " Replacing '"); | |
2580 print_generic_expr (dump_file, lhs, dump_flags); | |
2581 fprintf (dump_file, "' with %s '", | |
2582 (TREE_CODE (rhs) != SSA_NAME ? "constant" : "variable")); | |
2583 print_generic_expr (dump_file, rhs, dump_flags); | |
2584 fprintf (dump_file, "'\n"); | |
2585 } | |
2586 | |
2587 /* Walk over every use of LHS and try to replace the use with RHS. | |
2588 At this point the only reason why such a propagation would not | |
2589 be successful would be if the use occurs in an ASM_EXPR. */ | |
2590 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs) | |
2591 { | |
2592 | |
2593 /* It's not always safe to propagate into an ASM_EXPR. */ | |
2594 if (gimple_code (use_stmt) == GIMPLE_ASM | |
2595 && ! may_propagate_copy_into_asm (lhs)) | |
2596 { | |
2597 all = false; | |
2598 continue; | |
2599 } | |
2600 | |
2601 /* Dump details. */ | |
2602 if (dump_file && (dump_flags & TDF_DETAILS)) | |
2603 { | |
2604 fprintf (dump_file, " Original statement:"); | |
2605 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags); | |
2606 } | |
2607 | |
2608 push_stmt_changes (&use_stmt); | |
2609 | |
2610 /* Propagate the RHS into this use of the LHS. */ | |
2611 FOR_EACH_IMM_USE_ON_STMT (use_p, iter) | |
2612 propagate_value (use_p, rhs); | |
2613 | |
2614 /* Special cases to avoid useless calls into the folding | |
2615 routines, operand scanning, etc. | |
2616 | |
2617 First, propagation into a PHI may cause the PHI to become | |
2618 a degenerate, so mark the PHI as interesting. No other | |
2619 actions are necessary. | |
2620 | |
2621 Second, if we're propagating a virtual operand and the | |
2622 propagation does not change the underlying _DECL node for | |
2623 the virtual operand, then no further actions are necessary. */ | |
2624 if (gimple_code (use_stmt) == GIMPLE_PHI | |
2625 || (! is_gimple_reg (lhs) | |
2626 && TREE_CODE (rhs) == SSA_NAME | |
2627 && SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs))) | |
2628 { | |
2629 /* Dump details. */ | |
2630 if (dump_file && (dump_flags & TDF_DETAILS)) | |
2631 { | |
2632 fprintf (dump_file, " Updated statement:"); | |
2633 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags); | |
2634 } | |
2635 | |
2636 /* Propagation into a PHI may expose new degenerate PHIs, | |
2637 so mark the result of the PHI as interesting. */ | |
2638 if (gimple_code (use_stmt) == GIMPLE_PHI) | |
2639 { | |
2640 tree result = get_lhs_or_phi_result (use_stmt); | |
2641 bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result)); | |
2642 } | |
2643 | |
2644 discard_stmt_changes (&use_stmt); | |
2645 continue; | |
2646 } | |
2647 | |
2648 /* From this point onward we are propagating into a | |
2649 real statement. Folding may (or may not) be possible, | |
2650 we may expose new operands, expose dead EH edges, | |
2651 etc. */ | |
2652 /* NOTE tuples. In the tuples world, fold_stmt_inplace | |
2653 cannot fold a call that simplifies to a constant, | |
2654 because the GIMPLE_CALL must be replaced by a | |
2655 GIMPLE_ASSIGN, and there is no way to effect such a | |
2656 transformation in-place. We might want to consider | |
2657 using the more general fold_stmt here. */ | |
2658 fold_stmt_inplace (use_stmt); | |
2659 | |
2660 /* Sometimes propagation can expose new operands to the | |
2661 renamer. Note this will call update_stmt at the | |
2662 appropriate time. */ | |
2663 pop_stmt_changes (&use_stmt); | |
2664 | |
2665 /* Dump details. */ | |
2666 if (dump_file && (dump_flags & TDF_DETAILS)) | |
2667 { | |
2668 fprintf (dump_file, " Updated statement:"); | |
2669 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags); | |
2670 } | |
2671 | |
2672 /* If we replaced a variable index with a constant, then | |
2673 we would need to update the invariant flag for ADDR_EXPRs. */ | |
2674 if (gimple_assign_single_p (use_stmt) | |
2675 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ADDR_EXPR) | |
2676 recompute_tree_invariant_for_addr_expr | |
2677 (gimple_assign_rhs1 (use_stmt)); | |
2678 | |
2679 /* If we cleaned up EH information from the statement, | |
2680 mark its containing block as needing EH cleanups. */ | |
2681 if (maybe_clean_or_replace_eh_stmt (use_stmt, use_stmt)) | |
2682 { | |
2683 bitmap_set_bit (need_eh_cleanup, gimple_bb (use_stmt)->index); | |
2684 if (dump_file && (dump_flags & TDF_DETAILS)) | |
2685 fprintf (dump_file, " Flagged to clear EH edges.\n"); | |
2686 } | |
2687 | |
2688 /* Propagation may expose new trivial copy/constant propagation | |
2689 opportunities. */ | |
2690 if (gimple_assign_single_p (use_stmt) | |
2691 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME | |
2692 && (TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME | |
2693 || is_gimple_min_invariant (gimple_assign_rhs1 (use_stmt)))) | |
2694 { | |
2695 tree result = get_lhs_or_phi_result (use_stmt); | |
2696 bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result)); | |
2697 } | |
2698 | |
2699 /* Propagation into these nodes may make certain edges in | |
2700 the CFG unexecutable. We want to identify them as PHI nodes | |
2701 at the destination of those unexecutable edges may become | |
2702 degenerates. */ | |
2703 else if (gimple_code (use_stmt) == GIMPLE_COND | |
2704 || gimple_code (use_stmt) == GIMPLE_SWITCH | |
2705 || gimple_code (use_stmt) == GIMPLE_GOTO) | |
2706 { | |
2707 tree val; | |
2708 | |
2709 if (gimple_code (use_stmt) == GIMPLE_COND) | |
2710 val = fold_binary (gimple_cond_code (use_stmt), | |
2711 boolean_type_node, | |
2712 gimple_cond_lhs (use_stmt), | |
2713 gimple_cond_rhs (use_stmt)); | |
2714 else if (gimple_code (use_stmt) == GIMPLE_SWITCH) | |
2715 val = gimple_switch_index (use_stmt); | |
2716 else | |
2717 val = gimple_goto_dest (use_stmt); | |
2718 | |
2719 if (val && is_gimple_min_invariant (val)) | |
2720 { | |
2721 basic_block bb = gimple_bb (use_stmt); | |
2722 edge te = find_taken_edge (bb, val); | |
2723 edge_iterator ei; | |
2724 edge e; | |
2725 gimple_stmt_iterator gsi, psi; | |
2726 | |
2727 /* Remove all outgoing edges except TE. */ | |
2728 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei));) | |
2729 { | |
2730 if (e != te) | |
2731 { | |
2732 /* Mark all the PHI nodes at the destination of | |
2733 the unexecutable edge as interesting. */ | |
2734 for (psi = gsi_start_phis (e->dest); | |
2735 !gsi_end_p (psi); | |
2736 gsi_next (&psi)) | |
2737 { | |
2738 gimple phi = gsi_stmt (psi); | |
2739 | |
2740 tree result = gimple_phi_result (phi); | |
2741 int version = SSA_NAME_VERSION (result); | |
2742 | |
2743 bitmap_set_bit (interesting_names, version); | |
2744 } | |
2745 | |
2746 te->probability += e->probability; | |
2747 | |
2748 te->count += e->count; | |
2749 remove_edge (e); | |
2750 cfg_altered = true; | |
2751 } | |
2752 else | |
2753 ei_next (&ei); | |
2754 } | |
2755 | |
2756 gsi = gsi_last_bb (gimple_bb (use_stmt)); | |
2757 gsi_remove (&gsi, true); | |
2758 | |
2759 /* And fixup the flags on the single remaining edge. */ | |
2760 te->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); | |
2761 te->flags &= ~EDGE_ABNORMAL; | |
2762 te->flags |= EDGE_FALLTHRU; | |
2763 if (te->probability > REG_BR_PROB_BASE) | |
2764 te->probability = REG_BR_PROB_BASE; | |
2765 } | |
2766 } | |
2767 } | |
2768 | |
2769 /* Ensure there is nothing else to do. */ | |
2770 gcc_assert (!all || has_zero_uses (lhs)); | |
2771 | |
2772 /* If we were able to propagate away all uses of LHS, then | |
2773 we can remove STMT. */ | |
2774 if (all) | |
2775 remove_stmt_or_phi (stmt); | |
2776 } | |
2777 } | |
2778 | |
2779 /* STMT is either a PHI node (potentially a degenerate PHI node) or | |
2780 a statement that is a trivial copy or constant initialization. | |
2781 | |
2782 Attempt to eliminate T by propagating its RHS into all uses of | |
2783 its LHS. This may in turn set new bits in INTERESTING_NAMES | |
2784 for nodes we want to revisit later. | |
2785 | |
2786 All exit paths should clear INTERESTING_NAMES for the result | |
2787 of STMT. */ | |
2788 | |
2789 static void | |
2790 eliminate_const_or_copy (gimple stmt, bitmap interesting_names) | |
2791 { | |
2792 tree lhs = get_lhs_or_phi_result (stmt); | |
2793 tree rhs; | |
2794 int version = SSA_NAME_VERSION (lhs); | |
2795 | |
2796 /* If the LHS of this statement or PHI has no uses, then we can | |
2797 just eliminate it. This can occur if, for example, the PHI | |
2798 was created by block duplication due to threading and its only | |
2799 use was in the conditional at the end of the block which was | |
2800 deleted. */ | |
2801 if (has_zero_uses (lhs)) | |
2802 { | |
2803 bitmap_clear_bit (interesting_names, version); | |
2804 remove_stmt_or_phi (stmt); | |
2805 return; | |
2806 } | |
2807 | |
2808 /* Get the RHS of the assignment or PHI node if the PHI is a | |
2809 degenerate. */ | |
2810 rhs = get_rhs_or_phi_arg (stmt); | |
2811 if (!rhs) | |
2812 { | |
2813 bitmap_clear_bit (interesting_names, version); | |
2814 return; | |
2815 } | |
2816 | |
2817 propagate_rhs_into_lhs (stmt, lhs, rhs, interesting_names); | |
2818 | |
2819 /* Note that STMT may well have been deleted by now, so do | |
2820 not access it, instead use the saved version # to clear | |
2821 T's entry in the worklist. */ | |
2822 bitmap_clear_bit (interesting_names, version); | |
2823 } | |
2824 | |
2825 /* The first phase in degenerate PHI elimination. | |
2826 | |
2827 Eliminate the degenerate PHIs in BB, then recurse on the | |
2828 dominator children of BB. */ | |
2829 | |
2830 static void | |
2831 eliminate_degenerate_phis_1 (basic_block bb, bitmap interesting_names) | |
2832 { | |
2833 gimple_stmt_iterator gsi; | |
2834 basic_block son; | |
2835 | |
2836 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) | |
2837 { | |
2838 gimple phi = gsi_stmt (gsi); | |
2839 | |
2840 eliminate_const_or_copy (phi, interesting_names); | |
2841 } | |
2842 | |
2843 /* Recurse into the dominator children of BB. */ | |
2844 for (son = first_dom_son (CDI_DOMINATORS, bb); | |
2845 son; | |
2846 son = next_dom_son (CDI_DOMINATORS, son)) | |
2847 eliminate_degenerate_phis_1 (son, interesting_names); | |
2848 } | |
2849 | |
2850 | |
2851 /* A very simple pass to eliminate degenerate PHI nodes from the | |
2852 IL. This is meant to be fast enough to be able to be run several | |
2853 times in the optimization pipeline. | |
2854 | |
2855 Certain optimizations, particularly those which duplicate blocks | |
2856 or remove edges from the CFG can create or expose PHIs which are | |
2857 trivial copies or constant initializations. | |
2858 | |
2859 While we could pick up these optimizations in DOM or with the | |
2860 combination of copy-prop and CCP, those solutions are far too | |
2861 heavy-weight for our needs. | |
2862 | |
2863 This implementation has two phases so that we can efficiently | |
2864 eliminate the first order degenerate PHIs and second order | |
2865 degenerate PHIs. | |
2866 | |
2867 The first phase performs a dominator walk to identify and eliminate | |
2868 the vast majority of the degenerate PHIs. When a degenerate PHI | |
2869 is identified and eliminated any affected statements or PHIs | |
2870 are put on a worklist. | |
2871 | |
2872 The second phase eliminates degenerate PHIs and trivial copies | |
2873 or constant initializations using the worklist. This is how we | |
2874 pick up the secondary optimization opportunities with minimal | |
2875 cost. */ | |
2876 | |
2877 static unsigned int | |
2878 eliminate_degenerate_phis (void) | |
2879 { | |
2880 bitmap interesting_names; | |
2881 bitmap interesting_names1; | |
2882 | |
2883 /* Bitmap of blocks which need EH information updated. We can not | |
2884 update it on-the-fly as doing so invalidates the dominator tree. */ | |
2885 need_eh_cleanup = BITMAP_ALLOC (NULL); | |
2886 | |
2887 /* INTERESTING_NAMES is effectively our worklist, indexed by | |
2888 SSA_NAME_VERSION. | |
2889 | |
2890 A set bit indicates that the statement or PHI node which | |
2891 defines the SSA_NAME should be (re)examined to determine if | |
2892 it has become a degenerate PHI or trivial const/copy propagation | |
2893 opportunity. | |
2894 | |
2895 Experiments have show we generally get better compilation | |
2896 time behavior with bitmaps rather than sbitmaps. */ | |
2897 interesting_names = BITMAP_ALLOC (NULL); | |
2898 interesting_names1 = BITMAP_ALLOC (NULL); | |
2899 | |
2900 calculate_dominance_info (CDI_DOMINATORS); | |
2901 cfg_altered = false; | |
2902 | |
2903 /* First phase. Eliminate degenerate PHIs via a dominator | |
2904 walk of the CFG. | |
2905 | |
2906 Experiments have indicated that we generally get better | |
2907 compile-time behavior by visiting blocks in the first | |
2908 phase in dominator order. Presumably this is because walking | |
2909 in dominator order leaves fewer PHIs for later examination | |
2910 by the worklist phase. */ | |
2911 eliminate_degenerate_phis_1 (ENTRY_BLOCK_PTR, interesting_names); | |
2912 | |
2913 /* Second phase. Eliminate second order degenerate PHIs as well | |
2914 as trivial copies or constant initializations identified by | |
2915 the first phase or this phase. Basically we keep iterating | |
2916 until our set of INTERESTING_NAMEs is empty. */ | |
2917 while (!bitmap_empty_p (interesting_names)) | |
2918 { | |
2919 unsigned int i; | |
2920 bitmap_iterator bi; | |
2921 | |
2922 /* EXECUTE_IF_SET_IN_BITMAP does not like its bitmap | |
2923 changed during the loop. Copy it to another bitmap and | |
2924 use that. */ | |
2925 bitmap_copy (interesting_names1, interesting_names); | |
2926 | |
2927 EXECUTE_IF_SET_IN_BITMAP (interesting_names1, 0, i, bi) | |
2928 { | |
2929 tree name = ssa_name (i); | |
2930 | |
2931 /* Ignore SSA_NAMEs that have been released because | |
2932 their defining statement was deleted (unreachable). */ | |
2933 if (name) | |
2934 eliminate_const_or_copy (SSA_NAME_DEF_STMT (ssa_name (i)), | |
2935 interesting_names); | |
2936 } | |
2937 } | |
2938 | |
2939 if (cfg_altered) | |
2940 free_dominance_info (CDI_DOMINATORS); | |
2941 | |
2942 /* Propagation of const and copies may make some EH edges dead. Purge | |
2943 such edges from the CFG as needed. */ | |
2944 if (!bitmap_empty_p (need_eh_cleanup)) | |
2945 { | |
2946 gimple_purge_all_dead_eh_edges (need_eh_cleanup); | |
2947 BITMAP_FREE (need_eh_cleanup); | |
2948 } | |
2949 | |
2950 BITMAP_FREE (interesting_names); | |
2951 BITMAP_FREE (interesting_names1); | |
2952 return 0; | |
2953 } | |
2954 | |
2955 struct gimple_opt_pass pass_phi_only_cprop = | |
2956 { | |
2957 { | |
2958 GIMPLE_PASS, | |
2959 "phicprop", /* name */ | |
2960 gate_dominator, /* gate */ | |
2961 eliminate_degenerate_phis, /* execute */ | |
2962 NULL, /* sub */ | |
2963 NULL, /* next */ | |
2964 0, /* static_pass_number */ | |
2965 TV_TREE_PHI_CPROP, /* tv_id */ | |
2966 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */ | |
2967 0, /* properties_provided */ | |
2968 0, /* properties_destroyed */ | |
2969 0, /* todo_flags_start */ | |
2970 TODO_cleanup_cfg | |
2971 | TODO_dump_func | |
2972 | TODO_ggc_collect | |
2973 | TODO_verify_ssa | |
2974 | TODO_verify_stmts | |
2975 | TODO_update_ssa /* todo_flags_finish */ | |
2976 } | |
2977 }; |