Mercurial > hg > CbC > CbC_gcc
comparison gcc/poly-int.h @ 132:d34655255c78
update gcc-8.2
author | mir3636 |
---|---|
date | Thu, 25 Oct 2018 10:21:07 +0900 |
parents | 84e7813d76e9 |
children | 1830386684a0 |
comparison
equal
deleted
inserted
replaced
130:e108057fa461 | 132:d34655255c78 |
---|---|
1 /* Polynomial integer classes. | |
2 Copyright (C) 2014-2018 Free Software Foundation, Inc. | |
3 | |
4 This file is part of GCC. | |
5 | |
6 GCC is free software; you can redistribute it and/or modify it under | |
7 the terms of the GNU General Public License as published by the Free | |
8 Software Foundation; either version 3, or (at your option) any later | |
9 version. | |
10 | |
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY | |
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
14 for more details. | |
15 | |
16 You should have received a copy of the GNU General Public License | |
17 along with GCC; see the file COPYING3. If not see | |
18 <http://www.gnu.org/licenses/>. */ | |
19 | |
20 /* This file provides a representation of sizes and offsets whose exact | |
21 values depend on certain runtime properties. The motivating example | |
22 is the Arm SVE ISA, in which the number of vector elements is only | |
23 known at runtime. See doc/poly-int.texi for more details. | |
24 | |
25 Tests for poly-int.h are located in testsuite/gcc.dg/plugin, | |
26 since they are too expensive (in terms of binary size) to be | |
27 included as selftests. */ | |
28 | |
29 #ifndef HAVE_POLY_INT_H | |
30 #define HAVE_POLY_INT_H | |
31 | |
32 template<unsigned int N, typename T> class poly_int_pod; | |
33 template<unsigned int N, typename T> class poly_int; | |
34 | |
35 /* poly_coeff_traiits<T> describes the properties of a poly_int | |
36 coefficient type T: | |
37 | |
38 - poly_coeff_traits<T1>::rank is less than poly_coeff_traits<T2>::rank | |
39 if T1 can promote to T2. For C-like types the rank is: | |
40 | |
41 (2 * number of bytes) + (unsigned ? 1 : 0) | |
42 | |
43 wide_ints don't have a normal rank and so use a value of INT_MAX. | |
44 Any fixed-width integer should be promoted to wide_int if possible | |
45 and lead to an error otherwise. | |
46 | |
47 - poly_coeff_traits<T>::int_type is the type to which an integer | |
48 literal should be cast before comparing it with T. | |
49 | |
50 - poly_coeff_traits<T>::precision is the number of bits that T can hold. | |
51 | |
52 - poly_coeff_traits<T>::signedness is: | |
53 0 if T is unsigned | |
54 1 if T is signed | |
55 -1 if T has no inherent sign (as for wide_int). | |
56 | |
57 - poly_coeff_traits<T>::max_value, if defined, is the maximum value of T. | |
58 | |
59 - poly_coeff_traits<T>::result is a type that can hold results of | |
60 operations on T. This is different from T itself in cases where T | |
61 is the result of an accessor like wi::to_offset. */ | |
62 template<typename T, wi::precision_type = wi::int_traits<T>::precision_type> | |
63 struct poly_coeff_traits; | |
64 | |
65 template<typename T> | |
66 struct poly_coeff_traits<T, wi::FLEXIBLE_PRECISION> | |
67 { | |
68 typedef T result; | |
69 typedef T int_type; | |
70 static const int signedness = (T (0) >= T (-1)); | |
71 static const int precision = sizeof (T) * CHAR_BIT; | |
72 static const T max_value = (signedness | |
73 ? ((T (1) << (precision - 2)) | |
74 + ((T (1) << (precision - 2)) - 1)) | |
75 : T (-1)); | |
76 static const int rank = sizeof (T) * 2 + !signedness; | |
77 }; | |
78 | |
79 template<typename T> | |
80 struct poly_coeff_traits<T, wi::VAR_PRECISION> | |
81 { | |
82 typedef T result; | |
83 typedef int int_type; | |
84 static const int signedness = -1; | |
85 static const int precision = WIDE_INT_MAX_PRECISION; | |
86 static const int rank = INT_MAX; | |
87 }; | |
88 | |
89 template<typename T> | |
90 struct poly_coeff_traits<T, wi::CONST_PRECISION> | |
91 { | |
92 typedef WI_UNARY_RESULT (T) result; | |
93 typedef int int_type; | |
94 /* These types are always signed. */ | |
95 static const int signedness = 1; | |
96 static const int precision = wi::int_traits<T>::precision; | |
97 static const int rank = precision * 2 / CHAR_BIT; | |
98 }; | |
99 | |
100 /* Information about a pair of coefficient types. */ | |
101 template<typename T1, typename T2> | |
102 struct poly_coeff_pair_traits | |
103 { | |
104 /* True if T1 can represent all the values of T2. | |
105 | |
106 Either: | |
107 | |
108 - T1 should be a type with the same signedness as T2 and no less | |
109 precision. This allows things like int16_t -> int16_t and | |
110 uint32_t -> uint64_t. | |
111 | |
112 - T1 should be signed, T2 should be unsigned, and T1 should be | |
113 wider than T2. This allows things like uint16_t -> int32_t. | |
114 | |
115 This rules out cases in which T1 has less precision than T2 or where | |
116 the conversion would reinterpret the top bit. E.g. int16_t -> uint32_t | |
117 can be dangerous and should have an explicit cast if deliberate. */ | |
118 static const bool lossless_p = (poly_coeff_traits<T1>::signedness | |
119 == poly_coeff_traits<T2>::signedness | |
120 ? (poly_coeff_traits<T1>::precision | |
121 >= poly_coeff_traits<T2>::precision) | |
122 : (poly_coeff_traits<T1>::signedness == 1 | |
123 && poly_coeff_traits<T2>::signedness == 0 | |
124 && (poly_coeff_traits<T1>::precision | |
125 > poly_coeff_traits<T2>::precision))); | |
126 | |
127 /* 0 if T1 op T2 should promote to HOST_WIDE_INT, | |
128 1 if T1 op T2 should promote to unsigned HOST_WIDE_INT, | |
129 2 if T1 op T2 should use wide-int rules. */ | |
130 #define RANK(X) poly_coeff_traits<X>::rank | |
131 static const int result_kind | |
132 = ((RANK (T1) <= RANK (HOST_WIDE_INT) | |
133 && RANK (T2) <= RANK (HOST_WIDE_INT)) | |
134 ? 0 | |
135 : (RANK (T1) <= RANK (unsigned HOST_WIDE_INT) | |
136 && RANK (T2) <= RANK (unsigned HOST_WIDE_INT)) | |
137 ? 1 : 2); | |
138 #undef RANK | |
139 }; | |
140 | |
141 /* SFINAE class that makes T3 available as "type" if T2 can represent all the | |
142 values in T1. */ | |
143 template<typename T1, typename T2, typename T3, | |
144 bool lossless_p = poly_coeff_pair_traits<T1, T2>::lossless_p> | |
145 struct if_lossless; | |
146 template<typename T1, typename T2, typename T3> | |
147 struct if_lossless<T1, T2, T3, true> | |
148 { | |
149 typedef T3 type; | |
150 }; | |
151 | |
152 /* poly_int_traits<T> describes an integer type T that might be polynomial | |
153 or non-polynomial: | |
154 | |
155 - poly_int_traits<T>::is_poly is true if T is a poly_int-based type | |
156 and false otherwise. | |
157 | |
158 - poly_int_traits<T>::num_coeffs gives the number of coefficients in T | |
159 if T is a poly_int and 1 otherwise. | |
160 | |
161 - poly_int_traits<T>::coeff_type gives the coefficent type of T if T | |
162 is a poly_int and T itself otherwise | |
163 | |
164 - poly_int_traits<T>::int_type is a shorthand for | |
165 typename poly_coeff_traits<coeff_type>::int_type. */ | |
166 template<typename T> | |
167 struct poly_int_traits | |
168 { | |
169 static const bool is_poly = false; | |
170 static const unsigned int num_coeffs = 1; | |
171 typedef T coeff_type; | |
172 typedef typename poly_coeff_traits<T>::int_type int_type; | |
173 }; | |
174 template<unsigned int N, typename C> | |
175 struct poly_int_traits<poly_int_pod<N, C> > | |
176 { | |
177 static const bool is_poly = true; | |
178 static const unsigned int num_coeffs = N; | |
179 typedef C coeff_type; | |
180 typedef typename poly_coeff_traits<C>::int_type int_type; | |
181 }; | |
182 template<unsigned int N, typename C> | |
183 struct poly_int_traits<poly_int<N, C> > : poly_int_traits<poly_int_pod<N, C> > | |
184 { | |
185 }; | |
186 | |
187 /* SFINAE class that makes T2 available as "type" if T1 is a non-polynomial | |
188 type. */ | |
189 template<typename T1, typename T2 = T1, | |
190 bool is_poly = poly_int_traits<T1>::is_poly> | |
191 struct if_nonpoly {}; | |
192 template<typename T1, typename T2> | |
193 struct if_nonpoly<T1, T2, false> | |
194 { | |
195 typedef T2 type; | |
196 }; | |
197 | |
198 /* SFINAE class that makes T3 available as "type" if both T1 and T2 are | |
199 non-polynomial types. */ | |
200 template<typename T1, typename T2, typename T3, | |
201 bool is_poly1 = poly_int_traits<T1>::is_poly, | |
202 bool is_poly2 = poly_int_traits<T2>::is_poly> | |
203 struct if_nonpoly2 {}; | |
204 template<typename T1, typename T2, typename T3> | |
205 struct if_nonpoly2<T1, T2, T3, false, false> | |
206 { | |
207 typedef T3 type; | |
208 }; | |
209 | |
210 /* SFINAE class that makes T2 available as "type" if T1 is a polynomial | |
211 type. */ | |
212 template<typename T1, typename T2 = T1, | |
213 bool is_poly = poly_int_traits<T1>::is_poly> | |
214 struct if_poly {}; | |
215 template<typename T1, typename T2> | |
216 struct if_poly<T1, T2, true> | |
217 { | |
218 typedef T2 type; | |
219 }; | |
220 | |
221 /* poly_result<T1, T2> describes the result of an operation on two | |
222 types T1 and T2, where at least one of the types is polynomial: | |
223 | |
224 - poly_result<T1, T2>::type gives the result type for the operation. | |
225 The intention is to provide normal C-like rules for integer ranks, | |
226 except that everything smaller than HOST_WIDE_INT promotes to | |
227 HOST_WIDE_INT. | |
228 | |
229 - poly_result<T1, T2>::cast is the type to which an operand of type | |
230 T1 should be cast before doing the operation, to ensure that | |
231 the operation is done at the right precision. Casting to | |
232 poly_result<T1, T2>::type would also work, but casting to this | |
233 type is more efficient. */ | |
234 template<typename T1, typename T2 = T1, | |
235 int result_kind = poly_coeff_pair_traits<T1, T2>::result_kind> | |
236 struct poly_result; | |
237 | |
238 /* Promote pair to HOST_WIDE_INT. */ | |
239 template<typename T1, typename T2> | |
240 struct poly_result<T1, T2, 0> | |
241 { | |
242 typedef HOST_WIDE_INT type; | |
243 /* T1 and T2 are primitive types, so cast values to T before operating | |
244 on them. */ | |
245 typedef type cast; | |
246 }; | |
247 | |
248 /* Promote pair to unsigned HOST_WIDE_INT. */ | |
249 template<typename T1, typename T2> | |
250 struct poly_result<T1, T2, 1> | |
251 { | |
252 typedef unsigned HOST_WIDE_INT type; | |
253 /* T1 and T2 are primitive types, so cast values to T before operating | |
254 on them. */ | |
255 typedef type cast; | |
256 }; | |
257 | |
258 /* Use normal wide-int rules. */ | |
259 template<typename T1, typename T2> | |
260 struct poly_result<T1, T2, 2> | |
261 { | |
262 typedef WI_BINARY_RESULT (T1, T2) type; | |
263 /* Don't cast values before operating on them; leave the wi:: routines | |
264 to handle promotion as necessary. */ | |
265 typedef const T1 &cast; | |
266 }; | |
267 | |
268 /* The coefficient type for the result of a binary operation on two | |
269 poly_ints, the first of which has coefficients of type C1 and the | |
270 second of which has coefficients of type C2. */ | |
271 #define POLY_POLY_COEFF(C1, C2) typename poly_result<C1, C2>::type | |
272 | |
273 /* Enforce that T2 is non-polynomial and provide the cofficient type of | |
274 the result of a binary operation in which the first operand is a | |
275 poly_int with coefficients of type C1 and the second operand is | |
276 a constant of type T2. */ | |
277 #define POLY_CONST_COEFF(C1, T2) \ | |
278 POLY_POLY_COEFF (C1, typename if_nonpoly<T2>::type) | |
279 | |
280 /* Likewise in reverse. */ | |
281 #define CONST_POLY_COEFF(T1, C2) \ | |
282 POLY_POLY_COEFF (typename if_nonpoly<T1>::type, C2) | |
283 | |
284 /* The result type for a binary operation on poly_int<N, C1> and | |
285 poly_int<N, C2>. */ | |
286 #define POLY_POLY_RESULT(N, C1, C2) poly_int<N, POLY_POLY_COEFF (C1, C2)> | |
287 | |
288 /* Enforce that T2 is non-polynomial and provide the result type | |
289 for a binary operation on poly_int<N, C1> and T2. */ | |
290 #define POLY_CONST_RESULT(N, C1, T2) poly_int<N, POLY_CONST_COEFF (C1, T2)> | |
291 | |
292 /* Enforce that T1 is non-polynomial and provide the result type | |
293 for a binary operation on T1 and poly_int<N, C2>. */ | |
294 #define CONST_POLY_RESULT(N, T1, C2) poly_int<N, CONST_POLY_COEFF (T1, C2)> | |
295 | |
296 /* Enforce that T1 and T2 are non-polynomial and provide the result type | |
297 for a binary operation on T1 and T2. */ | |
298 #define CONST_CONST_RESULT(N, T1, T2) \ | |
299 POLY_POLY_COEFF (typename if_nonpoly<T1>::type, \ | |
300 typename if_nonpoly<T2>::type) | |
301 | |
302 /* The type to which a coefficient of type C1 should be cast before | |
303 using it in a binary operation with a coefficient of type C2. */ | |
304 #define POLY_CAST(C1, C2) typename poly_result<C1, C2>::cast | |
305 | |
306 /* Provide the coefficient type for the result of T1 op T2, where T1 | |
307 and T2 can be polynomial or non-polynomial. */ | |
308 #define POLY_BINARY_COEFF(T1, T2) \ | |
309 typename poly_result<typename poly_int_traits<T1>::coeff_type, \ | |
310 typename poly_int_traits<T2>::coeff_type>::type | |
311 | |
312 /* The type to which an integer constant should be cast before | |
313 comparing it with T. */ | |
314 #define POLY_INT_TYPE(T) typename poly_int_traits<T>::int_type | |
315 | |
316 /* RES is a poly_int result that has coefficients of type C and that | |
317 is being built up a coefficient at a time. Set coefficient number I | |
318 to VALUE in the most efficient way possible. | |
319 | |
320 For primitive C it is better to assign directly, since it avoids | |
321 any further calls and so is more efficient when the compiler is | |
322 built at -O0. But for wide-int based C it is better to construct | |
323 the value in-place. This means that calls out to a wide-int.cc | |
324 routine can take the address of RES rather than the address of | |
325 a temporary. | |
326 | |
327 The dummy comparison against a null C * is just a way of checking | |
328 that C gives the right type. */ | |
329 #define POLY_SET_COEFF(C, RES, I, VALUE) \ | |
330 ((void) (&(RES).coeffs[0] == (C *) 0), \ | |
331 wi::int_traits<C>::precision_type == wi::FLEXIBLE_PRECISION \ | |
332 ? (void) ((RES).coeffs[I] = VALUE) \ | |
333 : (void) ((RES).coeffs[I].~C (), new (&(RES).coeffs[I]) C (VALUE))) | |
334 | |
335 /* A base POD class for polynomial integers. The polynomial has N | |
336 coefficients of type C. */ | |
337 template<unsigned int N, typename C> | |
338 class poly_int_pod | |
339 { | |
340 public: | |
341 template<typename Ca> | |
342 poly_int_pod &operator = (const poly_int_pod<N, Ca> &); | |
343 template<typename Ca> | |
344 typename if_nonpoly<Ca, poly_int_pod>::type &operator = (const Ca &); | |
345 | |
346 template<typename Ca> | |
347 poly_int_pod &operator += (const poly_int_pod<N, Ca> &); | |
348 template<typename Ca> | |
349 typename if_nonpoly<Ca, poly_int_pod>::type &operator += (const Ca &); | |
350 | |
351 template<typename Ca> | |
352 poly_int_pod &operator -= (const poly_int_pod<N, Ca> &); | |
353 template<typename Ca> | |
354 typename if_nonpoly<Ca, poly_int_pod>::type &operator -= (const Ca &); | |
355 | |
356 template<typename Ca> | |
357 typename if_nonpoly<Ca, poly_int_pod>::type &operator *= (const Ca &); | |
358 | |
359 poly_int_pod &operator <<= (unsigned int); | |
360 | |
361 bool is_constant () const; | |
362 | |
363 template<typename T> | |
364 typename if_lossless<T, C, bool>::type is_constant (T *) const; | |
365 | |
366 C to_constant () const; | |
367 | |
368 template<typename Ca> | |
369 static poly_int<N, C> from (const poly_int_pod<N, Ca> &, unsigned int, | |
370 signop); | |
371 template<typename Ca> | |
372 static poly_int<N, C> from (const poly_int_pod<N, Ca> &, signop); | |
373 | |
374 bool to_shwi (poly_int_pod<N, HOST_WIDE_INT> *) const; | |
375 bool to_uhwi (poly_int_pod<N, unsigned HOST_WIDE_INT> *) const; | |
376 poly_int<N, HOST_WIDE_INT> force_shwi () const; | |
377 poly_int<N, unsigned HOST_WIDE_INT> force_uhwi () const; | |
378 | |
379 #if POLY_INT_CONVERSION | |
380 operator C () const; | |
381 #endif | |
382 | |
383 C coeffs[N]; | |
384 }; | |
385 | |
386 template<unsigned int N, typename C> | |
387 template<typename Ca> | |
388 inline poly_int_pod<N, C>& | |
389 poly_int_pod<N, C>::operator = (const poly_int_pod<N, Ca> &a) | |
390 { | |
391 for (unsigned int i = 0; i < N; i++) | |
392 POLY_SET_COEFF (C, *this, i, a.coeffs[i]); | |
393 return *this; | |
394 } | |
395 | |
396 template<unsigned int N, typename C> | |
397 template<typename Ca> | |
398 inline typename if_nonpoly<Ca, poly_int_pod<N, C> >::type & | |
399 poly_int_pod<N, C>::operator = (const Ca &a) | |
400 { | |
401 POLY_SET_COEFF (C, *this, 0, a); | |
402 if (N >= 2) | |
403 for (unsigned int i = 1; i < N; i++) | |
404 POLY_SET_COEFF (C, *this, i, wi::ints_for<C>::zero (this->coeffs[0])); | |
405 return *this; | |
406 } | |
407 | |
408 template<unsigned int N, typename C> | |
409 template<typename Ca> | |
410 inline poly_int_pod<N, C>& | |
411 poly_int_pod<N, C>::operator += (const poly_int_pod<N, Ca> &a) | |
412 { | |
413 for (unsigned int i = 0; i < N; i++) | |
414 this->coeffs[i] += a.coeffs[i]; | |
415 return *this; | |
416 } | |
417 | |
418 template<unsigned int N, typename C> | |
419 template<typename Ca> | |
420 inline typename if_nonpoly<Ca, poly_int_pod<N, C> >::type & | |
421 poly_int_pod<N, C>::operator += (const Ca &a) | |
422 { | |
423 this->coeffs[0] += a; | |
424 return *this; | |
425 } | |
426 | |
427 template<unsigned int N, typename C> | |
428 template<typename Ca> | |
429 inline poly_int_pod<N, C>& | |
430 poly_int_pod<N, C>::operator -= (const poly_int_pod<N, Ca> &a) | |
431 { | |
432 for (unsigned int i = 0; i < N; i++) | |
433 this->coeffs[i] -= a.coeffs[i]; | |
434 return *this; | |
435 } | |
436 | |
437 template<unsigned int N, typename C> | |
438 template<typename Ca> | |
439 inline typename if_nonpoly<Ca, poly_int_pod<N, C> >::type & | |
440 poly_int_pod<N, C>::operator -= (const Ca &a) | |
441 { | |
442 this->coeffs[0] -= a; | |
443 return *this; | |
444 } | |
445 | |
446 template<unsigned int N, typename C> | |
447 template<typename Ca> | |
448 inline typename if_nonpoly<Ca, poly_int_pod<N, C> >::type & | |
449 poly_int_pod<N, C>::operator *= (const Ca &a) | |
450 { | |
451 for (unsigned int i = 0; i < N; i++) | |
452 this->coeffs[i] *= a; | |
453 return *this; | |
454 } | |
455 | |
456 template<unsigned int N, typename C> | |
457 inline poly_int_pod<N, C>& | |
458 poly_int_pod<N, C>::operator <<= (unsigned int a) | |
459 { | |
460 for (unsigned int i = 0; i < N; i++) | |
461 this->coeffs[i] <<= a; | |
462 return *this; | |
463 } | |
464 | |
465 /* Return true if the polynomial value is a compile-time constant. */ | |
466 | |
467 template<unsigned int N, typename C> | |
468 inline bool | |
469 poly_int_pod<N, C>::is_constant () const | |
470 { | |
471 if (N >= 2) | |
472 for (unsigned int i = 1; i < N; i++) | |
473 if (this->coeffs[i] != 0) | |
474 return false; | |
475 return true; | |
476 } | |
477 | |
478 /* Return true if the polynomial value is a compile-time constant, | |
479 storing its value in CONST_VALUE if so. */ | |
480 | |
481 template<unsigned int N, typename C> | |
482 template<typename T> | |
483 inline typename if_lossless<T, C, bool>::type | |
484 poly_int_pod<N, C>::is_constant (T *const_value) const | |
485 { | |
486 if (is_constant ()) | |
487 { | |
488 *const_value = this->coeffs[0]; | |
489 return true; | |
490 } | |
491 return false; | |
492 } | |
493 | |
494 /* Return the value of a polynomial that is already known to be a | |
495 compile-time constant. | |
496 | |
497 NOTE: When using this function, please add a comment above the call | |
498 explaining why we know the value is constant in that context. */ | |
499 | |
500 template<unsigned int N, typename C> | |
501 inline C | |
502 poly_int_pod<N, C>::to_constant () const | |
503 { | |
504 gcc_checking_assert (is_constant ()); | |
505 return this->coeffs[0]; | |
506 } | |
507 | |
508 /* Convert X to a wide_int-based polynomial in which each coefficient | |
509 has BITSIZE bits. If X's coefficients are smaller than BITSIZE, | |
510 extend them according to SGN. */ | |
511 | |
512 template<unsigned int N, typename C> | |
513 template<typename Ca> | |
514 inline poly_int<N, C> | |
515 poly_int_pod<N, C>::from (const poly_int_pod<N, Ca> &a, | |
516 unsigned int bitsize, signop sgn) | |
517 { | |
518 poly_int<N, C> r; | |
519 for (unsigned int i = 0; i < N; i++) | |
520 POLY_SET_COEFF (C, r, i, C::from (a.coeffs[i], bitsize, sgn)); | |
521 return r; | |
522 } | |
523 | |
524 /* Convert X to a fixed_wide_int-based polynomial, extending according | |
525 to SGN. */ | |
526 | |
527 template<unsigned int N, typename C> | |
528 template<typename Ca> | |
529 inline poly_int<N, C> | |
530 poly_int_pod<N, C>::from (const poly_int_pod<N, Ca> &a, signop sgn) | |
531 { | |
532 poly_int<N, C> r; | |
533 for (unsigned int i = 0; i < N; i++) | |
534 POLY_SET_COEFF (C, r, i, C::from (a.coeffs[i], sgn)); | |
535 return r; | |
536 } | |
537 | |
538 /* Return true if the coefficients of this generic_wide_int-based | |
539 polynomial can be represented as signed HOST_WIDE_INTs without loss | |
540 of precision. Store the HOST_WIDE_INT representation in *R if so. */ | |
541 | |
542 template<unsigned int N, typename C> | |
543 inline bool | |
544 poly_int_pod<N, C>::to_shwi (poly_int_pod<N, HOST_WIDE_INT> *r) const | |
545 { | |
546 for (unsigned int i = 0; i < N; i++) | |
547 if (!wi::fits_shwi_p (this->coeffs[i])) | |
548 return false; | |
549 for (unsigned int i = 0; i < N; i++) | |
550 r->coeffs[i] = this->coeffs[i].to_shwi (); | |
551 return true; | |
552 } | |
553 | |
554 /* Return true if the coefficients of this generic_wide_int-based | |
555 polynomial can be represented as unsigned HOST_WIDE_INTs without | |
556 loss of precision. Store the unsigned HOST_WIDE_INT representation | |
557 in *R if so. */ | |
558 | |
559 template<unsigned int N, typename C> | |
560 inline bool | |
561 poly_int_pod<N, C>::to_uhwi (poly_int_pod<N, unsigned HOST_WIDE_INT> *r) const | |
562 { | |
563 for (unsigned int i = 0; i < N; i++) | |
564 if (!wi::fits_uhwi_p (this->coeffs[i])) | |
565 return false; | |
566 for (unsigned int i = 0; i < N; i++) | |
567 r->coeffs[i] = this->coeffs[i].to_uhwi (); | |
568 return true; | |
569 } | |
570 | |
571 /* Force a generic_wide_int-based constant to HOST_WIDE_INT precision, | |
572 truncating if necessary. */ | |
573 | |
574 template<unsigned int N, typename C> | |
575 inline poly_int<N, HOST_WIDE_INT> | |
576 poly_int_pod<N, C>::force_shwi () const | |
577 { | |
578 poly_int_pod<N, HOST_WIDE_INT> r; | |
579 for (unsigned int i = 0; i < N; i++) | |
580 r.coeffs[i] = this->coeffs[i].to_shwi (); | |
581 return r; | |
582 } | |
583 | |
584 /* Force a generic_wide_int-based constant to unsigned HOST_WIDE_INT precision, | |
585 truncating if necessary. */ | |
586 | |
587 template<unsigned int N, typename C> | |
588 inline poly_int<N, unsigned HOST_WIDE_INT> | |
589 poly_int_pod<N, C>::force_uhwi () const | |
590 { | |
591 poly_int_pod<N, unsigned HOST_WIDE_INT> r; | |
592 for (unsigned int i = 0; i < N; i++) | |
593 r.coeffs[i] = this->coeffs[i].to_uhwi (); | |
594 return r; | |
595 } | |
596 | |
597 #if POLY_INT_CONVERSION | |
598 /* Provide a conversion operator to constants. */ | |
599 | |
600 template<unsigned int N, typename C> | |
601 inline | |
602 poly_int_pod<N, C>::operator C () const | |
603 { | |
604 gcc_checking_assert (this->is_constant ()); | |
605 return this->coeffs[0]; | |
606 } | |
607 #endif | |
608 | |
609 /* The main class for polynomial integers. The class provides | |
610 constructors that are necessarily missing from the POD base. */ | |
611 template<unsigned int N, typename C> | |
612 class poly_int : public poly_int_pod<N, C> | |
613 { | |
614 public: | |
615 poly_int () {} | |
616 | |
617 template<typename Ca> | |
618 poly_int (const poly_int<N, Ca> &); | |
619 template<typename Ca> | |
620 poly_int (const poly_int_pod<N, Ca> &); | |
621 template<typename C0> | |
622 poly_int (const C0 &); | |
623 template<typename C0, typename C1> | |
624 poly_int (const C0 &, const C1 &); | |
625 | |
626 template<typename Ca> | |
627 poly_int &operator = (const poly_int_pod<N, Ca> &); | |
628 template<typename Ca> | |
629 typename if_nonpoly<Ca, poly_int>::type &operator = (const Ca &); | |
630 | |
631 template<typename Ca> | |
632 poly_int &operator += (const poly_int_pod<N, Ca> &); | |
633 template<typename Ca> | |
634 typename if_nonpoly<Ca, poly_int>::type &operator += (const Ca &); | |
635 | |
636 template<typename Ca> | |
637 poly_int &operator -= (const poly_int_pod<N, Ca> &); | |
638 template<typename Ca> | |
639 typename if_nonpoly<Ca, poly_int>::type &operator -= (const Ca &); | |
640 | |
641 template<typename Ca> | |
642 typename if_nonpoly<Ca, poly_int>::type &operator *= (const Ca &); | |
643 | |
644 poly_int &operator <<= (unsigned int); | |
645 }; | |
646 | |
647 template<unsigned int N, typename C> | |
648 template<typename Ca> | |
649 inline | |
650 poly_int<N, C>::poly_int (const poly_int<N, Ca> &a) | |
651 { | |
652 for (unsigned int i = 0; i < N; i++) | |
653 POLY_SET_COEFF (C, *this, i, a.coeffs[i]); | |
654 } | |
655 | |
656 template<unsigned int N, typename C> | |
657 template<typename Ca> | |
658 inline | |
659 poly_int<N, C>::poly_int (const poly_int_pod<N, Ca> &a) | |
660 { | |
661 for (unsigned int i = 0; i < N; i++) | |
662 POLY_SET_COEFF (C, *this, i, a.coeffs[i]); | |
663 } | |
664 | |
665 template<unsigned int N, typename C> | |
666 template<typename C0> | |
667 inline | |
668 poly_int<N, C>::poly_int (const C0 &c0) | |
669 { | |
670 POLY_SET_COEFF (C, *this, 0, c0); | |
671 for (unsigned int i = 1; i < N; i++) | |
672 POLY_SET_COEFF (C, *this, i, wi::ints_for<C>::zero (this->coeffs[0])); | |
673 } | |
674 | |
675 template<unsigned int N, typename C> | |
676 template<typename C0, typename C1> | |
677 inline | |
678 poly_int<N, C>::poly_int (const C0 &c0, const C1 &c1) | |
679 { | |
680 STATIC_ASSERT (N >= 2); | |
681 POLY_SET_COEFF (C, *this, 0, c0); | |
682 POLY_SET_COEFF (C, *this, 1, c1); | |
683 for (unsigned int i = 2; i < N; i++) | |
684 POLY_SET_COEFF (C, *this, i, wi::ints_for<C>::zero (this->coeffs[0])); | |
685 } | |
686 | |
687 template<unsigned int N, typename C> | |
688 template<typename Ca> | |
689 inline poly_int<N, C>& | |
690 poly_int<N, C>::operator = (const poly_int_pod<N, Ca> &a) | |
691 { | |
692 for (unsigned int i = 0; i < N; i++) | |
693 this->coeffs[i] = a.coeffs[i]; | |
694 return *this; | |
695 } | |
696 | |
697 template<unsigned int N, typename C> | |
698 template<typename Ca> | |
699 inline typename if_nonpoly<Ca, poly_int<N, C> >::type & | |
700 poly_int<N, C>::operator = (const Ca &a) | |
701 { | |
702 this->coeffs[0] = a; | |
703 if (N >= 2) | |
704 for (unsigned int i = 1; i < N; i++) | |
705 this->coeffs[i] = wi::ints_for<C>::zero (this->coeffs[0]); | |
706 return *this; | |
707 } | |
708 | |
709 template<unsigned int N, typename C> | |
710 template<typename Ca> | |
711 inline poly_int<N, C>& | |
712 poly_int<N, C>::operator += (const poly_int_pod<N, Ca> &a) | |
713 { | |
714 for (unsigned int i = 0; i < N; i++) | |
715 this->coeffs[i] += a.coeffs[i]; | |
716 return *this; | |
717 } | |
718 | |
719 template<unsigned int N, typename C> | |
720 template<typename Ca> | |
721 inline typename if_nonpoly<Ca, poly_int<N, C> >::type & | |
722 poly_int<N, C>::operator += (const Ca &a) | |
723 { | |
724 this->coeffs[0] += a; | |
725 return *this; | |
726 } | |
727 | |
728 template<unsigned int N, typename C> | |
729 template<typename Ca> | |
730 inline poly_int<N, C>& | |
731 poly_int<N, C>::operator -= (const poly_int_pod<N, Ca> &a) | |
732 { | |
733 for (unsigned int i = 0; i < N; i++) | |
734 this->coeffs[i] -= a.coeffs[i]; | |
735 return *this; | |
736 } | |
737 | |
738 template<unsigned int N, typename C> | |
739 template<typename Ca> | |
740 inline typename if_nonpoly<Ca, poly_int<N, C> >::type & | |
741 poly_int<N, C>::operator -= (const Ca &a) | |
742 { | |
743 this->coeffs[0] -= a; | |
744 return *this; | |
745 } | |
746 | |
747 template<unsigned int N, typename C> | |
748 template<typename Ca> | |
749 inline typename if_nonpoly<Ca, poly_int<N, C> >::type & | |
750 poly_int<N, C>::operator *= (const Ca &a) | |
751 { | |
752 for (unsigned int i = 0; i < N; i++) | |
753 this->coeffs[i] *= a; | |
754 return *this; | |
755 } | |
756 | |
757 template<unsigned int N, typename C> | |
758 inline poly_int<N, C>& | |
759 poly_int<N, C>::operator <<= (unsigned int a) | |
760 { | |
761 for (unsigned int i = 0; i < N; i++) | |
762 this->coeffs[i] <<= a; | |
763 return *this; | |
764 } | |
765 | |
766 /* Return true if every coefficient of A is in the inclusive range [B, C]. */ | |
767 | |
768 template<typename Ca, typename Cb, typename Cc> | |
769 inline typename if_nonpoly<Ca, bool>::type | |
770 coeffs_in_range_p (const Ca &a, const Cb &b, const Cc &c) | |
771 { | |
772 return a >= b && a <= c; | |
773 } | |
774 | |
775 template<unsigned int N, typename Ca, typename Cb, typename Cc> | |
776 inline typename if_nonpoly<Ca, bool>::type | |
777 coeffs_in_range_p (const poly_int_pod<N, Ca> &a, const Cb &b, const Cc &c) | |
778 { | |
779 for (unsigned int i = 0; i < N; i++) | |
780 if (a.coeffs[i] < b || a.coeffs[i] > c) | |
781 return false; | |
782 return true; | |
783 } | |
784 | |
785 namespace wi { | |
786 /* Poly version of wi::shwi, with the same interface. */ | |
787 | |
788 template<unsigned int N> | |
789 inline poly_int<N, hwi_with_prec> | |
790 shwi (const poly_int_pod<N, HOST_WIDE_INT> &a, unsigned int precision) | |
791 { | |
792 poly_int<N, hwi_with_prec> r; | |
793 for (unsigned int i = 0; i < N; i++) | |
794 POLY_SET_COEFF (hwi_with_prec, r, i, wi::shwi (a.coeffs[i], precision)); | |
795 return r; | |
796 } | |
797 | |
798 /* Poly version of wi::uhwi, with the same interface. */ | |
799 | |
800 template<unsigned int N> | |
801 inline poly_int<N, hwi_with_prec> | |
802 uhwi (const poly_int_pod<N, unsigned HOST_WIDE_INT> &a, unsigned int precision) | |
803 { | |
804 poly_int<N, hwi_with_prec> r; | |
805 for (unsigned int i = 0; i < N; i++) | |
806 POLY_SET_COEFF (hwi_with_prec, r, i, wi::uhwi (a.coeffs[i], precision)); | |
807 return r; | |
808 } | |
809 | |
810 /* Poly version of wi::sext, with the same interface. */ | |
811 | |
812 template<unsigned int N, typename Ca> | |
813 inline POLY_POLY_RESULT (N, Ca, Ca) | |
814 sext (const poly_int_pod<N, Ca> &a, unsigned int precision) | |
815 { | |
816 typedef POLY_POLY_COEFF (Ca, Ca) C; | |
817 poly_int<N, C> r; | |
818 for (unsigned int i = 0; i < N; i++) | |
819 POLY_SET_COEFF (C, r, i, wi::sext (a.coeffs[i], precision)); | |
820 return r; | |
821 } | |
822 | |
823 /* Poly version of wi::zext, with the same interface. */ | |
824 | |
825 template<unsigned int N, typename Ca> | |
826 inline POLY_POLY_RESULT (N, Ca, Ca) | |
827 zext (const poly_int_pod<N, Ca> &a, unsigned int precision) | |
828 { | |
829 typedef POLY_POLY_COEFF (Ca, Ca) C; | |
830 poly_int<N, C> r; | |
831 for (unsigned int i = 0; i < N; i++) | |
832 POLY_SET_COEFF (C, r, i, wi::zext (a.coeffs[i], precision)); | |
833 return r; | |
834 } | |
835 } | |
836 | |
837 template<unsigned int N, typename Ca, typename Cb> | |
838 inline POLY_POLY_RESULT (N, Ca, Cb) | |
839 operator + (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) | |
840 { | |
841 typedef POLY_CAST (Ca, Cb) NCa; | |
842 typedef POLY_POLY_COEFF (Ca, Cb) C; | |
843 poly_int<N, C> r; | |
844 for (unsigned int i = 0; i < N; i++) | |
845 POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) + b.coeffs[i]); | |
846 return r; | |
847 } | |
848 | |
849 template<unsigned int N, typename Ca, typename Cb> | |
850 inline POLY_CONST_RESULT (N, Ca, Cb) | |
851 operator + (const poly_int_pod<N, Ca> &a, const Cb &b) | |
852 { | |
853 typedef POLY_CAST (Ca, Cb) NCa; | |
854 typedef POLY_CONST_COEFF (Ca, Cb) C; | |
855 poly_int<N, C> r; | |
856 POLY_SET_COEFF (C, r, 0, NCa (a.coeffs[0]) + b); | |
857 if (N >= 2) | |
858 for (unsigned int i = 1; i < N; i++) | |
859 POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i])); | |
860 return r; | |
861 } | |
862 | |
863 template<unsigned int N, typename Ca, typename Cb> | |
864 inline CONST_POLY_RESULT (N, Ca, Cb) | |
865 operator + (const Ca &a, const poly_int_pod<N, Cb> &b) | |
866 { | |
867 typedef POLY_CAST (Cb, Ca) NCb; | |
868 typedef CONST_POLY_COEFF (Ca, Cb) C; | |
869 poly_int<N, C> r; | |
870 POLY_SET_COEFF (C, r, 0, a + NCb (b.coeffs[0])); | |
871 if (N >= 2) | |
872 for (unsigned int i = 1; i < N; i++) | |
873 POLY_SET_COEFF (C, r, i, NCb (b.coeffs[i])); | |
874 return r; | |
875 } | |
876 | |
877 namespace wi { | |
878 /* Poly versions of wi::add, with the same interface. */ | |
879 | |
880 template<unsigned int N, typename Ca, typename Cb> | |
881 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> | |
882 add (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) | |
883 { | |
884 typedef WI_BINARY_RESULT (Ca, Cb) C; | |
885 poly_int<N, C> r; | |
886 for (unsigned int i = 0; i < N; i++) | |
887 POLY_SET_COEFF (C, r, i, wi::add (a.coeffs[i], b.coeffs[i])); | |
888 return r; | |
889 } | |
890 | |
891 template<unsigned int N, typename Ca, typename Cb> | |
892 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> | |
893 add (const poly_int_pod<N, Ca> &a, const Cb &b) | |
894 { | |
895 typedef WI_BINARY_RESULT (Ca, Cb) C; | |
896 poly_int<N, C> r; | |
897 POLY_SET_COEFF (C, r, 0, wi::add (a.coeffs[0], b)); | |
898 for (unsigned int i = 1; i < N; i++) | |
899 POLY_SET_COEFF (C, r, i, wi::add (a.coeffs[i], | |
900 wi::ints_for<Cb>::zero (b))); | |
901 return r; | |
902 } | |
903 | |
904 template<unsigned int N, typename Ca, typename Cb> | |
905 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> | |
906 add (const Ca &a, const poly_int_pod<N, Cb> &b) | |
907 { | |
908 typedef WI_BINARY_RESULT (Ca, Cb) C; | |
909 poly_int<N, C> r; | |
910 POLY_SET_COEFF (C, r, 0, wi::add (a, b.coeffs[0])); | |
911 for (unsigned int i = 1; i < N; i++) | |
912 POLY_SET_COEFF (C, r, i, wi::add (wi::ints_for<Ca>::zero (a), | |
913 b.coeffs[i])); | |
914 return r; | |
915 } | |
916 | |
917 template<unsigned int N, typename Ca, typename Cb> | |
918 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> | |
919 add (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b, | |
920 signop sgn, wi::overflow_type *overflow) | |
921 { | |
922 typedef WI_BINARY_RESULT (Ca, Cb) C; | |
923 poly_int<N, C> r; | |
924 POLY_SET_COEFF (C, r, 0, wi::add (a.coeffs[0], b.coeffs[0], sgn, overflow)); | |
925 for (unsigned int i = 1; i < N; i++) | |
926 { | |
927 wi::overflow_type suboverflow; | |
928 POLY_SET_COEFF (C, r, i, wi::add (a.coeffs[i], b.coeffs[i], sgn, | |
929 &suboverflow)); | |
930 wi::accumulate_overflow (*overflow, suboverflow); | |
931 } | |
932 return r; | |
933 } | |
934 } | |
935 | |
936 template<unsigned int N, typename Ca, typename Cb> | |
937 inline POLY_POLY_RESULT (N, Ca, Cb) | |
938 operator - (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) | |
939 { | |
940 typedef POLY_CAST (Ca, Cb) NCa; | |
941 typedef POLY_POLY_COEFF (Ca, Cb) C; | |
942 poly_int<N, C> r; | |
943 for (unsigned int i = 0; i < N; i++) | |
944 POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) - b.coeffs[i]); | |
945 return r; | |
946 } | |
947 | |
948 template<unsigned int N, typename Ca, typename Cb> | |
949 inline POLY_CONST_RESULT (N, Ca, Cb) | |
950 operator - (const poly_int_pod<N, Ca> &a, const Cb &b) | |
951 { | |
952 typedef POLY_CAST (Ca, Cb) NCa; | |
953 typedef POLY_CONST_COEFF (Ca, Cb) C; | |
954 poly_int<N, C> r; | |
955 POLY_SET_COEFF (C, r, 0, NCa (a.coeffs[0]) - b); | |
956 if (N >= 2) | |
957 for (unsigned int i = 1; i < N; i++) | |
958 POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i])); | |
959 return r; | |
960 } | |
961 | |
962 template<unsigned int N, typename Ca, typename Cb> | |
963 inline CONST_POLY_RESULT (N, Ca, Cb) | |
964 operator - (const Ca &a, const poly_int_pod<N, Cb> &b) | |
965 { | |
966 typedef POLY_CAST (Cb, Ca) NCb; | |
967 typedef CONST_POLY_COEFF (Ca, Cb) C; | |
968 poly_int<N, C> r; | |
969 POLY_SET_COEFF (C, r, 0, a - NCb (b.coeffs[0])); | |
970 if (N >= 2) | |
971 for (unsigned int i = 1; i < N; i++) | |
972 POLY_SET_COEFF (C, r, i, -NCb (b.coeffs[i])); | |
973 return r; | |
974 } | |
975 | |
976 namespace wi { | |
977 /* Poly versions of wi::sub, with the same interface. */ | |
978 | |
979 template<unsigned int N, typename Ca, typename Cb> | |
980 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> | |
981 sub (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) | |
982 { | |
983 typedef WI_BINARY_RESULT (Ca, Cb) C; | |
984 poly_int<N, C> r; | |
985 for (unsigned int i = 0; i < N; i++) | |
986 POLY_SET_COEFF (C, r, i, wi::sub (a.coeffs[i], b.coeffs[i])); | |
987 return r; | |
988 } | |
989 | |
990 template<unsigned int N, typename Ca, typename Cb> | |
991 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> | |
992 sub (const poly_int_pod<N, Ca> &a, const Cb &b) | |
993 { | |
994 typedef WI_BINARY_RESULT (Ca, Cb) C; | |
995 poly_int<N, C> r; | |
996 POLY_SET_COEFF (C, r, 0, wi::sub (a.coeffs[0], b)); | |
997 for (unsigned int i = 1; i < N; i++) | |
998 POLY_SET_COEFF (C, r, i, wi::sub (a.coeffs[i], | |
999 wi::ints_for<Cb>::zero (b))); | |
1000 return r; | |
1001 } | |
1002 | |
1003 template<unsigned int N, typename Ca, typename Cb> | |
1004 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> | |
1005 sub (const Ca &a, const poly_int_pod<N, Cb> &b) | |
1006 { | |
1007 typedef WI_BINARY_RESULT (Ca, Cb) C; | |
1008 poly_int<N, C> r; | |
1009 POLY_SET_COEFF (C, r, 0, wi::sub (a, b.coeffs[0])); | |
1010 for (unsigned int i = 1; i < N; i++) | |
1011 POLY_SET_COEFF (C, r, i, wi::sub (wi::ints_for<Ca>::zero (a), | |
1012 b.coeffs[i])); | |
1013 return r; | |
1014 } | |
1015 | |
1016 template<unsigned int N, typename Ca, typename Cb> | |
1017 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> | |
1018 sub (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b, | |
1019 signop sgn, wi::overflow_type *overflow) | |
1020 { | |
1021 typedef WI_BINARY_RESULT (Ca, Cb) C; | |
1022 poly_int<N, C> r; | |
1023 POLY_SET_COEFF (C, r, 0, wi::sub (a.coeffs[0], b.coeffs[0], sgn, overflow)); | |
1024 for (unsigned int i = 1; i < N; i++) | |
1025 { | |
1026 wi::overflow_type suboverflow; | |
1027 POLY_SET_COEFF (C, r, i, wi::sub (a.coeffs[i], b.coeffs[i], sgn, | |
1028 &suboverflow)); | |
1029 wi::accumulate_overflow (*overflow, suboverflow); | |
1030 } | |
1031 return r; | |
1032 } | |
1033 } | |
1034 | |
1035 template<unsigned int N, typename Ca> | |
1036 inline POLY_POLY_RESULT (N, Ca, Ca) | |
1037 operator - (const poly_int_pod<N, Ca> &a) | |
1038 { | |
1039 typedef POLY_CAST (Ca, Ca) NCa; | |
1040 typedef POLY_POLY_COEFF (Ca, Ca) C; | |
1041 poly_int<N, C> r; | |
1042 for (unsigned int i = 0; i < N; i++) | |
1043 POLY_SET_COEFF (C, r, i, -NCa (a.coeffs[i])); | |
1044 return r; | |
1045 } | |
1046 | |
1047 namespace wi { | |
1048 /* Poly version of wi::neg, with the same interface. */ | |
1049 | |
1050 template<unsigned int N, typename Ca> | |
1051 inline poly_int<N, WI_UNARY_RESULT (Ca)> | |
1052 neg (const poly_int_pod<N, Ca> &a) | |
1053 { | |
1054 typedef WI_UNARY_RESULT (Ca) C; | |
1055 poly_int<N, C> r; | |
1056 for (unsigned int i = 0; i < N; i++) | |
1057 POLY_SET_COEFF (C, r, i, wi::neg (a.coeffs[i])); | |
1058 return r; | |
1059 } | |
1060 | |
1061 template<unsigned int N, typename Ca> | |
1062 inline poly_int<N, WI_UNARY_RESULT (Ca)> | |
1063 neg (const poly_int_pod<N, Ca> &a, wi::overflow_type *overflow) | |
1064 { | |
1065 typedef WI_UNARY_RESULT (Ca) C; | |
1066 poly_int<N, C> r; | |
1067 POLY_SET_COEFF (C, r, 0, wi::neg (a.coeffs[0], overflow)); | |
1068 for (unsigned int i = 1; i < N; i++) | |
1069 { | |
1070 wi::overflow_type suboverflow; | |
1071 POLY_SET_COEFF (C, r, i, wi::neg (a.coeffs[i], &suboverflow)); | |
1072 wi::accumulate_overflow (*overflow, suboverflow); | |
1073 } | |
1074 return r; | |
1075 } | |
1076 } | |
1077 | |
1078 template<unsigned int N, typename Ca> | |
1079 inline POLY_POLY_RESULT (N, Ca, Ca) | |
1080 operator ~ (const poly_int_pod<N, Ca> &a) | |
1081 { | |
1082 if (N >= 2) | |
1083 return -1 - a; | |
1084 return ~a.coeffs[0]; | |
1085 } | |
1086 | |
1087 template<unsigned int N, typename Ca, typename Cb> | |
1088 inline POLY_CONST_RESULT (N, Ca, Cb) | |
1089 operator * (const poly_int_pod<N, Ca> &a, const Cb &b) | |
1090 { | |
1091 typedef POLY_CAST (Ca, Cb) NCa; | |
1092 typedef POLY_CONST_COEFF (Ca, Cb) C; | |
1093 poly_int<N, C> r; | |
1094 for (unsigned int i = 0; i < N; i++) | |
1095 POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) * b); | |
1096 return r; | |
1097 } | |
1098 | |
1099 template<unsigned int N, typename Ca, typename Cb> | |
1100 inline CONST_POLY_RESULT (N, Ca, Cb) | |
1101 operator * (const Ca &a, const poly_int_pod<N, Cb> &b) | |
1102 { | |
1103 typedef POLY_CAST (Ca, Cb) NCa; | |
1104 typedef CONST_POLY_COEFF (Ca, Cb) C; | |
1105 poly_int<N, C> r; | |
1106 for (unsigned int i = 0; i < N; i++) | |
1107 POLY_SET_COEFF (C, r, i, NCa (a) * b.coeffs[i]); | |
1108 return r; | |
1109 } | |
1110 | |
1111 namespace wi { | |
1112 /* Poly versions of wi::mul, with the same interface. */ | |
1113 | |
1114 template<unsigned int N, typename Ca, typename Cb> | |
1115 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> | |
1116 mul (const poly_int_pod<N, Ca> &a, const Cb &b) | |
1117 { | |
1118 typedef WI_BINARY_RESULT (Ca, Cb) C; | |
1119 poly_int<N, C> r; | |
1120 for (unsigned int i = 0; i < N; i++) | |
1121 POLY_SET_COEFF (C, r, i, wi::mul (a.coeffs[i], b)); | |
1122 return r; | |
1123 } | |
1124 | |
1125 template<unsigned int N, typename Ca, typename Cb> | |
1126 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> | |
1127 mul (const Ca &a, const poly_int_pod<N, Cb> &b) | |
1128 { | |
1129 typedef WI_BINARY_RESULT (Ca, Cb) C; | |
1130 poly_int<N, C> r; | |
1131 for (unsigned int i = 0; i < N; i++) | |
1132 POLY_SET_COEFF (C, r, i, wi::mul (a, b.coeffs[i])); | |
1133 return r; | |
1134 } | |
1135 | |
1136 template<unsigned int N, typename Ca, typename Cb> | |
1137 inline poly_int<N, WI_BINARY_RESULT (Ca, Cb)> | |
1138 mul (const poly_int_pod<N, Ca> &a, const Cb &b, | |
1139 signop sgn, wi::overflow_type *overflow) | |
1140 { | |
1141 typedef WI_BINARY_RESULT (Ca, Cb) C; | |
1142 poly_int<N, C> r; | |
1143 POLY_SET_COEFF (C, r, 0, wi::mul (a.coeffs[0], b, sgn, overflow)); | |
1144 for (unsigned int i = 1; i < N; i++) | |
1145 { | |
1146 wi::overflow_type suboverflow; | |
1147 POLY_SET_COEFF (C, r, i, wi::mul (a.coeffs[i], b, sgn, &suboverflow)); | |
1148 wi::accumulate_overflow (*overflow, suboverflow); | |
1149 } | |
1150 return r; | |
1151 } | |
1152 } | |
1153 | |
1154 template<unsigned int N, typename Ca, typename Cb> | |
1155 inline POLY_POLY_RESULT (N, Ca, Ca) | |
1156 operator << (const poly_int_pod<N, Ca> &a, const Cb &b) | |
1157 { | |
1158 typedef POLY_CAST (Ca, Ca) NCa; | |
1159 typedef POLY_POLY_COEFF (Ca, Ca) C; | |
1160 poly_int<N, C> r; | |
1161 for (unsigned int i = 0; i < N; i++) | |
1162 POLY_SET_COEFF (C, r, i, NCa (a.coeffs[i]) << b); | |
1163 return r; | |
1164 } | |
1165 | |
1166 namespace wi { | |
1167 /* Poly version of wi::lshift, with the same interface. */ | |
1168 | |
1169 template<unsigned int N, typename Ca, typename Cb> | |
1170 inline poly_int<N, WI_BINARY_RESULT (Ca, Ca)> | |
1171 lshift (const poly_int_pod<N, Ca> &a, const Cb &b) | |
1172 { | |
1173 typedef WI_BINARY_RESULT (Ca, Ca) C; | |
1174 poly_int<N, C> r; | |
1175 for (unsigned int i = 0; i < N; i++) | |
1176 POLY_SET_COEFF (C, r, i, wi::lshift (a.coeffs[i], b)); | |
1177 return r; | |
1178 } | |
1179 } | |
1180 | |
1181 /* Return true if a0 + a1 * x might equal b0 + b1 * x for some nonnegative | |
1182 integer x. */ | |
1183 | |
1184 template<typename Ca, typename Cb> | |
1185 inline bool | |
1186 maybe_eq_2 (const Ca &a0, const Ca &a1, const Cb &b0, const Cb &b1) | |
1187 { | |
1188 if (a1 != b1) | |
1189 /* a0 + a1 * x == b0 + b1 * x | |
1190 ==> (a1 - b1) * x == b0 - a0 | |
1191 ==> x == (b0 - a0) / (a1 - b1) | |
1192 | |
1193 We need to test whether that's a valid value of x. | |
1194 (b0 - a0) and (a1 - b1) must not have opposite signs | |
1195 and the result must be integral. */ | |
1196 return (a1 < b1 | |
1197 ? b0 <= a0 && (a0 - b0) % (b1 - a1) == 0 | |
1198 : b0 >= a0 && (b0 - a0) % (a1 - b1) == 0); | |
1199 return a0 == b0; | |
1200 } | |
1201 | |
1202 /* Return true if a0 + a1 * x might equal b for some nonnegative | |
1203 integer x. */ | |
1204 | |
1205 template<typename Ca, typename Cb> | |
1206 inline bool | |
1207 maybe_eq_2 (const Ca &a0, const Ca &a1, const Cb &b) | |
1208 { | |
1209 if (a1 != 0) | |
1210 /* a0 + a1 * x == b | |
1211 ==> x == (b - a0) / a1 | |
1212 | |
1213 We need to test whether that's a valid value of x. | |
1214 (b - a0) and a1 must not have opposite signs and the | |
1215 result must be integral. */ | |
1216 return (a1 < 0 | |
1217 ? b <= a0 && (a0 - b) % a1 == 0 | |
1218 : b >= a0 && (b - a0) % a1 == 0); | |
1219 return a0 == b; | |
1220 } | |
1221 | |
1222 /* Return true if A might equal B for some indeterminate values. */ | |
1223 | |
1224 template<unsigned int N, typename Ca, typename Cb> | |
1225 inline bool | |
1226 maybe_eq (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) | |
1227 { | |
1228 STATIC_ASSERT (N <= 2); | |
1229 if (N == 2) | |
1230 return maybe_eq_2 (a.coeffs[0], a.coeffs[1], b.coeffs[0], b.coeffs[1]); | |
1231 return a.coeffs[0] == b.coeffs[0]; | |
1232 } | |
1233 | |
1234 template<unsigned int N, typename Ca, typename Cb> | |
1235 inline typename if_nonpoly<Cb, bool>::type | |
1236 maybe_eq (const poly_int_pod<N, Ca> &a, const Cb &b) | |
1237 { | |
1238 STATIC_ASSERT (N <= 2); | |
1239 if (N == 2) | |
1240 return maybe_eq_2 (a.coeffs[0], a.coeffs[1], b); | |
1241 return a.coeffs[0] == b; | |
1242 } | |
1243 | |
1244 template<unsigned int N, typename Ca, typename Cb> | |
1245 inline typename if_nonpoly<Ca, bool>::type | |
1246 maybe_eq (const Ca &a, const poly_int_pod<N, Cb> &b) | |
1247 { | |
1248 STATIC_ASSERT (N <= 2); | |
1249 if (N == 2) | |
1250 return maybe_eq_2 (b.coeffs[0], b.coeffs[1], a); | |
1251 return a == b.coeffs[0]; | |
1252 } | |
1253 | |
1254 template<typename Ca, typename Cb> | |
1255 inline typename if_nonpoly2<Ca, Cb, bool>::type | |
1256 maybe_eq (const Ca &a, const Cb &b) | |
1257 { | |
1258 return a == b; | |
1259 } | |
1260 | |
1261 /* Return true if A might not equal B for some indeterminate values. */ | |
1262 | |
1263 template<unsigned int N, typename Ca, typename Cb> | |
1264 inline bool | |
1265 maybe_ne (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) | |
1266 { | |
1267 if (N >= 2) | |
1268 for (unsigned int i = 1; i < N; i++) | |
1269 if (a.coeffs[i] != b.coeffs[i]) | |
1270 return true; | |
1271 return a.coeffs[0] != b.coeffs[0]; | |
1272 } | |
1273 | |
1274 template<unsigned int N, typename Ca, typename Cb> | |
1275 inline typename if_nonpoly<Cb, bool>::type | |
1276 maybe_ne (const poly_int_pod<N, Ca> &a, const Cb &b) | |
1277 { | |
1278 if (N >= 2) | |
1279 for (unsigned int i = 1; i < N; i++) | |
1280 if (a.coeffs[i] != 0) | |
1281 return true; | |
1282 return a.coeffs[0] != b; | |
1283 } | |
1284 | |
1285 template<unsigned int N, typename Ca, typename Cb> | |
1286 inline typename if_nonpoly<Ca, bool>::type | |
1287 maybe_ne (const Ca &a, const poly_int_pod<N, Cb> &b) | |
1288 { | |
1289 if (N >= 2) | |
1290 for (unsigned int i = 1; i < N; i++) | |
1291 if (b.coeffs[i] != 0) | |
1292 return true; | |
1293 return a != b.coeffs[0]; | |
1294 } | |
1295 | |
1296 template<typename Ca, typename Cb> | |
1297 inline typename if_nonpoly2<Ca, Cb, bool>::type | |
1298 maybe_ne (const Ca &a, const Cb &b) | |
1299 { | |
1300 return a != b; | |
1301 } | |
1302 | |
1303 /* Return true if A is known to be equal to B. */ | |
1304 #define known_eq(A, B) (!maybe_ne (A, B)) | |
1305 | |
1306 /* Return true if A is known to be unequal to B. */ | |
1307 #define known_ne(A, B) (!maybe_eq (A, B)) | |
1308 | |
1309 /* Return true if A might be less than or equal to B for some | |
1310 indeterminate values. */ | |
1311 | |
1312 template<unsigned int N, typename Ca, typename Cb> | |
1313 inline bool | |
1314 maybe_le (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) | |
1315 { | |
1316 if (N >= 2) | |
1317 for (unsigned int i = 1; i < N; i++) | |
1318 if (a.coeffs[i] < b.coeffs[i]) | |
1319 return true; | |
1320 return a.coeffs[0] <= b.coeffs[0]; | |
1321 } | |
1322 | |
1323 template<unsigned int N, typename Ca, typename Cb> | |
1324 inline typename if_nonpoly<Cb, bool>::type | |
1325 maybe_le (const poly_int_pod<N, Ca> &a, const Cb &b) | |
1326 { | |
1327 if (N >= 2) | |
1328 for (unsigned int i = 1; i < N; i++) | |
1329 if (a.coeffs[i] < 0) | |
1330 return true; | |
1331 return a.coeffs[0] <= b; | |
1332 } | |
1333 | |
1334 template<unsigned int N, typename Ca, typename Cb> | |
1335 inline typename if_nonpoly<Ca, bool>::type | |
1336 maybe_le (const Ca &a, const poly_int_pod<N, Cb> &b) | |
1337 { | |
1338 if (N >= 2) | |
1339 for (unsigned int i = 1; i < N; i++) | |
1340 if (b.coeffs[i] > 0) | |
1341 return true; | |
1342 return a <= b.coeffs[0]; | |
1343 } | |
1344 | |
1345 template<typename Ca, typename Cb> | |
1346 inline typename if_nonpoly2<Ca, Cb, bool>::type | |
1347 maybe_le (const Ca &a, const Cb &b) | |
1348 { | |
1349 return a <= b; | |
1350 } | |
1351 | |
1352 /* Return true if A might be less than B for some indeterminate values. */ | |
1353 | |
1354 template<unsigned int N, typename Ca, typename Cb> | |
1355 inline bool | |
1356 maybe_lt (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) | |
1357 { | |
1358 if (N >= 2) | |
1359 for (unsigned int i = 1; i < N; i++) | |
1360 if (a.coeffs[i] < b.coeffs[i]) | |
1361 return true; | |
1362 return a.coeffs[0] < b.coeffs[0]; | |
1363 } | |
1364 | |
1365 template<unsigned int N, typename Ca, typename Cb> | |
1366 inline typename if_nonpoly<Cb, bool>::type | |
1367 maybe_lt (const poly_int_pod<N, Ca> &a, const Cb &b) | |
1368 { | |
1369 if (N >= 2) | |
1370 for (unsigned int i = 1; i < N; i++) | |
1371 if (a.coeffs[i] < 0) | |
1372 return true; | |
1373 return a.coeffs[0] < b; | |
1374 } | |
1375 | |
1376 template<unsigned int N, typename Ca, typename Cb> | |
1377 inline typename if_nonpoly<Ca, bool>::type | |
1378 maybe_lt (const Ca &a, const poly_int_pod<N, Cb> &b) | |
1379 { | |
1380 if (N >= 2) | |
1381 for (unsigned int i = 1; i < N; i++) | |
1382 if (b.coeffs[i] > 0) | |
1383 return true; | |
1384 return a < b.coeffs[0]; | |
1385 } | |
1386 | |
1387 template<typename Ca, typename Cb> | |
1388 inline typename if_nonpoly2<Ca, Cb, bool>::type | |
1389 maybe_lt (const Ca &a, const Cb &b) | |
1390 { | |
1391 return a < b; | |
1392 } | |
1393 | |
1394 /* Return true if A may be greater than or equal to B. */ | |
1395 #define maybe_ge(A, B) maybe_le (B, A) | |
1396 | |
1397 /* Return true if A may be greater than B. */ | |
1398 #define maybe_gt(A, B) maybe_lt (B, A) | |
1399 | |
1400 /* Return true if A is known to be less than or equal to B. */ | |
1401 #define known_le(A, B) (!maybe_gt (A, B)) | |
1402 | |
1403 /* Return true if A is known to be less than B. */ | |
1404 #define known_lt(A, B) (!maybe_ge (A, B)) | |
1405 | |
1406 /* Return true if A is known to be greater than B. */ | |
1407 #define known_gt(A, B) (!maybe_le (A, B)) | |
1408 | |
1409 /* Return true if A is known to be greater than or equal to B. */ | |
1410 #define known_ge(A, B) (!maybe_lt (A, B)) | |
1411 | |
1412 /* Return true if A and B are ordered by the partial ordering known_le. */ | |
1413 | |
1414 template<typename T1, typename T2> | |
1415 inline bool | |
1416 ordered_p (const T1 &a, const T2 &b) | |
1417 { | |
1418 return ((poly_int_traits<T1>::num_coeffs == 1 | |
1419 && poly_int_traits<T2>::num_coeffs == 1) | |
1420 || known_le (a, b) | |
1421 || known_le (b, a)); | |
1422 } | |
1423 | |
1424 /* Assert that A and B are known to be ordered and return the minimum | |
1425 of the two. | |
1426 | |
1427 NOTE: When using this function, please add a comment above the call | |
1428 explaining why we know the values are ordered in that context. */ | |
1429 | |
1430 template<unsigned int N, typename Ca, typename Cb> | |
1431 inline POLY_POLY_RESULT (N, Ca, Cb) | |
1432 ordered_min (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) | |
1433 { | |
1434 if (known_le (a, b)) | |
1435 return a; | |
1436 else | |
1437 { | |
1438 if (N > 1) | |
1439 gcc_checking_assert (known_le (b, a)); | |
1440 return b; | |
1441 } | |
1442 } | |
1443 | |
1444 template<unsigned int N, typename Ca, typename Cb> | |
1445 inline CONST_POLY_RESULT (N, Ca, Cb) | |
1446 ordered_min (const Ca &a, const poly_int_pod<N, Cb> &b) | |
1447 { | |
1448 if (known_le (a, b)) | |
1449 return a; | |
1450 else | |
1451 { | |
1452 if (N > 1) | |
1453 gcc_checking_assert (known_le (b, a)); | |
1454 return b; | |
1455 } | |
1456 } | |
1457 | |
1458 template<unsigned int N, typename Ca, typename Cb> | |
1459 inline POLY_CONST_RESULT (N, Ca, Cb) | |
1460 ordered_min (const poly_int_pod<N, Ca> &a, const Cb &b) | |
1461 { | |
1462 if (known_le (a, b)) | |
1463 return a; | |
1464 else | |
1465 { | |
1466 if (N > 1) | |
1467 gcc_checking_assert (known_le (b, a)); | |
1468 return b; | |
1469 } | |
1470 } | |
1471 | |
1472 /* Assert that A and B are known to be ordered and return the maximum | |
1473 of the two. | |
1474 | |
1475 NOTE: When using this function, please add a comment above the call | |
1476 explaining why we know the values are ordered in that context. */ | |
1477 | |
1478 template<unsigned int N, typename Ca, typename Cb> | |
1479 inline POLY_POLY_RESULT (N, Ca, Cb) | |
1480 ordered_max (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) | |
1481 { | |
1482 if (known_le (a, b)) | |
1483 return b; | |
1484 else | |
1485 { | |
1486 if (N > 1) | |
1487 gcc_checking_assert (known_le (b, a)); | |
1488 return a; | |
1489 } | |
1490 } | |
1491 | |
1492 template<unsigned int N, typename Ca, typename Cb> | |
1493 inline CONST_POLY_RESULT (N, Ca, Cb) | |
1494 ordered_max (const Ca &a, const poly_int_pod<N, Cb> &b) | |
1495 { | |
1496 if (known_le (a, b)) | |
1497 return b; | |
1498 else | |
1499 { | |
1500 if (N > 1) | |
1501 gcc_checking_assert (known_le (b, a)); | |
1502 return a; | |
1503 } | |
1504 } | |
1505 | |
1506 template<unsigned int N, typename Ca, typename Cb> | |
1507 inline POLY_CONST_RESULT (N, Ca, Cb) | |
1508 ordered_max (const poly_int_pod<N, Ca> &a, const Cb &b) | |
1509 { | |
1510 if (known_le (a, b)) | |
1511 return b; | |
1512 else | |
1513 { | |
1514 if (N > 1) | |
1515 gcc_checking_assert (known_le (b, a)); | |
1516 return a; | |
1517 } | |
1518 } | |
1519 | |
1520 /* Return a constant lower bound on the value of A, which is known | |
1521 to be nonnegative. */ | |
1522 | |
1523 template<unsigned int N, typename Ca> | |
1524 inline Ca | |
1525 constant_lower_bound (const poly_int_pod<N, Ca> &a) | |
1526 { | |
1527 gcc_checking_assert (known_ge (a, POLY_INT_TYPE (Ca) (0))); | |
1528 return a.coeffs[0]; | |
1529 } | |
1530 | |
1531 /* Return a value that is known to be no greater than A and B. This | |
1532 will be the greatest lower bound for some indeterminate values but | |
1533 not necessarily for all. */ | |
1534 | |
1535 template<unsigned int N, typename Ca, typename Cb> | |
1536 inline POLY_CONST_RESULT (N, Ca, Cb) | |
1537 lower_bound (const poly_int_pod<N, Ca> &a, const Cb &b) | |
1538 { | |
1539 typedef POLY_CAST (Ca, Cb) NCa; | |
1540 typedef POLY_CAST (Cb, Ca) NCb; | |
1541 typedef POLY_INT_TYPE (Cb) ICb; | |
1542 typedef POLY_CONST_COEFF (Ca, Cb) C; | |
1543 | |
1544 poly_int<N, C> r; | |
1545 POLY_SET_COEFF (C, r, 0, MIN (NCa (a.coeffs[0]), NCb (b))); | |
1546 if (N >= 2) | |
1547 for (unsigned int i = 1; i < N; i++) | |
1548 POLY_SET_COEFF (C, r, i, MIN (NCa (a.coeffs[i]), ICb (0))); | |
1549 return r; | |
1550 } | |
1551 | |
1552 template<unsigned int N, typename Ca, typename Cb> | |
1553 inline CONST_POLY_RESULT (N, Ca, Cb) | |
1554 lower_bound (const Ca &a, const poly_int_pod<N, Cb> &b) | |
1555 { | |
1556 return lower_bound (b, a); | |
1557 } | |
1558 | |
1559 template<unsigned int N, typename Ca, typename Cb> | |
1560 inline POLY_POLY_RESULT (N, Ca, Cb) | |
1561 lower_bound (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) | |
1562 { | |
1563 typedef POLY_CAST (Ca, Cb) NCa; | |
1564 typedef POLY_CAST (Cb, Ca) NCb; | |
1565 typedef POLY_POLY_COEFF (Ca, Cb) C; | |
1566 | |
1567 poly_int<N, C> r; | |
1568 for (unsigned int i = 0; i < N; i++) | |
1569 POLY_SET_COEFF (C, r, i, MIN (NCa (a.coeffs[i]), NCb (b.coeffs[i]))); | |
1570 return r; | |
1571 } | |
1572 | |
1573 template<typename Ca, typename Cb> | |
1574 inline CONST_CONST_RESULT (N, Ca, Cb) | |
1575 lower_bound (const Ca &a, const Cb &b) | |
1576 { | |
1577 return a < b ? a : b; | |
1578 } | |
1579 | |
1580 /* Return a value that is known to be no less than A and B. This will | |
1581 be the least upper bound for some indeterminate values but not | |
1582 necessarily for all. */ | |
1583 | |
1584 template<unsigned int N, typename Ca, typename Cb> | |
1585 inline POLY_CONST_RESULT (N, Ca, Cb) | |
1586 upper_bound (const poly_int_pod<N, Ca> &a, const Cb &b) | |
1587 { | |
1588 typedef POLY_CAST (Ca, Cb) NCa; | |
1589 typedef POLY_CAST (Cb, Ca) NCb; | |
1590 typedef POLY_INT_TYPE (Cb) ICb; | |
1591 typedef POLY_CONST_COEFF (Ca, Cb) C; | |
1592 | |
1593 poly_int<N, C> r; | |
1594 POLY_SET_COEFF (C, r, 0, MAX (NCa (a.coeffs[0]), NCb (b))); | |
1595 if (N >= 2) | |
1596 for (unsigned int i = 1; i < N; i++) | |
1597 POLY_SET_COEFF (C, r, i, MAX (NCa (a.coeffs[i]), ICb (0))); | |
1598 return r; | |
1599 } | |
1600 | |
1601 template<unsigned int N, typename Ca, typename Cb> | |
1602 inline CONST_POLY_RESULT (N, Ca, Cb) | |
1603 upper_bound (const Ca &a, const poly_int_pod<N, Cb> &b) | |
1604 { | |
1605 return upper_bound (b, a); | |
1606 } | |
1607 | |
1608 template<unsigned int N, typename Ca, typename Cb> | |
1609 inline POLY_POLY_RESULT (N, Ca, Cb) | |
1610 upper_bound (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) | |
1611 { | |
1612 typedef POLY_CAST (Ca, Cb) NCa; | |
1613 typedef POLY_CAST (Cb, Ca) NCb; | |
1614 typedef POLY_POLY_COEFF (Ca, Cb) C; | |
1615 | |
1616 poly_int<N, C> r; | |
1617 for (unsigned int i = 0; i < N; i++) | |
1618 POLY_SET_COEFF (C, r, i, MAX (NCa (a.coeffs[i]), NCb (b.coeffs[i]))); | |
1619 return r; | |
1620 } | |
1621 | |
1622 /* Return the greatest common divisor of all nonzero coefficients, or zero | |
1623 if all coefficients are zero. */ | |
1624 | |
1625 template<unsigned int N, typename Ca> | |
1626 inline POLY_BINARY_COEFF (Ca, Ca) | |
1627 coeff_gcd (const poly_int_pod<N, Ca> &a) | |
1628 { | |
1629 /* Find the first nonzero coefficient, stopping at 0 whatever happens. */ | |
1630 unsigned int i; | |
1631 for (i = N - 1; i > 0; --i) | |
1632 if (a.coeffs[i] != 0) | |
1633 break; | |
1634 typedef POLY_BINARY_COEFF (Ca, Ca) C; | |
1635 C r = a.coeffs[i]; | |
1636 for (unsigned int j = 0; j < i; ++j) | |
1637 if (a.coeffs[j] != 0) | |
1638 r = gcd (r, C (a.coeffs[j])); | |
1639 return r; | |
1640 } | |
1641 | |
1642 /* Return a value that is a multiple of both A and B. This will be the | |
1643 least common multiple for some indeterminate values but necessarily | |
1644 for all. */ | |
1645 | |
1646 template<unsigned int N, typename Ca, typename Cb> | |
1647 POLY_CONST_RESULT (N, Ca, Cb) | |
1648 common_multiple (const poly_int_pod<N, Ca> &a, Cb b) | |
1649 { | |
1650 POLY_BINARY_COEFF (Ca, Ca) xgcd = coeff_gcd (a); | |
1651 return a * (least_common_multiple (xgcd, b) / xgcd); | |
1652 } | |
1653 | |
1654 template<unsigned int N, typename Ca, typename Cb> | |
1655 inline CONST_POLY_RESULT (N, Ca, Cb) | |
1656 common_multiple (const Ca &a, const poly_int_pod<N, Cb> &b) | |
1657 { | |
1658 return common_multiple (b, a); | |
1659 } | |
1660 | |
1661 /* Return a value that is a multiple of both A and B, asserting that | |
1662 such a value exists. The result will be the least common multiple | |
1663 for some indeterminate values but necessarily for all. | |
1664 | |
1665 NOTE: When using this function, please add a comment above the call | |
1666 explaining why we know the values have a common multiple (which might | |
1667 for example be because we know A / B is rational). */ | |
1668 | |
1669 template<unsigned int N, typename Ca, typename Cb> | |
1670 POLY_POLY_RESULT (N, Ca, Cb) | |
1671 force_common_multiple (const poly_int_pod<N, Ca> &a, | |
1672 const poly_int_pod<N, Cb> &b) | |
1673 { | |
1674 if (b.is_constant ()) | |
1675 return common_multiple (a, b.coeffs[0]); | |
1676 if (a.is_constant ()) | |
1677 return common_multiple (a.coeffs[0], b); | |
1678 | |
1679 typedef POLY_CAST (Ca, Cb) NCa; | |
1680 typedef POLY_CAST (Cb, Ca) NCb; | |
1681 typedef POLY_BINARY_COEFF (Ca, Cb) C; | |
1682 typedef POLY_INT_TYPE (Ca) ICa; | |
1683 | |
1684 for (unsigned int i = 1; i < N; ++i) | |
1685 if (a.coeffs[i] != ICa (0)) | |
1686 { | |
1687 C lcm = least_common_multiple (NCa (a.coeffs[i]), NCb (b.coeffs[i])); | |
1688 C amul = lcm / a.coeffs[i]; | |
1689 C bmul = lcm / b.coeffs[i]; | |
1690 for (unsigned int j = 0; j < N; ++j) | |
1691 gcc_checking_assert (a.coeffs[j] * amul == b.coeffs[j] * bmul); | |
1692 return a * amul; | |
1693 } | |
1694 gcc_unreachable (); | |
1695 } | |
1696 | |
1697 /* Compare A and B for sorting purposes, returning -1 if A should come | |
1698 before B, 0 if A and B are identical, and 1 if A should come after B. | |
1699 This is a lexicographical compare of the coefficients in reverse order. | |
1700 | |
1701 A consequence of this is that all constant sizes come before all | |
1702 non-constant ones, regardless of magnitude (since a size is never | |
1703 negative). This is what most callers want. For example, when laying | |
1704 data out on the stack, it's better to keep all the constant-sized | |
1705 data together so that it can be accessed as a constant offset from a | |
1706 single base. */ | |
1707 | |
1708 template<unsigned int N, typename Ca, typename Cb> | |
1709 inline int | |
1710 compare_sizes_for_sort (const poly_int_pod<N, Ca> &a, | |
1711 const poly_int_pod<N, Cb> &b) | |
1712 { | |
1713 for (unsigned int i = N; i-- > 0; ) | |
1714 if (a.coeffs[i] != b.coeffs[i]) | |
1715 return a.coeffs[i] < b.coeffs[i] ? -1 : 1; | |
1716 return 0; | |
1717 } | |
1718 | |
1719 /* Return true if we can calculate VALUE & (ALIGN - 1) at compile time. */ | |
1720 | |
1721 template<unsigned int N, typename Ca, typename Cb> | |
1722 inline bool | |
1723 can_align_p (const poly_int_pod<N, Ca> &value, Cb align) | |
1724 { | |
1725 for (unsigned int i = 1; i < N; i++) | |
1726 if ((value.coeffs[i] & (align - 1)) != 0) | |
1727 return false; | |
1728 return true; | |
1729 } | |
1730 | |
1731 /* Return true if we can align VALUE up to the smallest multiple of | |
1732 ALIGN that is >= VALUE. Store the aligned value in *ALIGNED if so. */ | |
1733 | |
1734 template<unsigned int N, typename Ca, typename Cb> | |
1735 inline bool | |
1736 can_align_up (const poly_int_pod<N, Ca> &value, Cb align, | |
1737 poly_int_pod<N, Ca> *aligned) | |
1738 { | |
1739 if (!can_align_p (value, align)) | |
1740 return false; | |
1741 *aligned = value + (-value.coeffs[0] & (align - 1)); | |
1742 return true; | |
1743 } | |
1744 | |
1745 /* Return true if we can align VALUE down to the largest multiple of | |
1746 ALIGN that is <= VALUE. Store the aligned value in *ALIGNED if so. */ | |
1747 | |
1748 template<unsigned int N, typename Ca, typename Cb> | |
1749 inline bool | |
1750 can_align_down (const poly_int_pod<N, Ca> &value, Cb align, | |
1751 poly_int_pod<N, Ca> *aligned) | |
1752 { | |
1753 if (!can_align_p (value, align)) | |
1754 return false; | |
1755 *aligned = value - (value.coeffs[0] & (align - 1)); | |
1756 return true; | |
1757 } | |
1758 | |
1759 /* Return true if we can align A and B up to the smallest multiples of | |
1760 ALIGN that are >= A and B respectively, and if doing so gives the | |
1761 same value. */ | |
1762 | |
1763 template<unsigned int N, typename Ca, typename Cb, typename Cc> | |
1764 inline bool | |
1765 known_equal_after_align_up (const poly_int_pod<N, Ca> &a, | |
1766 const poly_int_pod<N, Cb> &b, | |
1767 Cc align) | |
1768 { | |
1769 poly_int<N, Ca> aligned_a; | |
1770 poly_int<N, Cb> aligned_b; | |
1771 return (can_align_up (a, align, &aligned_a) | |
1772 && can_align_up (b, align, &aligned_b) | |
1773 && known_eq (aligned_a, aligned_b)); | |
1774 } | |
1775 | |
1776 /* Return true if we can align A and B down to the largest multiples of | |
1777 ALIGN that are <= A and B respectively, and if doing so gives the | |
1778 same value. */ | |
1779 | |
1780 template<unsigned int N, typename Ca, typename Cb, typename Cc> | |
1781 inline bool | |
1782 known_equal_after_align_down (const poly_int_pod<N, Ca> &a, | |
1783 const poly_int_pod<N, Cb> &b, | |
1784 Cc align) | |
1785 { | |
1786 poly_int<N, Ca> aligned_a; | |
1787 poly_int<N, Cb> aligned_b; | |
1788 return (can_align_down (a, align, &aligned_a) | |
1789 && can_align_down (b, align, &aligned_b) | |
1790 && known_eq (aligned_a, aligned_b)); | |
1791 } | |
1792 | |
1793 /* Assert that we can align VALUE to ALIGN at compile time and return | |
1794 the smallest multiple of ALIGN that is >= VALUE. | |
1795 | |
1796 NOTE: When using this function, please add a comment above the call | |
1797 explaining why we know the non-constant coefficients must already | |
1798 be a multiple of ALIGN. */ | |
1799 | |
1800 template<unsigned int N, typename Ca, typename Cb> | |
1801 inline poly_int<N, Ca> | |
1802 force_align_up (const poly_int_pod<N, Ca> &value, Cb align) | |
1803 { | |
1804 gcc_checking_assert (can_align_p (value, align)); | |
1805 return value + (-value.coeffs[0] & (align - 1)); | |
1806 } | |
1807 | |
1808 /* Assert that we can align VALUE to ALIGN at compile time and return | |
1809 the largest multiple of ALIGN that is <= VALUE. | |
1810 | |
1811 NOTE: When using this function, please add a comment above the call | |
1812 explaining why we know the non-constant coefficients must already | |
1813 be a multiple of ALIGN. */ | |
1814 | |
1815 template<unsigned int N, typename Ca, typename Cb> | |
1816 inline poly_int<N, Ca> | |
1817 force_align_down (const poly_int_pod<N, Ca> &value, Cb align) | |
1818 { | |
1819 gcc_checking_assert (can_align_p (value, align)); | |
1820 return value - (value.coeffs[0] & (align - 1)); | |
1821 } | |
1822 | |
1823 /* Return a value <= VALUE that is a multiple of ALIGN. It will be the | |
1824 greatest such value for some indeterminate values but not necessarily | |
1825 for all. */ | |
1826 | |
1827 template<unsigned int N, typename Ca, typename Cb> | |
1828 inline poly_int<N, Ca> | |
1829 aligned_lower_bound (const poly_int_pod<N, Ca> &value, Cb align) | |
1830 { | |
1831 poly_int<N, Ca> r; | |
1832 for (unsigned int i = 0; i < N; i++) | |
1833 /* This form copes correctly with more type combinations than | |
1834 value.coeffs[i] & -align would. */ | |
1835 POLY_SET_COEFF (Ca, r, i, (value.coeffs[i] | |
1836 - (value.coeffs[i] & (align - 1)))); | |
1837 return r; | |
1838 } | |
1839 | |
1840 /* Return a value >= VALUE that is a multiple of ALIGN. It will be the | |
1841 least such value for some indeterminate values but not necessarily | |
1842 for all. */ | |
1843 | |
1844 template<unsigned int N, typename Ca, typename Cb> | |
1845 inline poly_int<N, Ca> | |
1846 aligned_upper_bound (const poly_int_pod<N, Ca> &value, Cb align) | |
1847 { | |
1848 poly_int<N, Ca> r; | |
1849 for (unsigned int i = 0; i < N; i++) | |
1850 POLY_SET_COEFF (Ca, r, i, (value.coeffs[i] | |
1851 + (-value.coeffs[i] & (align - 1)))); | |
1852 return r; | |
1853 } | |
1854 | |
1855 /* Assert that we can align VALUE to ALIGN at compile time. Align VALUE | |
1856 down to the largest multiple of ALIGN that is <= VALUE, then divide by | |
1857 ALIGN. | |
1858 | |
1859 NOTE: When using this function, please add a comment above the call | |
1860 explaining why we know the non-constant coefficients must already | |
1861 be a multiple of ALIGN. */ | |
1862 | |
1863 template<unsigned int N, typename Ca, typename Cb> | |
1864 inline poly_int<N, Ca> | |
1865 force_align_down_and_div (const poly_int_pod<N, Ca> &value, Cb align) | |
1866 { | |
1867 gcc_checking_assert (can_align_p (value, align)); | |
1868 | |
1869 poly_int<N, Ca> r; | |
1870 POLY_SET_COEFF (Ca, r, 0, ((value.coeffs[0] | |
1871 - (value.coeffs[0] & (align - 1))) | |
1872 / align)); | |
1873 if (N >= 2) | |
1874 for (unsigned int i = 1; i < N; i++) | |
1875 POLY_SET_COEFF (Ca, r, i, value.coeffs[i] / align); | |
1876 return r; | |
1877 } | |
1878 | |
1879 /* Assert that we can align VALUE to ALIGN at compile time. Align VALUE | |
1880 up to the smallest multiple of ALIGN that is >= VALUE, then divide by | |
1881 ALIGN. | |
1882 | |
1883 NOTE: When using this function, please add a comment above the call | |
1884 explaining why we know the non-constant coefficients must already | |
1885 be a multiple of ALIGN. */ | |
1886 | |
1887 template<unsigned int N, typename Ca, typename Cb> | |
1888 inline poly_int<N, Ca> | |
1889 force_align_up_and_div (const poly_int_pod<N, Ca> &value, Cb align) | |
1890 { | |
1891 gcc_checking_assert (can_align_p (value, align)); | |
1892 | |
1893 poly_int<N, Ca> r; | |
1894 POLY_SET_COEFF (Ca, r, 0, ((value.coeffs[0] | |
1895 + (-value.coeffs[0] & (align - 1))) | |
1896 / align)); | |
1897 if (N >= 2) | |
1898 for (unsigned int i = 1; i < N; i++) | |
1899 POLY_SET_COEFF (Ca, r, i, value.coeffs[i] / align); | |
1900 return r; | |
1901 } | |
1902 | |
1903 /* Return true if we know at compile time the difference between VALUE | |
1904 and the equal or preceding multiple of ALIGN. Store the value in | |
1905 *MISALIGN if so. */ | |
1906 | |
1907 template<unsigned int N, typename Ca, typename Cb, typename Cm> | |
1908 inline bool | |
1909 known_misalignment (const poly_int_pod<N, Ca> &value, Cb align, Cm *misalign) | |
1910 { | |
1911 gcc_checking_assert (align != 0); | |
1912 if (!can_align_p (value, align)) | |
1913 return false; | |
1914 *misalign = value.coeffs[0] & (align - 1); | |
1915 return true; | |
1916 } | |
1917 | |
1918 /* Return X & (Y - 1), asserting that this value is known. Please add | |
1919 an a comment above callers to this function to explain why the condition | |
1920 is known to hold. */ | |
1921 | |
1922 template<unsigned int N, typename Ca, typename Cb> | |
1923 inline POLY_BINARY_COEFF (Ca, Ca) | |
1924 force_get_misalignment (const poly_int_pod<N, Ca> &a, Cb align) | |
1925 { | |
1926 gcc_checking_assert (can_align_p (a, align)); | |
1927 return a.coeffs[0] & (align - 1); | |
1928 } | |
1929 | |
1930 /* Return the maximum alignment that A is known to have. Return 0 | |
1931 if A is known to be zero. */ | |
1932 | |
1933 template<unsigned int N, typename Ca> | |
1934 inline POLY_BINARY_COEFF (Ca, Ca) | |
1935 known_alignment (const poly_int_pod<N, Ca> &a) | |
1936 { | |
1937 typedef POLY_BINARY_COEFF (Ca, Ca) C; | |
1938 C r = a.coeffs[0]; | |
1939 for (unsigned int i = 1; i < N; ++i) | |
1940 r |= a.coeffs[i]; | |
1941 return r & -r; | |
1942 } | |
1943 | |
1944 /* Return true if we can compute A | B at compile time, storing the | |
1945 result in RES if so. */ | |
1946 | |
1947 template<unsigned int N, typename Ca, typename Cb, typename Cr> | |
1948 inline typename if_nonpoly<Cb, bool>::type | |
1949 can_ior_p (const poly_int_pod<N, Ca> &a, Cb b, Cr *result) | |
1950 { | |
1951 /* Coefficients 1 and above must be a multiple of something greater | |
1952 than B. */ | |
1953 typedef POLY_INT_TYPE (Ca) int_type; | |
1954 if (N >= 2) | |
1955 for (unsigned int i = 1; i < N; i++) | |
1956 if ((-(a.coeffs[i] & -a.coeffs[i]) & b) != int_type (0)) | |
1957 return false; | |
1958 *result = a; | |
1959 result->coeffs[0] |= b; | |
1960 return true; | |
1961 } | |
1962 | |
1963 /* Return true if A is a constant multiple of B, storing the | |
1964 multiple in *MULTIPLE if so. */ | |
1965 | |
1966 template<unsigned int N, typename Ca, typename Cb, typename Cm> | |
1967 inline typename if_nonpoly<Cb, bool>::type | |
1968 constant_multiple_p (const poly_int_pod<N, Ca> &a, Cb b, Cm *multiple) | |
1969 { | |
1970 typedef POLY_CAST (Ca, Cb) NCa; | |
1971 typedef POLY_CAST (Cb, Ca) NCb; | |
1972 | |
1973 /* Do the modulus before the constant check, to catch divide by | |
1974 zero errors. */ | |
1975 if (NCa (a.coeffs[0]) % NCb (b) != 0 || !a.is_constant ()) | |
1976 return false; | |
1977 *multiple = NCa (a.coeffs[0]) / NCb (b); | |
1978 return true; | |
1979 } | |
1980 | |
1981 template<unsigned int N, typename Ca, typename Cb, typename Cm> | |
1982 inline typename if_nonpoly<Ca, bool>::type | |
1983 constant_multiple_p (Ca a, const poly_int_pod<N, Cb> &b, Cm *multiple) | |
1984 { | |
1985 typedef POLY_CAST (Ca, Cb) NCa; | |
1986 typedef POLY_CAST (Cb, Ca) NCb; | |
1987 typedef POLY_INT_TYPE (Ca) int_type; | |
1988 | |
1989 /* Do the modulus before the constant check, to catch divide by | |
1990 zero errors. */ | |
1991 if (NCa (a) % NCb (b.coeffs[0]) != 0 | |
1992 || (a != int_type (0) && !b.is_constant ())) | |
1993 return false; | |
1994 *multiple = NCa (a) / NCb (b.coeffs[0]); | |
1995 return true; | |
1996 } | |
1997 | |
1998 template<unsigned int N, typename Ca, typename Cb, typename Cm> | |
1999 inline bool | |
2000 constant_multiple_p (const poly_int_pod<N, Ca> &a, | |
2001 const poly_int_pod<N, Cb> &b, Cm *multiple) | |
2002 { | |
2003 typedef POLY_CAST (Ca, Cb) NCa; | |
2004 typedef POLY_CAST (Cb, Ca) NCb; | |
2005 typedef POLY_INT_TYPE (Ca) ICa; | |
2006 typedef POLY_INT_TYPE (Cb) ICb; | |
2007 typedef POLY_BINARY_COEFF (Ca, Cb) C; | |
2008 | |
2009 if (NCa (a.coeffs[0]) % NCb (b.coeffs[0]) != 0) | |
2010 return false; | |
2011 | |
2012 C r = NCa (a.coeffs[0]) / NCb (b.coeffs[0]); | |
2013 for (unsigned int i = 1; i < N; ++i) | |
2014 if (b.coeffs[i] == ICb (0) | |
2015 ? a.coeffs[i] != ICa (0) | |
2016 : (NCa (a.coeffs[i]) % NCb (b.coeffs[i]) != 0 | |
2017 || NCa (a.coeffs[i]) / NCb (b.coeffs[i]) != r)) | |
2018 return false; | |
2019 | |
2020 *multiple = r; | |
2021 return true; | |
2022 } | |
2023 | |
2024 /* Return true if A is a multiple of B. */ | |
2025 | |
2026 template<typename Ca, typename Cb> | |
2027 inline typename if_nonpoly2<Ca, Cb, bool>::type | |
2028 multiple_p (Ca a, Cb b) | |
2029 { | |
2030 return a % b == 0; | |
2031 } | |
2032 | |
2033 /* Return true if A is a (polynomial) multiple of B. */ | |
2034 | |
2035 template<unsigned int N, typename Ca, typename Cb> | |
2036 inline typename if_nonpoly<Cb, bool>::type | |
2037 multiple_p (const poly_int_pod<N, Ca> &a, Cb b) | |
2038 { | |
2039 for (unsigned int i = 0; i < N; ++i) | |
2040 if (a.coeffs[i] % b != 0) | |
2041 return false; | |
2042 return true; | |
2043 } | |
2044 | |
2045 /* Return true if A is a (constant) multiple of B. */ | |
2046 | |
2047 template<unsigned int N, typename Ca, typename Cb> | |
2048 inline typename if_nonpoly<Ca, bool>::type | |
2049 multiple_p (Ca a, const poly_int_pod<N, Cb> &b) | |
2050 { | |
2051 typedef POLY_INT_TYPE (Ca) int_type; | |
2052 | |
2053 /* Do the modulus before the constant check, to catch divide by | |
2054 potential zeros. */ | |
2055 return a % b.coeffs[0] == 0 && (a == int_type (0) || b.is_constant ()); | |
2056 } | |
2057 | |
2058 /* Return true if A is a (polynomial) multiple of B. This handles cases | |
2059 where either B is constant or the multiple is constant. */ | |
2060 | |
2061 template<unsigned int N, typename Ca, typename Cb> | |
2062 inline bool | |
2063 multiple_p (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) | |
2064 { | |
2065 if (b.is_constant ()) | |
2066 return multiple_p (a, b.coeffs[0]); | |
2067 POLY_BINARY_COEFF (Ca, Ca) tmp; | |
2068 return constant_multiple_p (a, b, &tmp); | |
2069 } | |
2070 | |
2071 /* Return true if A is a (constant) multiple of B, storing the | |
2072 multiple in *MULTIPLE if so. */ | |
2073 | |
2074 template<typename Ca, typename Cb, typename Cm> | |
2075 inline typename if_nonpoly2<Ca, Cb, bool>::type | |
2076 multiple_p (Ca a, Cb b, Cm *multiple) | |
2077 { | |
2078 if (a % b != 0) | |
2079 return false; | |
2080 *multiple = a / b; | |
2081 return true; | |
2082 } | |
2083 | |
2084 /* Return true if A is a (polynomial) multiple of B, storing the | |
2085 multiple in *MULTIPLE if so. */ | |
2086 | |
2087 template<unsigned int N, typename Ca, typename Cb, typename Cm> | |
2088 inline typename if_nonpoly<Cb, bool>::type | |
2089 multiple_p (const poly_int_pod<N, Ca> &a, Cb b, poly_int_pod<N, Cm> *multiple) | |
2090 { | |
2091 if (!multiple_p (a, b)) | |
2092 return false; | |
2093 for (unsigned int i = 0; i < N; ++i) | |
2094 multiple->coeffs[i] = a.coeffs[i] / b; | |
2095 return true; | |
2096 } | |
2097 | |
2098 /* Return true if B is a constant and A is a (constant) multiple of B, | |
2099 storing the multiple in *MULTIPLE if so. */ | |
2100 | |
2101 template<unsigned int N, typename Ca, typename Cb, typename Cm> | |
2102 inline typename if_nonpoly<Ca, bool>::type | |
2103 multiple_p (Ca a, const poly_int_pod<N, Cb> &b, Cm *multiple) | |
2104 { | |
2105 typedef POLY_CAST (Ca, Cb) NCa; | |
2106 | |
2107 /* Do the modulus before the constant check, to catch divide by | |
2108 potential zeros. */ | |
2109 if (a % b.coeffs[0] != 0 || (NCa (a) != 0 && !b.is_constant ())) | |
2110 return false; | |
2111 *multiple = a / b.coeffs[0]; | |
2112 return true; | |
2113 } | |
2114 | |
2115 /* Return true if A is a (polynomial) multiple of B, storing the | |
2116 multiple in *MULTIPLE if so. This handles cases where either | |
2117 B is constant or the multiple is constant. */ | |
2118 | |
2119 template<unsigned int N, typename Ca, typename Cb, typename Cm> | |
2120 inline bool | |
2121 multiple_p (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b, | |
2122 poly_int_pod<N, Cm> *multiple) | |
2123 { | |
2124 if (b.is_constant ()) | |
2125 return multiple_p (a, b.coeffs[0], multiple); | |
2126 return constant_multiple_p (a, b, multiple); | |
2127 } | |
2128 | |
2129 /* Return A / B, given that A is known to be a multiple of B. */ | |
2130 | |
2131 template<unsigned int N, typename Ca, typename Cb> | |
2132 inline POLY_CONST_RESULT (N, Ca, Cb) | |
2133 exact_div (const poly_int_pod<N, Ca> &a, Cb b) | |
2134 { | |
2135 typedef POLY_CONST_COEFF (Ca, Cb) C; | |
2136 poly_int<N, C> r; | |
2137 for (unsigned int i = 0; i < N; i++) | |
2138 { | |
2139 gcc_checking_assert (a.coeffs[i] % b == 0); | |
2140 POLY_SET_COEFF (C, r, i, a.coeffs[i] / b); | |
2141 } | |
2142 return r; | |
2143 } | |
2144 | |
2145 /* Return A / B, given that A is known to be a multiple of B. */ | |
2146 | |
2147 template<unsigned int N, typename Ca, typename Cb> | |
2148 inline POLY_POLY_RESULT (N, Ca, Cb) | |
2149 exact_div (const poly_int_pod<N, Ca> &a, const poly_int_pod<N, Cb> &b) | |
2150 { | |
2151 if (b.is_constant ()) | |
2152 return exact_div (a, b.coeffs[0]); | |
2153 | |
2154 typedef POLY_CAST (Ca, Cb) NCa; | |
2155 typedef POLY_CAST (Cb, Ca) NCb; | |
2156 typedef POLY_BINARY_COEFF (Ca, Cb) C; | |
2157 typedef POLY_INT_TYPE (Cb) int_type; | |
2158 | |
2159 gcc_checking_assert (a.coeffs[0] % b.coeffs[0] == 0); | |
2160 C r = NCa (a.coeffs[0]) / NCb (b.coeffs[0]); | |
2161 for (unsigned int i = 1; i < N; ++i) | |
2162 gcc_checking_assert (b.coeffs[i] == int_type (0) | |
2163 ? a.coeffs[i] == int_type (0) | |
2164 : (a.coeffs[i] % b.coeffs[i] == 0 | |
2165 && NCa (a.coeffs[i]) / NCb (b.coeffs[i]) == r)); | |
2166 | |
2167 return r; | |
2168 } | |
2169 | |
2170 /* Return true if there is some constant Q and polynomial r such that: | |
2171 | |
2172 (1) a = b * Q + r | |
2173 (2) |b * Q| <= |a| | |
2174 (3) |r| < |b| | |
2175 | |
2176 Store the value Q in *QUOTIENT if so. */ | |
2177 | |
2178 template<unsigned int N, typename Ca, typename Cb, typename Cq> | |
2179 inline typename if_nonpoly2<Cb, Cq, bool>::type | |
2180 can_div_trunc_p (const poly_int_pod<N, Ca> &a, Cb b, Cq *quotient) | |
2181 { | |
2182 typedef POLY_CAST (Ca, Cb) NCa; | |
2183 typedef POLY_CAST (Cb, Ca) NCb; | |
2184 | |
2185 /* Do the division before the constant check, to catch divide by | |
2186 zero errors. */ | |
2187 Cq q = NCa (a.coeffs[0]) / NCb (b); | |
2188 if (!a.is_constant ()) | |
2189 return false; | |
2190 *quotient = q; | |
2191 return true; | |
2192 } | |
2193 | |
2194 template<unsigned int N, typename Ca, typename Cb, typename Cq> | |
2195 inline typename if_nonpoly<Cq, bool>::type | |
2196 can_div_trunc_p (const poly_int_pod<N, Ca> &a, | |
2197 const poly_int_pod<N, Cb> &b, | |
2198 Cq *quotient) | |
2199 { | |
2200 /* We can calculate Q from the case in which the indeterminates | |
2201 are zero. */ | |
2202 typedef POLY_CAST (Ca, Cb) NCa; | |
2203 typedef POLY_CAST (Cb, Ca) NCb; | |
2204 typedef POLY_INT_TYPE (Ca) ICa; | |
2205 typedef POLY_INT_TYPE (Cb) ICb; | |
2206 typedef POLY_BINARY_COEFF (Ca, Cb) C; | |
2207 C q = NCa (a.coeffs[0]) / NCb (b.coeffs[0]); | |
2208 | |
2209 /* Check the other coefficients and record whether the division is exact. | |
2210 The only difficult case is when it isn't. If we require a and b to | |
2211 ordered wrt zero, there can be no two coefficients of the same value | |
2212 that have opposite signs. This means that: | |
2213 | |
2214 |a| = |a0| + |a1 * x1| + |a2 * x2| + ... | |
2215 |b| = |b0| + |b1 * x1| + |b2 * x2| + ... | |
2216 | |
2217 The Q we've just calculated guarantees: | |
2218 | |
2219 |b0 * Q| <= |a0| | |
2220 |a0 - b0 * Q| < |b0| | |
2221 | |
2222 and so: | |
2223 | |
2224 (2) |b * Q| <= |a| | |
2225 | |
2226 is satisfied if: | |
2227 | |
2228 |bi * xi * Q| <= |ai * xi| | |
2229 | |
2230 for each i in [1, N]. This is trivially true when xi is zero. | |
2231 When it isn't we need: | |
2232 | |
2233 (2') |bi * Q| <= |ai| | |
2234 | |
2235 r is calculated as: | |
2236 | |
2237 r = r0 + r1 * x1 + r2 * x2 + ... | |
2238 where ri = ai - bi * Q | |
2239 | |
2240 Restricting to ordered a and b also guarantees that no two ris | |
2241 have opposite signs, so we have: | |
2242 | |
2243 |r| = |r0| + |r1 * x1| + |r2 * x2| + ... | |
2244 | |
2245 We know from the calculation of Q that |r0| < |b0|, so: | |
2246 | |
2247 (3) |r| < |b| | |
2248 | |
2249 is satisfied if: | |
2250 | |
2251 (3') |ai - bi * Q| <= |bi| | |
2252 | |
2253 for each i in [1, N]. */ | |
2254 bool rem_p = NCa (a.coeffs[0]) % NCb (b.coeffs[0]) != 0; | |
2255 for (unsigned int i = 1; i < N; ++i) | |
2256 { | |
2257 if (b.coeffs[i] == ICb (0)) | |
2258 { | |
2259 /* For bi == 0 we simply need: (3') |ai| == 0. */ | |
2260 if (a.coeffs[i] != ICa (0)) | |
2261 return false; | |
2262 } | |
2263 else | |
2264 { | |
2265 if (q == 0) | |
2266 { | |
2267 /* For Q == 0 we simply need: (3') |ai| <= |bi|. */ | |
2268 if (a.coeffs[i] != ICa (0)) | |
2269 { | |
2270 /* Use negative absolute to avoid overflow, i.e. | |
2271 -|ai| >= -|bi|. */ | |
2272 C neg_abs_a = (a.coeffs[i] < 0 ? a.coeffs[i] : -a.coeffs[i]); | |
2273 C neg_abs_b = (b.coeffs[i] < 0 ? b.coeffs[i] : -b.coeffs[i]); | |
2274 if (neg_abs_a < neg_abs_b) | |
2275 return false; | |
2276 rem_p = true; | |
2277 } | |
2278 } | |
2279 else | |
2280 { | |
2281 /* Otherwise just check for the case in which ai / bi == Q. */ | |
2282 if (NCa (a.coeffs[i]) / NCb (b.coeffs[i]) != q) | |
2283 return false; | |
2284 if (NCa (a.coeffs[i]) % NCb (b.coeffs[i]) != 0) | |
2285 rem_p = true; | |
2286 } | |
2287 } | |
2288 } | |
2289 | |
2290 /* If the division isn't exact, require both values to be ordered wrt 0, | |
2291 so that we can guarantee conditions (2) and (3) for all indeterminate | |
2292 values. */ | |
2293 if (rem_p && (!ordered_p (a, ICa (0)) || !ordered_p (b, ICb (0)))) | |
2294 return false; | |
2295 | |
2296 *quotient = q; | |
2297 return true; | |
2298 } | |
2299 | |
2300 /* Likewise, but also store r in *REMAINDER. */ | |
2301 | |
2302 template<unsigned int N, typename Ca, typename Cb, typename Cq, typename Cr> | |
2303 inline typename if_nonpoly<Cq, bool>::type | |
2304 can_div_trunc_p (const poly_int_pod<N, Ca> &a, | |
2305 const poly_int_pod<N, Cb> &b, | |
2306 Cq *quotient, Cr *remainder) | |
2307 { | |
2308 if (!can_div_trunc_p (a, b, quotient)) | |
2309 return false; | |
2310 *remainder = a - *quotient * b; | |
2311 return true; | |
2312 } | |
2313 | |
2314 /* Return true if there is some polynomial q and constant R such that: | |
2315 | |
2316 (1) a = B * q + R | |
2317 (2) |B * q| <= |a| | |
2318 (3) |R| < |B| | |
2319 | |
2320 Store the value q in *QUOTIENT if so. */ | |
2321 | |
2322 template<unsigned int N, typename Ca, typename Cb, typename Cq> | |
2323 inline typename if_nonpoly<Cb, bool>::type | |
2324 can_div_trunc_p (const poly_int_pod<N, Ca> &a, Cb b, | |
2325 poly_int_pod<N, Cq> *quotient) | |
2326 { | |
2327 /* The remainder must be constant. */ | |
2328 for (unsigned int i = 1; i < N; ++i) | |
2329 if (a.coeffs[i] % b != 0) | |
2330 return false; | |
2331 for (unsigned int i = 0; i < N; ++i) | |
2332 quotient->coeffs[i] = a.coeffs[i] / b; | |
2333 return true; | |
2334 } | |
2335 | |
2336 /* Likewise, but also store R in *REMAINDER. */ | |
2337 | |
2338 template<unsigned int N, typename Ca, typename Cb, typename Cq, typename Cr> | |
2339 inline typename if_nonpoly<Cb, bool>::type | |
2340 can_div_trunc_p (const poly_int_pod<N, Ca> &a, Cb b, | |
2341 poly_int_pod<N, Cq> *quotient, Cr *remainder) | |
2342 { | |
2343 if (!can_div_trunc_p (a, b, quotient)) | |
2344 return false; | |
2345 *remainder = a.coeffs[0] % b; | |
2346 return true; | |
2347 } | |
2348 | |
2349 /* Return true if we can compute A / B at compile time, rounding towards zero. | |
2350 Store the result in QUOTIENT if so. | |
2351 | |
2352 This handles cases in which either B is constant or the result is | |
2353 constant. */ | |
2354 | |
2355 template<unsigned int N, typename Ca, typename Cb, typename Cq> | |
2356 inline bool | |
2357 can_div_trunc_p (const poly_int_pod<N, Ca> &a, | |
2358 const poly_int_pod<N, Cb> &b, | |
2359 poly_int_pod<N, Cq> *quotient) | |
2360 { | |
2361 if (b.is_constant ()) | |
2362 return can_div_trunc_p (a, b.coeffs[0], quotient); | |
2363 if (!can_div_trunc_p (a, b, "ient->coeffs[0])) | |
2364 return false; | |
2365 for (unsigned int i = 1; i < N; ++i) | |
2366 quotient->coeffs[i] = 0; | |
2367 return true; | |
2368 } | |
2369 | |
2370 /* Return true if there is some constant Q and polynomial r such that: | |
2371 | |
2372 (1) a = b * Q + r | |
2373 (2) |a| <= |b * Q| | |
2374 (3) |r| < |b| | |
2375 | |
2376 Store the value Q in *QUOTIENT if so. */ | |
2377 | |
2378 template<unsigned int N, typename Ca, typename Cb, typename Cq> | |
2379 inline typename if_nonpoly<Cq, bool>::type | |
2380 can_div_away_from_zero_p (const poly_int_pod<N, Ca> &a, | |
2381 const poly_int_pod<N, Cb> &b, | |
2382 Cq *quotient) | |
2383 { | |
2384 if (!can_div_trunc_p (a, b, quotient)) | |
2385 return false; | |
2386 if (maybe_ne (*quotient * b, a)) | |
2387 *quotient += (*quotient < 0 ? -1 : 1); | |
2388 return true; | |
2389 } | |
2390 | |
2391 /* Use print_dec to print VALUE to FILE, where SGN is the sign | |
2392 of the values. */ | |
2393 | |
2394 template<unsigned int N, typename C> | |
2395 void | |
2396 print_dec (const poly_int_pod<N, C> &value, FILE *file, signop sgn) | |
2397 { | |
2398 if (value.is_constant ()) | |
2399 print_dec (value.coeffs[0], file, sgn); | |
2400 else | |
2401 { | |
2402 fprintf (file, "["); | |
2403 for (unsigned int i = 0; i < N; ++i) | |
2404 { | |
2405 print_dec (value.coeffs[i], file, sgn); | |
2406 fputc (i == N - 1 ? ']' : ',', file); | |
2407 } | |
2408 } | |
2409 } | |
2410 | |
2411 /* Likewise without the signop argument, for coefficients that have an | |
2412 inherent signedness. */ | |
2413 | |
2414 template<unsigned int N, typename C> | |
2415 void | |
2416 print_dec (const poly_int_pod<N, C> &value, FILE *file) | |
2417 { | |
2418 STATIC_ASSERT (poly_coeff_traits<C>::signedness >= 0); | |
2419 print_dec (value, file, | |
2420 poly_coeff_traits<C>::signedness ? SIGNED : UNSIGNED); | |
2421 } | |
2422 | |
2423 /* Use print_hex to print VALUE to FILE. */ | |
2424 | |
2425 template<unsigned int N, typename C> | |
2426 void | |
2427 print_hex (const poly_int_pod<N, C> &value, FILE *file) | |
2428 { | |
2429 if (value.is_constant ()) | |
2430 print_hex (value.coeffs[0], file); | |
2431 else | |
2432 { | |
2433 fprintf (file, "["); | |
2434 for (unsigned int i = 0; i < N; ++i) | |
2435 { | |
2436 print_hex (value.coeffs[i], file); | |
2437 fputc (i == N - 1 ? ']' : ',', file); | |
2438 } | |
2439 } | |
2440 } | |
2441 | |
2442 /* Helper for calculating the distance between two points P1 and P2, | |
2443 in cases where known_le (P1, P2). T1 and T2 are the types of the | |
2444 two positions, in either order. The coefficients of P2 - P1 have | |
2445 type unsigned HOST_WIDE_INT if the coefficients of both T1 and T2 | |
2446 have C++ primitive type, otherwise P2 - P1 has its usual | |
2447 wide-int-based type. | |
2448 | |
2449 The actual subtraction should look something like this: | |
2450 | |
2451 typedef poly_span_traits<T1, T2> span_traits; | |
2452 span_traits::cast (P2) - span_traits::cast (P1) | |
2453 | |
2454 Applying the cast before the subtraction avoids undefined overflow | |
2455 for signed T1 and T2. | |
2456 | |
2457 The implementation of the cast tries to avoid unnecessary arithmetic | |
2458 or copying. */ | |
2459 template<typename T1, typename T2, | |
2460 typename Res = POLY_BINARY_COEFF (POLY_BINARY_COEFF (T1, T2), | |
2461 unsigned HOST_WIDE_INT)> | |
2462 struct poly_span_traits | |
2463 { | |
2464 template<typename T> | |
2465 static const T &cast (const T &x) { return x; } | |
2466 }; | |
2467 | |
2468 template<typename T1, typename T2> | |
2469 struct poly_span_traits<T1, T2, unsigned HOST_WIDE_INT> | |
2470 { | |
2471 template<typename T> | |
2472 static typename if_nonpoly<T, unsigned HOST_WIDE_INT>::type | |
2473 cast (const T &x) { return x; } | |
2474 | |
2475 template<unsigned int N, typename T> | |
2476 static poly_int<N, unsigned HOST_WIDE_INT> | |
2477 cast (const poly_int_pod<N, T> &x) { return x; } | |
2478 }; | |
2479 | |
2480 /* Return true if SIZE represents a known size, assuming that all-ones | |
2481 indicates an unknown size. */ | |
2482 | |
2483 template<typename T> | |
2484 inline bool | |
2485 known_size_p (const T &a) | |
2486 { | |
2487 return maybe_ne (a, POLY_INT_TYPE (T) (-1)); | |
2488 } | |
2489 | |
2490 /* Return true if range [POS, POS + SIZE) might include VAL. | |
2491 SIZE can be the special value -1, in which case the range is | |
2492 open-ended. */ | |
2493 | |
2494 template<typename T1, typename T2, typename T3> | |
2495 inline bool | |
2496 maybe_in_range_p (const T1 &val, const T2 &pos, const T3 &size) | |
2497 { | |
2498 typedef poly_span_traits<T1, T2> start_span; | |
2499 typedef poly_span_traits<T3, T3> size_span; | |
2500 if (known_lt (val, pos)) | |
2501 return false; | |
2502 if (!known_size_p (size)) | |
2503 return true; | |
2504 if ((poly_int_traits<T1>::num_coeffs > 1 | |
2505 || poly_int_traits<T2>::num_coeffs > 1) | |
2506 && maybe_lt (val, pos)) | |
2507 /* In this case we don't know whether VAL >= POS is true at compile | |
2508 time, so we can't prove that VAL >= POS + SIZE. */ | |
2509 return true; | |
2510 return maybe_lt (start_span::cast (val) - start_span::cast (pos), | |
2511 size_span::cast (size)); | |
2512 } | |
2513 | |
2514 /* Return true if range [POS, POS + SIZE) is known to include VAL. | |
2515 SIZE can be the special value -1, in which case the range is | |
2516 open-ended. */ | |
2517 | |
2518 template<typename T1, typename T2, typename T3> | |
2519 inline bool | |
2520 known_in_range_p (const T1 &val, const T2 &pos, const T3 &size) | |
2521 { | |
2522 typedef poly_span_traits<T1, T2> start_span; | |
2523 typedef poly_span_traits<T3, T3> size_span; | |
2524 return (known_size_p (size) | |
2525 && known_ge (val, pos) | |
2526 && known_lt (start_span::cast (val) - start_span::cast (pos), | |
2527 size_span::cast (size))); | |
2528 } | |
2529 | |
2530 /* Return true if the two ranges [POS1, POS1 + SIZE1) and [POS2, POS2 + SIZE2) | |
2531 might overlap. SIZE1 and/or SIZE2 can be the special value -1, in which | |
2532 case the range is open-ended. */ | |
2533 | |
2534 template<typename T1, typename T2, typename T3, typename T4> | |
2535 inline bool | |
2536 ranges_maybe_overlap_p (const T1 &pos1, const T2 &size1, | |
2537 const T3 &pos2, const T4 &size2) | |
2538 { | |
2539 if (maybe_in_range_p (pos2, pos1, size1)) | |
2540 return maybe_ne (size2, POLY_INT_TYPE (T4) (0)); | |
2541 if (maybe_in_range_p (pos1, pos2, size2)) | |
2542 return maybe_ne (size1, POLY_INT_TYPE (T2) (0)); | |
2543 return false; | |
2544 } | |
2545 | |
2546 /* Return true if the two ranges [POS1, POS1 + SIZE1) and [POS2, POS2 + SIZE2) | |
2547 are known to overlap. SIZE1 and/or SIZE2 can be the special value -1, | |
2548 in which case the range is open-ended. */ | |
2549 | |
2550 template<typename T1, typename T2, typename T3, typename T4> | |
2551 inline bool | |
2552 ranges_known_overlap_p (const T1 &pos1, const T2 &size1, | |
2553 const T3 &pos2, const T4 &size2) | |
2554 { | |
2555 typedef poly_span_traits<T1, T3> start_span; | |
2556 typedef poly_span_traits<T2, T2> size1_span; | |
2557 typedef poly_span_traits<T4, T4> size2_span; | |
2558 /* known_gt (POS1 + SIZE1, POS2) [infinite precision] | |
2559 --> known_gt (SIZE1, POS2 - POS1) [infinite precision] | |
2560 --> known_gt (SIZE1, POS2 - lower_bound (POS1, POS2)) [infinite precision] | |
2561 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ always nonnegative | |
2562 --> known_gt (SIZE1, span1::cast (POS2 - lower_bound (POS1, POS2))). | |
2563 | |
2564 Using the saturating subtraction enforces that SIZE1 must be | |
2565 nonzero, since known_gt (0, x) is false for all nonnegative x. | |
2566 If POS2.coeff[I] < POS1.coeff[I] for some I > 0, increasing | |
2567 indeterminate number I makes the unsaturated condition easier to | |
2568 satisfy, so using a saturated coefficient of zero tests the case in | |
2569 which the indeterminate is zero (the minimum value). */ | |
2570 return (known_size_p (size1) | |
2571 && known_size_p (size2) | |
2572 && known_lt (start_span::cast (pos2) | |
2573 - start_span::cast (lower_bound (pos1, pos2)), | |
2574 size1_span::cast (size1)) | |
2575 && known_lt (start_span::cast (pos1) | |
2576 - start_span::cast (lower_bound (pos1, pos2)), | |
2577 size2_span::cast (size2))); | |
2578 } | |
2579 | |
2580 /* Return true if range [POS1, POS1 + SIZE1) is known to be a subrange of | |
2581 [POS2, POS2 + SIZE2). SIZE1 and/or SIZE2 can be the special value -1, | |
2582 in which case the range is open-ended. */ | |
2583 | |
2584 template<typename T1, typename T2, typename T3, typename T4> | |
2585 inline bool | |
2586 known_subrange_p (const T1 &pos1, const T2 &size1, | |
2587 const T3 &pos2, const T4 &size2) | |
2588 { | |
2589 typedef typename poly_int_traits<T2>::coeff_type C2; | |
2590 typedef poly_span_traits<T1, T3> start_span; | |
2591 typedef poly_span_traits<T2, T4> size_span; | |
2592 return (known_gt (size1, POLY_INT_TYPE (T2) (0)) | |
2593 && (poly_coeff_traits<C2>::signedness > 0 | |
2594 || known_size_p (size1)) | |
2595 && known_size_p (size2) | |
2596 && known_ge (pos1, pos2) | |
2597 && known_le (size1, size2) | |
2598 && known_le (start_span::cast (pos1) - start_span::cast (pos2), | |
2599 size_span::cast (size2) - size_span::cast (size1))); | |
2600 } | |
2601 | |
2602 /* Return true if the endpoint of the range [POS, POS + SIZE) can be | |
2603 stored in a T, or if SIZE is the special value -1, which makes the | |
2604 range open-ended. */ | |
2605 | |
2606 template<typename T> | |
2607 inline typename if_nonpoly<T, bool>::type | |
2608 endpoint_representable_p (const T &pos, const T &size) | |
2609 { | |
2610 return (!known_size_p (size) | |
2611 || pos <= poly_coeff_traits<T>::max_value - size); | |
2612 } | |
2613 | |
2614 template<unsigned int N, typename C> | |
2615 inline bool | |
2616 endpoint_representable_p (const poly_int_pod<N, C> &pos, | |
2617 const poly_int_pod<N, C> &size) | |
2618 { | |
2619 if (known_size_p (size)) | |
2620 for (unsigned int i = 0; i < N; ++i) | |
2621 if (pos.coeffs[i] > poly_coeff_traits<C>::max_value - size.coeffs[i]) | |
2622 return false; | |
2623 return true; | |
2624 } | |
2625 | |
2626 template<unsigned int N, typename C> | |
2627 void | |
2628 gt_ggc_mx (poly_int_pod<N, C> *) | |
2629 { | |
2630 } | |
2631 | |
2632 template<unsigned int N, typename C> | |
2633 void | |
2634 gt_pch_nx (poly_int_pod<N, C> *) | |
2635 { | |
2636 } | |
2637 | |
2638 template<unsigned int N, typename C> | |
2639 void | |
2640 gt_pch_nx (poly_int_pod<N, C> *, void (*) (void *, void *), void *) | |
2641 { | |
2642 } | |
2643 | |
2644 #undef POLY_SET_COEFF | |
2645 #undef POLY_INT_TYPE | |
2646 #undef POLY_BINARY_COEFF | |
2647 #undef CONST_CONST_RESULT | |
2648 #undef POLY_CONST_RESULT | |
2649 #undef CONST_POLY_RESULT | |
2650 #undef POLY_POLY_RESULT | |
2651 #undef POLY_CONST_COEFF | |
2652 #undef CONST_POLY_COEFF | |
2653 #undef POLY_POLY_COEFF | |
2654 | |
2655 #endif |