Mercurial > hg > CbC > CbC_gcc
comparison gcc/tree-ssa-threadupdate.c @ 0:a06113de4d67
first commit
author | kent <kent@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Jul 2009 14:47:48 +0900 |
parents | |
children | 77e2b8dfacca |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:a06113de4d67 |
---|---|
1 /* Thread edges through blocks and update the control flow and SSA graphs. | |
2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, | |
3 Inc. | |
4 | |
5 This file is part of GCC. | |
6 | |
7 GCC is free software; you can redistribute it and/or modify | |
8 it under the terms of the GNU General Public License as published by | |
9 the Free Software Foundation; either version 3, or (at your option) | |
10 any later version. | |
11 | |
12 GCC is distributed in the hope that it will be useful, | |
13 but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 GNU General Public License for more details. | |
16 | |
17 You should have received a copy of the GNU General Public License | |
18 along with GCC; see the file COPYING3. If not see | |
19 <http://www.gnu.org/licenses/>. */ | |
20 | |
21 #include "config.h" | |
22 #include "system.h" | |
23 #include "coretypes.h" | |
24 #include "tm.h" | |
25 #include "tree.h" | |
26 #include "flags.h" | |
27 #include "rtl.h" | |
28 #include "tm_p.h" | |
29 #include "ggc.h" | |
30 #include "basic-block.h" | |
31 #include "output.h" | |
32 #include "expr.h" | |
33 #include "function.h" | |
34 #include "diagnostic.h" | |
35 #include "tree-flow.h" | |
36 #include "tree-dump.h" | |
37 #include "tree-pass.h" | |
38 #include "cfgloop.h" | |
39 | |
40 /* Given a block B, update the CFG and SSA graph to reflect redirecting | |
41 one or more in-edges to B to instead reach the destination of an | |
42 out-edge from B while preserving any side effects in B. | |
43 | |
44 i.e., given A->B and B->C, change A->B to be A->C yet still preserve the | |
45 side effects of executing B. | |
46 | |
47 1. Make a copy of B (including its outgoing edges and statements). Call | |
48 the copy B'. Note B' has no incoming edges or PHIs at this time. | |
49 | |
50 2. Remove the control statement at the end of B' and all outgoing edges | |
51 except B'->C. | |
52 | |
53 3. Add a new argument to each PHI in C with the same value as the existing | |
54 argument associated with edge B->C. Associate the new PHI arguments | |
55 with the edge B'->C. | |
56 | |
57 4. For each PHI in B, find or create a PHI in B' with an identical | |
58 PHI_RESULT. Add an argument to the PHI in B' which has the same | |
59 value as the PHI in B associated with the edge A->B. Associate | |
60 the new argument in the PHI in B' with the edge A->B. | |
61 | |
62 5. Change the edge A->B to A->B'. | |
63 | |
64 5a. This automatically deletes any PHI arguments associated with the | |
65 edge A->B in B. | |
66 | |
67 5b. This automatically associates each new argument added in step 4 | |
68 with the edge A->B'. | |
69 | |
70 6. Repeat for other incoming edges into B. | |
71 | |
72 7. Put the duplicated resources in B and all the B' blocks into SSA form. | |
73 | |
74 Note that block duplication can be minimized by first collecting the | |
75 set of unique destination blocks that the incoming edges should | |
76 be threaded to. Block duplication can be further minimized by using | |
77 B instead of creating B' for one destination if all edges into B are | |
78 going to be threaded to a successor of B. | |
79 | |
80 We further reduce the number of edges and statements we create by | |
81 not copying all the outgoing edges and the control statement in | |
82 step #1. We instead create a template block without the outgoing | |
83 edges and duplicate the template. */ | |
84 | |
85 | |
86 /* Steps #5 and #6 of the above algorithm are best implemented by walking | |
87 all the incoming edges which thread to the same destination edge at | |
88 the same time. That avoids lots of table lookups to get information | |
89 for the destination edge. | |
90 | |
91 To realize that implementation we create a list of incoming edges | |
92 which thread to the same outgoing edge. Thus to implement steps | |
93 #5 and #6 we traverse our hash table of outgoing edge information. | |
94 For each entry we walk the list of incoming edges which thread to | |
95 the current outgoing edge. */ | |
96 | |
97 struct el | |
98 { | |
99 edge e; | |
100 struct el *next; | |
101 }; | |
102 | |
103 /* Main data structure recording information regarding B's duplicate | |
104 blocks. */ | |
105 | |
106 /* We need to efficiently record the unique thread destinations of this | |
107 block and specific information associated with those destinations. We | |
108 may have many incoming edges threaded to the same outgoing edge. This | |
109 can be naturally implemented with a hash table. */ | |
110 | |
111 struct redirection_data | |
112 { | |
113 /* A duplicate of B with the trailing control statement removed and which | |
114 targets a single successor of B. */ | |
115 basic_block dup_block; | |
116 | |
117 /* An outgoing edge from B. DUP_BLOCK will have OUTGOING_EDGE->dest as | |
118 its single successor. */ | |
119 edge outgoing_edge; | |
120 | |
121 /* A list of incoming edges which we want to thread to | |
122 OUTGOING_EDGE->dest. */ | |
123 struct el *incoming_edges; | |
124 | |
125 /* Flag indicating whether or not we should create a duplicate block | |
126 for this thread destination. This is only true if we are threading | |
127 all incoming edges and thus are using BB itself as a duplicate block. */ | |
128 bool do_not_duplicate; | |
129 }; | |
130 | |
131 /* Main data structure to hold information for duplicates of BB. */ | |
132 static htab_t redirection_data; | |
133 | |
134 /* Data structure of information to pass to hash table traversal routines. */ | |
135 struct local_info | |
136 { | |
137 /* The current block we are working on. */ | |
138 basic_block bb; | |
139 | |
140 /* A template copy of BB with no outgoing edges or control statement that | |
141 we use for creating copies. */ | |
142 basic_block template_block; | |
143 | |
144 /* TRUE if we thread one or more jumps, FALSE otherwise. */ | |
145 bool jumps_threaded; | |
146 }; | |
147 | |
148 /* Passes which use the jump threading code register jump threading | |
149 opportunities as they are discovered. We keep the registered | |
150 jump threading opportunities in this vector as edge pairs | |
151 (original_edge, target_edge). */ | |
152 static VEC(edge,heap) *threaded_edges; | |
153 | |
154 | |
155 /* Jump threading statistics. */ | |
156 | |
157 struct thread_stats_d | |
158 { | |
159 unsigned long num_threaded_edges; | |
160 }; | |
161 | |
162 struct thread_stats_d thread_stats; | |
163 | |
164 | |
165 /* Remove the last statement in block BB if it is a control statement | |
166 Also remove all outgoing edges except the edge which reaches DEST_BB. | |
167 If DEST_BB is NULL, then remove all outgoing edges. */ | |
168 | |
169 static void | |
170 remove_ctrl_stmt_and_useless_edges (basic_block bb, basic_block dest_bb) | |
171 { | |
172 gimple_stmt_iterator gsi; | |
173 edge e; | |
174 edge_iterator ei; | |
175 | |
176 gsi = gsi_last_bb (bb); | |
177 | |
178 /* If the duplicate ends with a control statement, then remove it. | |
179 | |
180 Note that if we are duplicating the template block rather than the | |
181 original basic block, then the duplicate might not have any real | |
182 statements in it. */ | |
183 if (!gsi_end_p (gsi) | |
184 && gsi_stmt (gsi) | |
185 && (gimple_code (gsi_stmt (gsi)) == GIMPLE_COND | |
186 || gimple_code (gsi_stmt (gsi)) == GIMPLE_GOTO | |
187 || gimple_code (gsi_stmt (gsi)) == GIMPLE_SWITCH)) | |
188 gsi_remove (&gsi, true); | |
189 | |
190 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) | |
191 { | |
192 if (e->dest != dest_bb) | |
193 remove_edge (e); | |
194 else | |
195 ei_next (&ei); | |
196 } | |
197 } | |
198 | |
199 /* Create a duplicate of BB which only reaches the destination of the edge | |
200 stored in RD. Record the duplicate block in RD. */ | |
201 | |
202 static void | |
203 create_block_for_threading (basic_block bb, struct redirection_data *rd) | |
204 { | |
205 /* We can use the generic block duplication code and simply remove | |
206 the stuff we do not need. */ | |
207 rd->dup_block = duplicate_block (bb, NULL, NULL); | |
208 | |
209 /* Zero out the profile, since the block is unreachable for now. */ | |
210 rd->dup_block->frequency = 0; | |
211 rd->dup_block->count = 0; | |
212 | |
213 /* The call to duplicate_block will copy everything, including the | |
214 useless COND_EXPR or SWITCH_EXPR at the end of BB. We just remove | |
215 the useless COND_EXPR or SWITCH_EXPR here rather than having a | |
216 specialized block copier. We also remove all outgoing edges | |
217 from the duplicate block. The appropriate edge will be created | |
218 later. */ | |
219 remove_ctrl_stmt_and_useless_edges (rd->dup_block, NULL); | |
220 } | |
221 | |
222 /* Hashing and equality routines for our hash table. */ | |
223 static hashval_t | |
224 redirection_data_hash (const void *p) | |
225 { | |
226 edge e = ((const struct redirection_data *)p)->outgoing_edge; | |
227 return e->dest->index; | |
228 } | |
229 | |
230 static int | |
231 redirection_data_eq (const void *p1, const void *p2) | |
232 { | |
233 edge e1 = ((const struct redirection_data *)p1)->outgoing_edge; | |
234 edge e2 = ((const struct redirection_data *)p2)->outgoing_edge; | |
235 | |
236 return e1 == e2; | |
237 } | |
238 | |
239 /* Given an outgoing edge E lookup and return its entry in our hash table. | |
240 | |
241 If INSERT is true, then we insert the entry into the hash table if | |
242 it is not already present. INCOMING_EDGE is added to the list of incoming | |
243 edges associated with E in the hash table. */ | |
244 | |
245 static struct redirection_data * | |
246 lookup_redirection_data (edge e, edge incoming_edge, enum insert_option insert) | |
247 { | |
248 void **slot; | |
249 struct redirection_data *elt; | |
250 | |
251 /* Build a hash table element so we can see if E is already | |
252 in the table. */ | |
253 elt = XNEW (struct redirection_data); | |
254 elt->outgoing_edge = e; | |
255 elt->dup_block = NULL; | |
256 elt->do_not_duplicate = false; | |
257 elt->incoming_edges = NULL; | |
258 | |
259 slot = htab_find_slot (redirection_data, elt, insert); | |
260 | |
261 /* This will only happen if INSERT is false and the entry is not | |
262 in the hash table. */ | |
263 if (slot == NULL) | |
264 { | |
265 free (elt); | |
266 return NULL; | |
267 } | |
268 | |
269 /* This will only happen if E was not in the hash table and | |
270 INSERT is true. */ | |
271 if (*slot == NULL) | |
272 { | |
273 *slot = (void *)elt; | |
274 elt->incoming_edges = XNEW (struct el); | |
275 elt->incoming_edges->e = incoming_edge; | |
276 elt->incoming_edges->next = NULL; | |
277 return elt; | |
278 } | |
279 /* E was in the hash table. */ | |
280 else | |
281 { | |
282 /* Free ELT as we do not need it anymore, we will extract the | |
283 relevant entry from the hash table itself. */ | |
284 free (elt); | |
285 | |
286 /* Get the entry stored in the hash table. */ | |
287 elt = (struct redirection_data *) *slot; | |
288 | |
289 /* If insertion was requested, then we need to add INCOMING_EDGE | |
290 to the list of incoming edges associated with E. */ | |
291 if (insert) | |
292 { | |
293 struct el *el = XNEW (struct el); | |
294 el->next = elt->incoming_edges; | |
295 el->e = incoming_edge; | |
296 elt->incoming_edges = el; | |
297 } | |
298 | |
299 return elt; | |
300 } | |
301 } | |
302 | |
303 /* Given a duplicate block and its single destination (both stored | |
304 in RD). Create an edge between the duplicate and its single | |
305 destination. | |
306 | |
307 Add an additional argument to any PHI nodes at the single | |
308 destination. */ | |
309 | |
310 static void | |
311 create_edge_and_update_destination_phis (struct redirection_data *rd) | |
312 { | |
313 edge e = make_edge (rd->dup_block, rd->outgoing_edge->dest, EDGE_FALLTHRU); | |
314 gimple_stmt_iterator gsi; | |
315 | |
316 rescan_loop_exit (e, true, false); | |
317 e->probability = REG_BR_PROB_BASE; | |
318 e->count = rd->dup_block->count; | |
319 e->aux = rd->outgoing_edge->aux; | |
320 | |
321 /* If there are any PHI nodes at the destination of the outgoing edge | |
322 from the duplicate block, then we will need to add a new argument | |
323 to them. The argument should have the same value as the argument | |
324 associated with the outgoing edge stored in RD. */ | |
325 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi)) | |
326 { | |
327 gimple phi = gsi_stmt (gsi); | |
328 | |
329 int indx = rd->outgoing_edge->dest_idx; | |
330 add_phi_arg (phi, gimple_phi_arg_def (phi, indx), e); | |
331 } | |
332 } | |
333 | |
334 /* Hash table traversal callback routine to create duplicate blocks. */ | |
335 | |
336 static int | |
337 create_duplicates (void **slot, void *data) | |
338 { | |
339 struct redirection_data *rd = (struct redirection_data *) *slot; | |
340 struct local_info *local_info = (struct local_info *)data; | |
341 | |
342 /* If this entry should not have a duplicate created, then there's | |
343 nothing to do. */ | |
344 if (rd->do_not_duplicate) | |
345 return 1; | |
346 | |
347 /* Create a template block if we have not done so already. Otherwise | |
348 use the template to create a new block. */ | |
349 if (local_info->template_block == NULL) | |
350 { | |
351 create_block_for_threading (local_info->bb, rd); | |
352 local_info->template_block = rd->dup_block; | |
353 | |
354 /* We do not create any outgoing edges for the template. We will | |
355 take care of that in a later traversal. That way we do not | |
356 create edges that are going to just be deleted. */ | |
357 } | |
358 else | |
359 { | |
360 create_block_for_threading (local_info->template_block, rd); | |
361 | |
362 /* Go ahead and wire up outgoing edges and update PHIs for the duplicate | |
363 block. */ | |
364 create_edge_and_update_destination_phis (rd); | |
365 } | |
366 | |
367 /* Keep walking the hash table. */ | |
368 return 1; | |
369 } | |
370 | |
371 /* We did not create any outgoing edges for the template block during | |
372 block creation. This hash table traversal callback creates the | |
373 outgoing edge for the template block. */ | |
374 | |
375 static int | |
376 fixup_template_block (void **slot, void *data) | |
377 { | |
378 struct redirection_data *rd = (struct redirection_data *) *slot; | |
379 struct local_info *local_info = (struct local_info *)data; | |
380 | |
381 /* If this is the template block, then create its outgoing edges | |
382 and halt the hash table traversal. */ | |
383 if (rd->dup_block && rd->dup_block == local_info->template_block) | |
384 { | |
385 create_edge_and_update_destination_phis (rd); | |
386 return 0; | |
387 } | |
388 | |
389 return 1; | |
390 } | |
391 | |
392 /* Hash table traversal callback to redirect each incoming edge | |
393 associated with this hash table element to its new destination. */ | |
394 | |
395 static int | |
396 redirect_edges (void **slot, void *data) | |
397 { | |
398 struct redirection_data *rd = (struct redirection_data *) *slot; | |
399 struct local_info *local_info = (struct local_info *)data; | |
400 struct el *next, *el; | |
401 | |
402 /* Walk over all the incoming edges associated associated with this | |
403 hash table entry. */ | |
404 for (el = rd->incoming_edges; el; el = next) | |
405 { | |
406 edge e = el->e; | |
407 | |
408 /* Go ahead and free this element from the list. Doing this now | |
409 avoids the need for another list walk when we destroy the hash | |
410 table. */ | |
411 next = el->next; | |
412 free (el); | |
413 | |
414 /* Go ahead and clear E->aux. It's not needed anymore and failure | |
415 to clear it will cause all kinds of unpleasant problems later. */ | |
416 e->aux = NULL; | |
417 | |
418 thread_stats.num_threaded_edges++; | |
419 | |
420 if (rd->dup_block) | |
421 { | |
422 edge e2; | |
423 | |
424 if (dump_file && (dump_flags & TDF_DETAILS)) | |
425 fprintf (dump_file, " Threaded jump %d --> %d to %d\n", | |
426 e->src->index, e->dest->index, rd->dup_block->index); | |
427 | |
428 rd->dup_block->count += e->count; | |
429 rd->dup_block->frequency += EDGE_FREQUENCY (e); | |
430 EDGE_SUCC (rd->dup_block, 0)->count += e->count; | |
431 /* Redirect the incoming edge to the appropriate duplicate | |
432 block. */ | |
433 e2 = redirect_edge_and_branch (e, rd->dup_block); | |
434 gcc_assert (e == e2); | |
435 flush_pending_stmts (e2); | |
436 } | |
437 else | |
438 { | |
439 if (dump_file && (dump_flags & TDF_DETAILS)) | |
440 fprintf (dump_file, " Threaded jump %d --> %d to %d\n", | |
441 e->src->index, e->dest->index, local_info->bb->index); | |
442 | |
443 /* We are using BB as the duplicate. Remove the unnecessary | |
444 outgoing edges and statements from BB. */ | |
445 remove_ctrl_stmt_and_useless_edges (local_info->bb, | |
446 rd->outgoing_edge->dest); | |
447 | |
448 /* Fixup the flags on the single remaining edge. */ | |
449 single_succ_edge (local_info->bb)->flags | |
450 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE | EDGE_ABNORMAL); | |
451 single_succ_edge (local_info->bb)->flags |= EDGE_FALLTHRU; | |
452 | |
453 /* And adjust count and frequency on BB. */ | |
454 local_info->bb->count = e->count; | |
455 local_info->bb->frequency = EDGE_FREQUENCY (e); | |
456 } | |
457 } | |
458 | |
459 /* Indicate that we actually threaded one or more jumps. */ | |
460 if (rd->incoming_edges) | |
461 local_info->jumps_threaded = true; | |
462 | |
463 return 1; | |
464 } | |
465 | |
466 /* Return true if this block has no executable statements other than | |
467 a simple ctrl flow instruction. When the number of outgoing edges | |
468 is one, this is equivalent to a "forwarder" block. */ | |
469 | |
470 static bool | |
471 redirection_block_p (basic_block bb) | |
472 { | |
473 gimple_stmt_iterator gsi; | |
474 | |
475 /* Advance to the first executable statement. */ | |
476 gsi = gsi_start_bb (bb); | |
477 while (!gsi_end_p (gsi) | |
478 && (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL | |
479 || gimple_nop_p (gsi_stmt (gsi)))) | |
480 gsi_next (&gsi); | |
481 | |
482 /* Check if this is an empty block. */ | |
483 if (gsi_end_p (gsi)) | |
484 return true; | |
485 | |
486 /* Test that we've reached the terminating control statement. */ | |
487 return gsi_stmt (gsi) | |
488 && (gimple_code (gsi_stmt (gsi)) == GIMPLE_COND | |
489 || gimple_code (gsi_stmt (gsi)) == GIMPLE_GOTO | |
490 || gimple_code (gsi_stmt (gsi)) == GIMPLE_SWITCH); | |
491 } | |
492 | |
493 /* BB is a block which ends with a COND_EXPR or SWITCH_EXPR and when BB | |
494 is reached via one or more specific incoming edges, we know which | |
495 outgoing edge from BB will be traversed. | |
496 | |
497 We want to redirect those incoming edges to the target of the | |
498 appropriate outgoing edge. Doing so avoids a conditional branch | |
499 and may expose new optimization opportunities. Note that we have | |
500 to update dominator tree and SSA graph after such changes. | |
501 | |
502 The key to keeping the SSA graph update manageable is to duplicate | |
503 the side effects occurring in BB so that those side effects still | |
504 occur on the paths which bypass BB after redirecting edges. | |
505 | |
506 We accomplish this by creating duplicates of BB and arranging for | |
507 the duplicates to unconditionally pass control to one specific | |
508 successor of BB. We then revector the incoming edges into BB to | |
509 the appropriate duplicate of BB. | |
510 | |
511 If NOLOOP_ONLY is true, we only perform the threading as long as it | |
512 does not affect the structure of the loops in a nontrivial way. */ | |
513 | |
514 static bool | |
515 thread_block (basic_block bb, bool noloop_only) | |
516 { | |
517 /* E is an incoming edge into BB that we may or may not want to | |
518 redirect to a duplicate of BB. */ | |
519 edge e, e2; | |
520 edge_iterator ei; | |
521 struct local_info local_info; | |
522 struct loop *loop = bb->loop_father; | |
523 | |
524 /* ALL indicates whether or not all incoming edges into BB should | |
525 be threaded to a duplicate of BB. */ | |
526 bool all = true; | |
527 | |
528 /* To avoid scanning a linear array for the element we need we instead | |
529 use a hash table. For normal code there should be no noticeable | |
530 difference. However, if we have a block with a large number of | |
531 incoming and outgoing edges such linear searches can get expensive. */ | |
532 redirection_data = htab_create (EDGE_COUNT (bb->succs), | |
533 redirection_data_hash, | |
534 redirection_data_eq, | |
535 free); | |
536 | |
537 /* If we thread the latch of the loop to its exit, the loop ceases to | |
538 exist. Make sure we do not restrict ourselves in order to preserve | |
539 this loop. */ | |
540 if (loop->header == bb) | |
541 { | |
542 e = loop_latch_edge (loop); | |
543 e2 = (edge) e->aux; | |
544 | |
545 if (e2 && loop_exit_edge_p (loop, e2)) | |
546 { | |
547 loop->header = NULL; | |
548 loop->latch = NULL; | |
549 } | |
550 } | |
551 | |
552 /* Record each unique threaded destination into a hash table for | |
553 efficient lookups. */ | |
554 FOR_EACH_EDGE (e, ei, bb->preds) | |
555 { | |
556 e2 = (edge) e->aux; | |
557 | |
558 if (!e2 | |
559 /* If NOLOOP_ONLY is true, we only allow threading through the | |
560 header of a loop to exit edges. */ | |
561 || (noloop_only | |
562 && bb == bb->loop_father->header | |
563 && !loop_exit_edge_p (bb->loop_father, e2))) | |
564 { | |
565 all = false; | |
566 continue; | |
567 } | |
568 | |
569 update_bb_profile_for_threading (e->dest, EDGE_FREQUENCY (e), | |
570 e->count, (edge) e->aux); | |
571 | |
572 /* Insert the outgoing edge into the hash table if it is not | |
573 already in the hash table. */ | |
574 lookup_redirection_data (e2, e, INSERT); | |
575 } | |
576 | |
577 /* If we are going to thread all incoming edges to an outgoing edge, then | |
578 BB will become unreachable. Rather than just throwing it away, use | |
579 it for one of the duplicates. Mark the first incoming edge with the | |
580 DO_NOT_DUPLICATE attribute. */ | |
581 if (all) | |
582 { | |
583 edge e = (edge) EDGE_PRED (bb, 0)->aux; | |
584 lookup_redirection_data (e, NULL, NO_INSERT)->do_not_duplicate = true; | |
585 } | |
586 | |
587 /* We do not update dominance info. */ | |
588 free_dominance_info (CDI_DOMINATORS); | |
589 | |
590 /* Now create duplicates of BB. | |
591 | |
592 Note that for a block with a high outgoing degree we can waste | |
593 a lot of time and memory creating and destroying useless edges. | |
594 | |
595 So we first duplicate BB and remove the control structure at the | |
596 tail of the duplicate as well as all outgoing edges from the | |
597 duplicate. We then use that duplicate block as a template for | |
598 the rest of the duplicates. */ | |
599 local_info.template_block = NULL; | |
600 local_info.bb = bb; | |
601 local_info.jumps_threaded = false; | |
602 htab_traverse (redirection_data, create_duplicates, &local_info); | |
603 | |
604 /* The template does not have an outgoing edge. Create that outgoing | |
605 edge and update PHI nodes as the edge's target as necessary. | |
606 | |
607 We do this after creating all the duplicates to avoid creating | |
608 unnecessary edges. */ | |
609 htab_traverse (redirection_data, fixup_template_block, &local_info); | |
610 | |
611 /* The hash table traversals above created the duplicate blocks (and the | |
612 statements within the duplicate blocks). This loop creates PHI nodes for | |
613 the duplicated blocks and redirects the incoming edges into BB to reach | |
614 the duplicates of BB. */ | |
615 htab_traverse (redirection_data, redirect_edges, &local_info); | |
616 | |
617 /* Done with this block. Clear REDIRECTION_DATA. */ | |
618 htab_delete (redirection_data); | |
619 redirection_data = NULL; | |
620 | |
621 /* Indicate to our caller whether or not any jumps were threaded. */ | |
622 return local_info.jumps_threaded; | |
623 } | |
624 | |
625 /* Threads edge E through E->dest to the edge E->aux. Returns the copy | |
626 of E->dest created during threading, or E->dest if it was not necessary | |
627 to copy it (E is its single predecessor). */ | |
628 | |
629 static basic_block | |
630 thread_single_edge (edge e) | |
631 { | |
632 basic_block bb = e->dest; | |
633 edge eto = (edge) e->aux; | |
634 struct redirection_data rd; | |
635 struct local_info local_info; | |
636 | |
637 e->aux = NULL; | |
638 | |
639 thread_stats.num_threaded_edges++; | |
640 | |
641 if (single_pred_p (bb)) | |
642 { | |
643 /* If BB has just a single predecessor, we should only remove the | |
644 control statements at its end, and successors except for ETO. */ | |
645 remove_ctrl_stmt_and_useless_edges (bb, eto->dest); | |
646 | |
647 /* And fixup the flags on the single remaining edge. */ | |
648 eto->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE | EDGE_ABNORMAL); | |
649 eto->flags |= EDGE_FALLTHRU; | |
650 | |
651 return bb; | |
652 } | |
653 | |
654 /* Otherwise, we need to create a copy. */ | |
655 update_bb_profile_for_threading (bb, EDGE_FREQUENCY (e), e->count, eto); | |
656 | |
657 local_info.bb = bb; | |
658 rd.outgoing_edge = eto; | |
659 | |
660 create_block_for_threading (bb, &rd); | |
661 create_edge_and_update_destination_phis (&rd); | |
662 | |
663 if (dump_file && (dump_flags & TDF_DETAILS)) | |
664 fprintf (dump_file, " Threaded jump %d --> %d to %d\n", | |
665 e->src->index, e->dest->index, rd.dup_block->index); | |
666 | |
667 rd.dup_block->count = e->count; | |
668 rd.dup_block->frequency = EDGE_FREQUENCY (e); | |
669 single_succ_edge (rd.dup_block)->count = e->count; | |
670 redirect_edge_and_branch (e, rd.dup_block); | |
671 flush_pending_stmts (e); | |
672 | |
673 return rd.dup_block; | |
674 } | |
675 | |
676 /* Callback for dfs_enumerate_from. Returns true if BB is different | |
677 from STOP and DBDS_CE_STOP. */ | |
678 | |
679 static basic_block dbds_ce_stop; | |
680 static bool | |
681 dbds_continue_enumeration_p (const_basic_block bb, const void *stop) | |
682 { | |
683 return (bb != (const_basic_block) stop | |
684 && bb != dbds_ce_stop); | |
685 } | |
686 | |
687 /* Evaluates the dominance relationship of latch of the LOOP and BB, and | |
688 returns the state. */ | |
689 | |
690 enum bb_dom_status | |
691 { | |
692 /* BB does not dominate latch of the LOOP. */ | |
693 DOMST_NONDOMINATING, | |
694 /* The LOOP is broken (there is no path from the header to its latch. */ | |
695 DOMST_LOOP_BROKEN, | |
696 /* BB dominates the latch of the LOOP. */ | |
697 DOMST_DOMINATING | |
698 }; | |
699 | |
700 static enum bb_dom_status | |
701 determine_bb_domination_status (struct loop *loop, basic_block bb) | |
702 { | |
703 basic_block *bblocks; | |
704 unsigned nblocks, i; | |
705 bool bb_reachable = false; | |
706 edge_iterator ei; | |
707 edge e; | |
708 | |
709 #ifdef ENABLE_CHECKING | |
710 /* This function assumes BB is a successor of LOOP->header. */ | |
711 { | |
712 bool ok = false; | |
713 | |
714 FOR_EACH_EDGE (e, ei, bb->preds) | |
715 { | |
716 if (e->src == loop->header) | |
717 { | |
718 ok = true; | |
719 break; | |
720 } | |
721 } | |
722 | |
723 gcc_assert (ok); | |
724 } | |
725 #endif | |
726 | |
727 if (bb == loop->latch) | |
728 return DOMST_DOMINATING; | |
729 | |
730 /* Check that BB dominates LOOP->latch, and that it is back-reachable | |
731 from it. */ | |
732 | |
733 bblocks = XCNEWVEC (basic_block, loop->num_nodes); | |
734 dbds_ce_stop = loop->header; | |
735 nblocks = dfs_enumerate_from (loop->latch, 1, dbds_continue_enumeration_p, | |
736 bblocks, loop->num_nodes, bb); | |
737 for (i = 0; i < nblocks; i++) | |
738 FOR_EACH_EDGE (e, ei, bblocks[i]->preds) | |
739 { | |
740 if (e->src == loop->header) | |
741 { | |
742 free (bblocks); | |
743 return DOMST_NONDOMINATING; | |
744 } | |
745 if (e->src == bb) | |
746 bb_reachable = true; | |
747 } | |
748 | |
749 free (bblocks); | |
750 return (bb_reachable ? DOMST_DOMINATING : DOMST_LOOP_BROKEN); | |
751 } | |
752 | |
753 /* Thread jumps through the header of LOOP. Returns true if cfg changes. | |
754 If MAY_PEEL_LOOP_HEADERS is false, we avoid threading from entry edges | |
755 to the inside of the loop. */ | |
756 | |
757 static bool | |
758 thread_through_loop_header (struct loop *loop, bool may_peel_loop_headers) | |
759 { | |
760 basic_block header = loop->header; | |
761 edge e, tgt_edge, latch = loop_latch_edge (loop); | |
762 edge_iterator ei; | |
763 basic_block tgt_bb, atgt_bb; | |
764 enum bb_dom_status domst; | |
765 | |
766 /* We have already threaded through headers to exits, so all the threading | |
767 requests now are to the inside of the loop. We need to avoid creating | |
768 irreducible regions (i.e., loops with more than one entry block), and | |
769 also loop with several latch edges, or new subloops of the loop (although | |
770 there are cases where it might be appropriate, it is difficult to decide, | |
771 and doing it wrongly may confuse other optimizers). | |
772 | |
773 We could handle more general cases here. However, the intention is to | |
774 preserve some information about the loop, which is impossible if its | |
775 structure changes significantly, in a way that is not well understood. | |
776 Thus we only handle few important special cases, in which also updating | |
777 of the loop-carried information should be feasible: | |
778 | |
779 1) Propagation of latch edge to a block that dominates the latch block | |
780 of a loop. This aims to handle the following idiom: | |
781 | |
782 first = 1; | |
783 while (1) | |
784 { | |
785 if (first) | |
786 initialize; | |
787 first = 0; | |
788 body; | |
789 } | |
790 | |
791 After threading the latch edge, this becomes | |
792 | |
793 first = 1; | |
794 if (first) | |
795 initialize; | |
796 while (1) | |
797 { | |
798 first = 0; | |
799 body; | |
800 } | |
801 | |
802 The original header of the loop is moved out of it, and we may thread | |
803 the remaining edges through it without further constraints. | |
804 | |
805 2) All entry edges are propagated to a single basic block that dominates | |
806 the latch block of the loop. This aims to handle the following idiom | |
807 (normally created for "for" loops): | |
808 | |
809 i = 0; | |
810 while (1) | |
811 { | |
812 if (i >= 100) | |
813 break; | |
814 body; | |
815 i++; | |
816 } | |
817 | |
818 This becomes | |
819 | |
820 i = 0; | |
821 while (1) | |
822 { | |
823 body; | |
824 i++; | |
825 if (i >= 100) | |
826 break; | |
827 } | |
828 */ | |
829 | |
830 /* Threading through the header won't improve the code if the header has just | |
831 one successor. */ | |
832 if (single_succ_p (header)) | |
833 goto fail; | |
834 | |
835 if (latch->aux) | |
836 { | |
837 tgt_edge = (edge) latch->aux; | |
838 tgt_bb = tgt_edge->dest; | |
839 } | |
840 else if (!may_peel_loop_headers | |
841 && !redirection_block_p (loop->header)) | |
842 goto fail; | |
843 else | |
844 { | |
845 tgt_bb = NULL; | |
846 tgt_edge = NULL; | |
847 FOR_EACH_EDGE (e, ei, header->preds) | |
848 { | |
849 if (!e->aux) | |
850 { | |
851 if (e == latch) | |
852 continue; | |
853 | |
854 /* If latch is not threaded, and there is a header | |
855 edge that is not threaded, we would create loop | |
856 with multiple entries. */ | |
857 goto fail; | |
858 } | |
859 | |
860 tgt_edge = (edge) e->aux; | |
861 atgt_bb = tgt_edge->dest; | |
862 if (!tgt_bb) | |
863 tgt_bb = atgt_bb; | |
864 /* Two targets of threading would make us create loop | |
865 with multiple entries. */ | |
866 else if (tgt_bb != atgt_bb) | |
867 goto fail; | |
868 } | |
869 | |
870 if (!tgt_bb) | |
871 { | |
872 /* There are no threading requests. */ | |
873 return false; | |
874 } | |
875 | |
876 /* Redirecting to empty loop latch is useless. */ | |
877 if (tgt_bb == loop->latch | |
878 && empty_block_p (loop->latch)) | |
879 goto fail; | |
880 } | |
881 | |
882 /* The target block must dominate the loop latch, otherwise we would be | |
883 creating a subloop. */ | |
884 domst = determine_bb_domination_status (loop, tgt_bb); | |
885 if (domst == DOMST_NONDOMINATING) | |
886 goto fail; | |
887 if (domst == DOMST_LOOP_BROKEN) | |
888 { | |
889 /* If the loop ceased to exist, mark it as such, and thread through its | |
890 original header. */ | |
891 loop->header = NULL; | |
892 loop->latch = NULL; | |
893 return thread_block (header, false); | |
894 } | |
895 | |
896 if (tgt_bb->loop_father->header == tgt_bb) | |
897 { | |
898 /* If the target of the threading is a header of a subloop, we need | |
899 to create a preheader for it, so that the headers of the two loops | |
900 do not merge. */ | |
901 if (EDGE_COUNT (tgt_bb->preds) > 2) | |
902 { | |
903 tgt_bb = create_preheader (tgt_bb->loop_father, 0); | |
904 gcc_assert (tgt_bb != NULL); | |
905 } | |
906 else | |
907 tgt_bb = split_edge (tgt_edge); | |
908 } | |
909 | |
910 if (latch->aux) | |
911 { | |
912 /* First handle the case latch edge is redirected. */ | |
913 loop->latch = thread_single_edge (latch); | |
914 gcc_assert (single_succ (loop->latch) == tgt_bb); | |
915 loop->header = tgt_bb; | |
916 | |
917 /* Thread the remaining edges through the former header. */ | |
918 thread_block (header, false); | |
919 } | |
920 else | |
921 { | |
922 basic_block new_preheader; | |
923 | |
924 /* Now consider the case entry edges are redirected to the new entry | |
925 block. Remember one entry edge, so that we can find the new | |
926 preheader (its destination after threading). */ | |
927 FOR_EACH_EDGE (e, ei, header->preds) | |
928 { | |
929 if (e->aux) | |
930 break; | |
931 } | |
932 | |
933 /* The duplicate of the header is the new preheader of the loop. Ensure | |
934 that it is placed correctly in the loop hierarchy. */ | |
935 set_loop_copy (loop, loop_outer (loop)); | |
936 | |
937 thread_block (header, false); | |
938 set_loop_copy (loop, NULL); | |
939 new_preheader = e->dest; | |
940 | |
941 /* Create the new latch block. This is always necessary, as the latch | |
942 must have only a single successor, but the original header had at | |
943 least two successors. */ | |
944 loop->latch = NULL; | |
945 mfb_kj_edge = single_succ_edge (new_preheader); | |
946 loop->header = mfb_kj_edge->dest; | |
947 latch = make_forwarder_block (tgt_bb, mfb_keep_just, NULL); | |
948 loop->header = latch->dest; | |
949 loop->latch = latch->src; | |
950 } | |
951 | |
952 return true; | |
953 | |
954 fail: | |
955 /* We failed to thread anything. Cancel the requests. */ | |
956 FOR_EACH_EDGE (e, ei, header->preds) | |
957 { | |
958 e->aux = NULL; | |
959 } | |
960 return false; | |
961 } | |
962 | |
963 /* Walk through the registered jump threads and convert them into a | |
964 form convenient for this pass. | |
965 | |
966 Any block which has incoming edges threaded to outgoing edges | |
967 will have its entry in THREADED_BLOCK set. | |
968 | |
969 Any threaded edge will have its new outgoing edge stored in the | |
970 original edge's AUX field. | |
971 | |
972 This form avoids the need to walk all the edges in the CFG to | |
973 discover blocks which need processing and avoids unnecessary | |
974 hash table lookups to map from threaded edge to new target. */ | |
975 | |
976 static void | |
977 mark_threaded_blocks (bitmap threaded_blocks) | |
978 { | |
979 unsigned int i; | |
980 bitmap_iterator bi; | |
981 bitmap tmp = BITMAP_ALLOC (NULL); | |
982 basic_block bb; | |
983 edge e; | |
984 edge_iterator ei; | |
985 | |
986 for (i = 0; i < VEC_length (edge, threaded_edges); i += 2) | |
987 { | |
988 edge e = VEC_index (edge, threaded_edges, i); | |
989 edge e2 = VEC_index (edge, threaded_edges, i + 1); | |
990 | |
991 e->aux = e2; | |
992 bitmap_set_bit (tmp, e->dest->index); | |
993 } | |
994 | |
995 /* If optimizing for size, only thread through block if we don't have | |
996 to duplicate it or it's an otherwise empty redirection block. */ | |
997 if (optimize_function_for_size_p (cfun)) | |
998 { | |
999 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi) | |
1000 { | |
1001 bb = BASIC_BLOCK (i); | |
1002 if (EDGE_COUNT (bb->preds) > 1 | |
1003 && !redirection_block_p (bb)) | |
1004 { | |
1005 FOR_EACH_EDGE (e, ei, bb->preds) | |
1006 e->aux = NULL; | |
1007 } | |
1008 else | |
1009 bitmap_set_bit (threaded_blocks, i); | |
1010 } | |
1011 } | |
1012 else | |
1013 bitmap_copy (threaded_blocks, tmp); | |
1014 | |
1015 BITMAP_FREE(tmp); | |
1016 } | |
1017 | |
1018 | |
1019 /* Walk through all blocks and thread incoming edges to the appropriate | |
1020 outgoing edge for each edge pair recorded in THREADED_EDGES. | |
1021 | |
1022 It is the caller's responsibility to fix the dominance information | |
1023 and rewrite duplicated SSA_NAMEs back into SSA form. | |
1024 | |
1025 If MAY_PEEL_LOOP_HEADERS is false, we avoid threading edges through | |
1026 loop headers if it does not simplify the loop. | |
1027 | |
1028 Returns true if one or more edges were threaded, false otherwise. */ | |
1029 | |
1030 bool | |
1031 thread_through_all_blocks (bool may_peel_loop_headers) | |
1032 { | |
1033 bool retval = false; | |
1034 unsigned int i; | |
1035 bitmap_iterator bi; | |
1036 bitmap threaded_blocks; | |
1037 struct loop *loop; | |
1038 loop_iterator li; | |
1039 | |
1040 /* We must know about loops in order to preserve them. */ | |
1041 gcc_assert (current_loops != NULL); | |
1042 | |
1043 if (threaded_edges == NULL) | |
1044 return false; | |
1045 | |
1046 threaded_blocks = BITMAP_ALLOC (NULL); | |
1047 memset (&thread_stats, 0, sizeof (thread_stats)); | |
1048 | |
1049 mark_threaded_blocks (threaded_blocks); | |
1050 | |
1051 initialize_original_copy_tables (); | |
1052 | |
1053 /* First perform the threading requests that do not affect | |
1054 loop structure. */ | |
1055 EXECUTE_IF_SET_IN_BITMAP (threaded_blocks, 0, i, bi) | |
1056 { | |
1057 basic_block bb = BASIC_BLOCK (i); | |
1058 | |
1059 if (EDGE_COUNT (bb->preds) > 0) | |
1060 retval |= thread_block (bb, true); | |
1061 } | |
1062 | |
1063 /* Then perform the threading through loop headers. We start with the | |
1064 innermost loop, so that the changes in cfg we perform won't affect | |
1065 further threading. */ | |
1066 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST) | |
1067 { | |
1068 if (!loop->header | |
1069 || !bitmap_bit_p (threaded_blocks, loop->header->index)) | |
1070 continue; | |
1071 | |
1072 retval |= thread_through_loop_header (loop, may_peel_loop_headers); | |
1073 } | |
1074 | |
1075 statistics_counter_event (cfun, "Jumps threaded", | |
1076 thread_stats.num_threaded_edges); | |
1077 | |
1078 free_original_copy_tables (); | |
1079 | |
1080 BITMAP_FREE (threaded_blocks); | |
1081 threaded_blocks = NULL; | |
1082 VEC_free (edge, heap, threaded_edges); | |
1083 threaded_edges = NULL; | |
1084 | |
1085 if (retval) | |
1086 loops_state_set (LOOPS_NEED_FIXUP); | |
1087 | |
1088 return retval; | |
1089 } | |
1090 | |
1091 /* Register a jump threading opportunity. We queue up all the jump | |
1092 threading opportunities discovered by a pass and update the CFG | |
1093 and SSA form all at once. | |
1094 | |
1095 E is the edge we can thread, E2 is the new target edge, i.e., we | |
1096 are effectively recording that E->dest can be changed to E2->dest | |
1097 after fixing the SSA graph. */ | |
1098 | |
1099 void | |
1100 register_jump_thread (edge e, edge e2) | |
1101 { | |
1102 if (threaded_edges == NULL) | |
1103 threaded_edges = VEC_alloc (edge, heap, 10); | |
1104 | |
1105 VEC_safe_push (edge, heap, threaded_edges, e); | |
1106 VEC_safe_push (edge, heap, threaded_edges, e2); | |
1107 } |