diff gcc/alias.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 58ad6c70ea60
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/alias.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,2645 @@
+/* Alias analysis for GNU C
+   Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
+   2007, 2008, 2009 Free Software Foundation, Inc.
+   Contributed by John Carr (jfc@mit.edu).
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "tree.h"
+#include "tm_p.h"
+#include "function.h"
+#include "alias.h"
+#include "emit-rtl.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "flags.h"
+#include "output.h"
+#include "toplev.h"
+#include "cselib.h"
+#include "splay-tree.h"
+#include "ggc.h"
+#include "langhooks.h"
+#include "timevar.h"
+#include "target.h"
+#include "cgraph.h"
+#include "varray.h"
+#include "tree-pass.h"
+#include "ipa-type-escape.h"
+#include "df.h"
+
+/* The aliasing API provided here solves related but different problems:
+
+   Say there exists (in c)
+
+   struct X {
+     struct Y y1;
+     struct Z z2;
+   } x1, *px1,  *px2;
+
+   struct Y y2, *py;
+   struct Z z2, *pz;
+
+
+   py = &px1.y1;
+   px2 = &x1;
+
+   Consider the four questions:
+
+   Can a store to x1 interfere with px2->y1?
+   Can a store to x1 interfere with px2->z2?
+   (*px2).z2
+   Can a store to x1 change the value pointed to by with py?
+   Can a store to x1 change the value pointed to by with pz?
+
+   The answer to these questions can be yes, yes, yes, and maybe.
+
+   The first two questions can be answered with a simple examination
+   of the type system.  If structure X contains a field of type Y then
+   a store thru a pointer to an X can overwrite any field that is
+   contained (recursively) in an X (unless we know that px1 != px2).
+
+   The last two of the questions can be solved in the same way as the
+   first two questions but this is too conservative.  The observation
+   is that in some cases analysis we can know if which (if any) fields
+   are addressed and if those addresses are used in bad ways.  This
+   analysis may be language specific.  In C, arbitrary operations may
+   be applied to pointers.  However, there is some indication that
+   this may be too conservative for some C++ types.
+
+   The pass ipa-type-escape does this analysis for the types whose
+   instances do not escape across the compilation boundary.
+
+   Historically in GCC, these two problems were combined and a single
+   data structure was used to represent the solution to these
+   problems.  We now have two similar but different data structures,
+   The data structure to solve the last two question is similar to the
+   first, but does not contain have the fields in it whose address are
+   never taken.  For types that do escape the compilation unit, the
+   data structures will have identical information.
+*/
+
+/* The alias sets assigned to MEMs assist the back-end in determining
+   which MEMs can alias which other MEMs.  In general, two MEMs in
+   different alias sets cannot alias each other, with one important
+   exception.  Consider something like:
+
+     struct S { int i; double d; };
+
+   a store to an `S' can alias something of either type `int' or type
+   `double'.  (However, a store to an `int' cannot alias a `double'
+   and vice versa.)  We indicate this via a tree structure that looks
+   like:
+	   struct S
+	    /   \
+	   /     \
+	 |/_     _\|
+	 int    double
+
+   (The arrows are directed and point downwards.)
+    In this situation we say the alias set for `struct S' is the
+   `superset' and that those for `int' and `double' are `subsets'.
+
+   To see whether two alias sets can point to the same memory, we must
+   see if either alias set is a subset of the other. We need not trace
+   past immediate descendants, however, since we propagate all
+   grandchildren up one level.
+
+   Alias set zero is implicitly a superset of all other alias sets.
+   However, this is no actual entry for alias set zero.  It is an
+   error to attempt to explicitly construct a subset of zero.  */
+
+struct alias_set_entry GTY(())
+{
+  /* The alias set number, as stored in MEM_ALIAS_SET.  */
+  alias_set_type alias_set;
+
+  /* Nonzero if would have a child of zero: this effectively makes this
+     alias set the same as alias set zero.  */
+  int has_zero_child;
+
+  /* The children of the alias set.  These are not just the immediate
+     children, but, in fact, all descendants.  So, if we have:
+
+       struct T { struct S s; float f; }
+
+     continuing our example above, the children here will be all of
+     `int', `double', `float', and `struct S'.  */
+  splay_tree GTY((param1_is (int), param2_is (int))) children;
+};
+typedef struct alias_set_entry *alias_set_entry;
+
+static int rtx_equal_for_memref_p (const_rtx, const_rtx);
+static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
+static void record_set (rtx, const_rtx, void *);
+static int base_alias_check (rtx, rtx, enum machine_mode,
+			     enum machine_mode);
+static rtx find_base_value (rtx);
+static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
+static int insert_subset_children (splay_tree_node, void*);
+static tree find_base_decl (tree);
+static alias_set_entry get_alias_set_entry (alias_set_type);
+static const_rtx fixed_scalar_and_varying_struct_p (const_rtx, const_rtx, rtx, rtx,
+						    bool (*) (const_rtx, bool));
+static int aliases_everything_p (const_rtx);
+static bool nonoverlapping_component_refs_p (const_tree, const_tree);
+static tree decl_for_component_ref (tree);
+static rtx adjust_offset_for_component_ref (tree, rtx);
+static int write_dependence_p (const_rtx, const_rtx, int);
+
+static void memory_modified_1 (rtx, const_rtx, void *);
+
+/* Set up all info needed to perform alias analysis on memory references.  */
+
+/* Returns the size in bytes of the mode of X.  */
+#define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
+
+/* Returns nonzero if MEM1 and MEM2 do not alias because they are in
+   different alias sets.  We ignore alias sets in functions making use
+   of variable arguments because the va_arg macros on some systems are
+   not legal ANSI C.  */
+#define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2)			\
+  mems_in_disjoint_alias_sets_p (MEM1, MEM2)
+
+/* Cap the number of passes we make over the insns propagating alias
+   information through set chains.   10 is a completely arbitrary choice.  */
+#define MAX_ALIAS_LOOP_PASSES 10
+
+/* reg_base_value[N] gives an address to which register N is related.
+   If all sets after the first add or subtract to the current value
+   or otherwise modify it so it does not point to a different top level
+   object, reg_base_value[N] is equal to the address part of the source
+   of the first set.
+
+   A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF.  ADDRESS
+   expressions represent certain special values: function arguments and
+   the stack, frame, and argument pointers.
+
+   The contents of an ADDRESS is not normally used, the mode of the
+   ADDRESS determines whether the ADDRESS is a function argument or some
+   other special value.  Pointer equality, not rtx_equal_p, determines whether
+   two ADDRESS expressions refer to the same base address.
+
+   The only use of the contents of an ADDRESS is for determining if the
+   current function performs nonlocal memory memory references for the
+   purposes of marking the function as a constant function.  */
+
+static GTY(()) VEC(rtx,gc) *reg_base_value;
+static rtx *new_reg_base_value;
+
+/* We preserve the copy of old array around to avoid amount of garbage
+   produced.  About 8% of garbage produced were attributed to this
+   array.  */
+static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
+
+/* Static hunks of RTL used by the aliasing code; these are initialized
+   once per function to avoid unnecessary RTL allocations.  */
+static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
+
+#define REG_BASE_VALUE(X)				\
+  (REGNO (X) < VEC_length (rtx, reg_base_value)		\
+   ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
+
+/* Vector indexed by N giving the initial (unchanging) value known for
+   pseudo-register N.  This array is initialized in init_alias_analysis,
+   and does not change until end_alias_analysis is called.  */
+static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
+
+/* Indicates number of valid entries in reg_known_value.  */
+static GTY(()) unsigned int reg_known_value_size;
+
+/* Vector recording for each reg_known_value whether it is due to a
+   REG_EQUIV note.  Future passes (viz., reload) may replace the
+   pseudo with the equivalent expression and so we account for the
+   dependences that would be introduced if that happens.
+
+   The REG_EQUIV notes created in assign_parms may mention the arg
+   pointer, and there are explicit insns in the RTL that modify the
+   arg pointer.  Thus we must ensure that such insns don't get
+   scheduled across each other because that would invalidate the
+   REG_EQUIV notes.  One could argue that the REG_EQUIV notes are
+   wrong, but solving the problem in the scheduler will likely give
+   better code, so we do it here.  */
+static bool *reg_known_equiv_p;
+
+/* True when scanning insns from the start of the rtl to the
+   NOTE_INSN_FUNCTION_BEG note.  */
+static bool copying_arguments;
+
+DEF_VEC_P(alias_set_entry);
+DEF_VEC_ALLOC_P(alias_set_entry,gc);
+
+/* The splay-tree used to store the various alias set entries.  */
+static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
+
+/* Returns a pointer to the alias set entry for ALIAS_SET, if there is
+   such an entry, or NULL otherwise.  */
+
+static inline alias_set_entry
+get_alias_set_entry (alias_set_type alias_set)
+{
+  return VEC_index (alias_set_entry, alias_sets, alias_set);
+}
+
+/* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
+   the two MEMs cannot alias each other.  */
+
+static inline int
+mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
+{
+/* Perform a basic sanity check.  Namely, that there are no alias sets
+   if we're not using strict aliasing.  This helps to catch bugs
+   whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
+   where a MEM is allocated in some way other than by the use of
+   gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared.  If we begin to
+   use alias sets to indicate that spilled registers cannot alias each
+   other, we might need to remove this check.  */
+  gcc_assert (flag_strict_aliasing
+	      || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
+
+  return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
+}
+
+/* Insert the NODE into the splay tree given by DATA.  Used by
+   record_alias_subset via splay_tree_foreach.  */
+
+static int
+insert_subset_children (splay_tree_node node, void *data)
+{
+  splay_tree_insert ((splay_tree) data, node->key, node->value);
+
+  return 0;
+}
+
+/* Return true if the first alias set is a subset of the second.  */
+
+bool
+alias_set_subset_of (alias_set_type set1, alias_set_type set2)
+{
+  alias_set_entry ase;
+
+  /* Everything is a subset of the "aliases everything" set.  */
+  if (set2 == 0)
+    return true;
+
+  /* Otherwise, check if set1 is a subset of set2.  */
+  ase = get_alias_set_entry (set2);
+  if (ase != 0
+      && ((ase->has_zero_child && set1 == 0)
+	  || splay_tree_lookup (ase->children,
+			        (splay_tree_key) set1)))
+    return true;
+  return false;
+}
+
+/* Return 1 if the two specified alias sets may conflict.  */
+
+int
+alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
+{
+  alias_set_entry ase;
+
+  /* The easy case.  */
+  if (alias_sets_must_conflict_p (set1, set2))
+    return 1;
+
+  /* See if the first alias set is a subset of the second.  */
+  ase = get_alias_set_entry (set1);
+  if (ase != 0
+      && (ase->has_zero_child
+	  || splay_tree_lookup (ase->children,
+				(splay_tree_key) set2)))
+    return 1;
+
+  /* Now do the same, but with the alias sets reversed.  */
+  ase = get_alias_set_entry (set2);
+  if (ase != 0
+      && (ase->has_zero_child
+	  || splay_tree_lookup (ase->children,
+				(splay_tree_key) set1)))
+    return 1;
+
+  /* The two alias sets are distinct and neither one is the
+     child of the other.  Therefore, they cannot conflict.  */
+  return 0;
+}
+
+static int
+walk_mems_2 (rtx *x, rtx mem)
+{
+  if (MEM_P (*x))
+    {
+      if (alias_sets_conflict_p (MEM_ALIAS_SET(*x), MEM_ALIAS_SET(mem)))
+        return 1;
+        
+      return -1;  
+    }
+  return 0;
+}
+
+static int
+walk_mems_1 (rtx *x, rtx *pat)
+{
+  if (MEM_P (*x))
+    {
+      /* Visit all MEMs in *PAT and check indepedence.  */
+      if (for_each_rtx (pat, (rtx_function) walk_mems_2, *x))
+        /* Indicate that dependence was determined and stop traversal.  */
+        return 1;
+        
+      return -1;
+    }
+  return 0;
+}
+
+/* Return 1 if two specified instructions have mem expr with conflict alias sets*/
+bool
+insn_alias_sets_conflict_p (rtx insn1, rtx insn2)
+{
+  /* For each pair of MEMs in INSN1 and INSN2 check their independence.  */
+  return  for_each_rtx (&PATTERN (insn1), (rtx_function) walk_mems_1,
+			 &PATTERN (insn2));
+}
+
+/* Return 1 if the two specified alias sets will always conflict.  */
+
+int
+alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
+{
+  if (set1 == 0 || set2 == 0 || set1 == set2)
+    return 1;
+
+  return 0;
+}
+
+/* Return 1 if any MEM object of type T1 will always conflict (using the
+   dependency routines in this file) with any MEM object of type T2.
+   This is used when allocating temporary storage.  If T1 and/or T2 are
+   NULL_TREE, it means we know nothing about the storage.  */
+
+int
+objects_must_conflict_p (tree t1, tree t2)
+{
+  alias_set_type set1, set2;
+
+  /* If neither has a type specified, we don't know if they'll conflict
+     because we may be using them to store objects of various types, for
+     example the argument and local variables areas of inlined functions.  */
+  if (t1 == 0 && t2 == 0)
+    return 0;
+
+  /* If they are the same type, they must conflict.  */
+  if (t1 == t2
+      /* Likewise if both are volatile.  */
+      || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
+    return 1;
+
+  set1 = t1 ? get_alias_set (t1) : 0;
+  set2 = t2 ? get_alias_set (t2) : 0;
+
+  /* We can't use alias_sets_conflict_p because we must make sure
+     that every subtype of t1 will conflict with every subtype of
+     t2 for which a pair of subobjects of these respective subtypes
+     overlaps on the stack.  */
+  return alias_sets_must_conflict_p (set1, set2);
+}
+
+/* T is an expression with pointer type.  Find the DECL on which this
+   expression is based.  (For example, in `a[i]' this would be `a'.)
+   If there is no such DECL, or a unique decl cannot be determined,
+   NULL_TREE is returned.  */
+
+static tree
+find_base_decl (tree t)
+{
+  tree d0, d1;
+
+  if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
+    return 0;
+
+  /* If this is a declaration, return it.  If T is based on a restrict
+     qualified decl, return that decl.  */
+  if (DECL_P (t))
+    {
+      if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
+	t = DECL_GET_RESTRICT_BASE (t);
+      return t;
+    }
+
+  /* Handle general expressions.  It would be nice to deal with
+     COMPONENT_REFs here.  If we could tell that `a' and `b' were the
+     same, then `a->f' and `b->f' are also the same.  */
+  switch (TREE_CODE_CLASS (TREE_CODE (t)))
+    {
+    case tcc_unary:
+      return find_base_decl (TREE_OPERAND (t, 0));
+
+    case tcc_binary:
+      /* Return 0 if found in neither or both are the same.  */
+      d0 = find_base_decl (TREE_OPERAND (t, 0));
+      d1 = find_base_decl (TREE_OPERAND (t, 1));
+      if (d0 == d1)
+	return d0;
+      else if (d0 == 0)
+	return d1;
+      else if (d1 == 0)
+	return d0;
+      else
+	return 0;
+
+    default:
+      return 0;
+    }
+}
+
+/* Return true if all nested component references handled by
+   get_inner_reference in T are such that we should use the alias set
+   provided by the object at the heart of T.
+
+   This is true for non-addressable components (which don't have their
+   own alias set), as well as components of objects in alias set zero.
+   This later point is a special case wherein we wish to override the
+   alias set used by the component, but we don't have per-FIELD_DECL
+   assignable alias sets.  */
+
+bool
+component_uses_parent_alias_set (const_tree t)
+{
+  while (1)
+    {
+      /* If we're at the end, it vacuously uses its own alias set.  */
+      if (!handled_component_p (t))
+	return false;
+
+      switch (TREE_CODE (t))
+	{
+	case COMPONENT_REF:
+	  if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
+	    return true;
+	  break;
+
+	case ARRAY_REF:
+	case ARRAY_RANGE_REF:
+	  if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
+	    return true;
+	  break;
+
+	case REALPART_EXPR:
+	case IMAGPART_EXPR:
+	  break;
+
+	default:
+	  /* Bitfields and casts are never addressable.  */
+	  return true;
+	}
+
+      t = TREE_OPERAND (t, 0);
+      if (get_alias_set (TREE_TYPE (t)) == 0)
+	return true;
+    }
+}
+
+/* Return the alias set for T, which may be either a type or an
+   expression.  Call language-specific routine for help, if needed.  */
+
+alias_set_type
+get_alias_set (tree t)
+{
+  alias_set_type set;
+
+  /* If we're not doing any alias analysis, just assume everything
+     aliases everything else.  Also return 0 if this or its type is
+     an error.  */
+  if (! flag_strict_aliasing || t == error_mark_node
+      || (! TYPE_P (t)
+	  && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
+    return 0;
+
+  /* We can be passed either an expression or a type.  This and the
+     language-specific routine may make mutually-recursive calls to each other
+     to figure out what to do.  At each juncture, we see if this is a tree
+     that the language may need to handle specially.  First handle things that
+     aren't types.  */
+  if (! TYPE_P (t))
+    {
+      tree inner = t;
+
+      /* Remove any nops, then give the language a chance to do
+	 something with this tree before we look at it.  */
+      STRIP_NOPS (t);
+      set = lang_hooks.get_alias_set (t);
+      if (set != -1)
+	return set;
+
+      /* First see if the actual object referenced is an INDIRECT_REF from a
+	 restrict-qualified pointer or a "void *".  */
+      while (handled_component_p (inner))
+	{
+	  inner = TREE_OPERAND (inner, 0);
+	  STRIP_NOPS (inner);
+	}
+
+      /* Check for accesses through restrict-qualified pointers.  */
+      if (INDIRECT_REF_P (inner))
+	{
+	  tree decl;
+
+	  if (TREE_CODE (TREE_OPERAND (inner, 0)) == SSA_NAME)
+	    decl = SSA_NAME_VAR (TREE_OPERAND (inner, 0));
+ 	  else
+	    decl = find_base_decl (TREE_OPERAND (inner, 0));
+
+	  if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
+	    {
+	      /* If we haven't computed the actual alias set, do it now.  */
+	      if (DECL_POINTER_ALIAS_SET (decl) == -2)
+		{
+		  tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
+
+		  /* No two restricted pointers can point at the same thing.
+		     However, a restricted pointer can point at the same thing
+		     as an unrestricted pointer, if that unrestricted pointer
+		     is based on the restricted pointer.  So, we make the
+		     alias set for the restricted pointer a subset of the
+		     alias set for the type pointed to by the type of the
+		     decl.  */
+		  alias_set_type pointed_to_alias_set
+		    = get_alias_set (pointed_to_type);
+
+		  if (pointed_to_alias_set == 0)
+		    /* It's not legal to make a subset of alias set zero.  */
+		    DECL_POINTER_ALIAS_SET (decl) = 0;
+		  else if (AGGREGATE_TYPE_P (pointed_to_type))
+		    /* For an aggregate, we must treat the restricted
+		       pointer the same as an ordinary pointer.  If we
+		       were to make the type pointed to by the
+		       restricted pointer a subset of the pointed-to
+		       type, then we would believe that other subsets
+		       of the pointed-to type (such as fields of that
+		       type) do not conflict with the type pointed to
+		       by the restricted pointer.  */
+		    DECL_POINTER_ALIAS_SET (decl)
+		      = pointed_to_alias_set;
+		  else
+		    {
+		      DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
+		      record_alias_subset (pointed_to_alias_set,
+					   DECL_POINTER_ALIAS_SET (decl));
+		    }
+		}
+
+	      /* We use the alias set indicated in the declaration.  */
+	      return DECL_POINTER_ALIAS_SET (decl);
+	    }
+
+	  /* If we have an INDIRECT_REF via a void pointer, we don't
+	     know anything about what that might alias.  Likewise if the
+	     pointer is marked that way.  */
+	  else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
+		   || (TYPE_REF_CAN_ALIAS_ALL
+		       (TREE_TYPE (TREE_OPERAND (inner, 0)))))
+	    return 0;
+	}
+
+      /* Otherwise, pick up the outermost object that we could have a pointer
+	 to, processing conversions as above.  */
+      while (component_uses_parent_alias_set (t))
+	{
+	  t = TREE_OPERAND (t, 0);
+	  STRIP_NOPS (t);
+	}
+
+      /* If we've already determined the alias set for a decl, just return
+	 it.  This is necessary for C++ anonymous unions, whose component
+	 variables don't look like union members (boo!).  */
+      if (TREE_CODE (t) == VAR_DECL
+	  && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
+	return MEM_ALIAS_SET (DECL_RTL (t));
+
+      /* Now all we care about is the type.  */
+      t = TREE_TYPE (t);
+    }
+
+  /* Variant qualifiers don't affect the alias set, so get the main
+     variant.  Always use the canonical type as well.
+     If this is a type with a known alias set, return it.  */
+  t = TYPE_MAIN_VARIANT (t);
+  if (TYPE_CANONICAL (t))
+    t = TYPE_CANONICAL (t);
+  if (TYPE_ALIAS_SET_KNOWN_P (t))
+    return TYPE_ALIAS_SET (t);
+
+  /* We don't want to set TYPE_ALIAS_SET for incomplete types.  */
+  if (!COMPLETE_TYPE_P (t))
+    {
+      /* For arrays with unknown size the conservative answer is the
+	 alias set of the element type.  */
+      if (TREE_CODE (t) == ARRAY_TYPE)
+	return get_alias_set (TREE_TYPE (t));
+
+      /* But return zero as a conservative answer for incomplete types.  */
+      return 0;
+    }
+
+  /* See if the language has special handling for this type.  */
+  set = lang_hooks.get_alias_set (t);
+  if (set != -1)
+    return set;
+
+  /* There are no objects of FUNCTION_TYPE, so there's no point in
+     using up an alias set for them.  (There are, of course, pointers
+     and references to functions, but that's different.)  */
+  else if (TREE_CODE (t) == FUNCTION_TYPE
+	   || TREE_CODE (t) == METHOD_TYPE)
+    set = 0;
+
+  /* Unless the language specifies otherwise, let vector types alias
+     their components.  This avoids some nasty type punning issues in
+     normal usage.  And indeed lets vectors be treated more like an
+     array slice.  */
+  else if (TREE_CODE (t) == VECTOR_TYPE)
+    set = get_alias_set (TREE_TYPE (t));
+
+  /* Unless the language specifies otherwise, treat array types the
+     same as their components.  This avoids the asymmetry we get
+     through recording the components.  Consider accessing a
+     character(kind=1) through a reference to a character(kind=1)[1:1].
+     Or consider if we want to assign integer(kind=4)[0:D.1387] and
+     integer(kind=4)[4] the same alias set or not.
+     Just be pragmatic here and make sure the array and its element
+     type get the same alias set assigned.  */
+  else if (TREE_CODE (t) == ARRAY_TYPE
+	   && !TYPE_NONALIASED_COMPONENT (t))
+    set = get_alias_set (TREE_TYPE (t));
+
+  else
+    /* Otherwise make a new alias set for this type.  */
+    set = new_alias_set ();
+
+  TYPE_ALIAS_SET (t) = set;
+
+  /* If this is an aggregate type, we must record any component aliasing
+     information.  */
+  if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
+    record_component_aliases (t);
+
+  return set;
+}
+
+/* Return a brand-new alias set.  */
+
+alias_set_type
+new_alias_set (void)
+{
+  if (flag_strict_aliasing)
+    {
+      if (alias_sets == 0)
+	VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
+      VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
+      return VEC_length (alias_set_entry, alias_sets) - 1;
+    }
+  else
+    return 0;
+}
+
+/* Indicate that things in SUBSET can alias things in SUPERSET, but that
+   not everything that aliases SUPERSET also aliases SUBSET.  For example,
+   in C, a store to an `int' can alias a load of a structure containing an
+   `int', and vice versa.  But it can't alias a load of a 'double' member
+   of the same structure.  Here, the structure would be the SUPERSET and
+   `int' the SUBSET.  This relationship is also described in the comment at
+   the beginning of this file.
+
+   This function should be called only once per SUPERSET/SUBSET pair.
+
+   It is illegal for SUPERSET to be zero; everything is implicitly a
+   subset of alias set zero.  */
+
+void
+record_alias_subset (alias_set_type superset, alias_set_type subset)
+{
+  alias_set_entry superset_entry;
+  alias_set_entry subset_entry;
+
+  /* It is possible in complex type situations for both sets to be the same,
+     in which case we can ignore this operation.  */
+  if (superset == subset)
+    return;
+
+  gcc_assert (superset);
+
+  superset_entry = get_alias_set_entry (superset);
+  if (superset_entry == 0)
+    {
+      /* Create an entry for the SUPERSET, so that we have a place to
+	 attach the SUBSET.  */
+      superset_entry = GGC_NEW (struct alias_set_entry);
+      superset_entry->alias_set = superset;
+      superset_entry->children
+	= splay_tree_new_ggc (splay_tree_compare_ints);
+      superset_entry->has_zero_child = 0;
+      VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
+    }
+
+  if (subset == 0)
+    superset_entry->has_zero_child = 1;
+  else
+    {
+      subset_entry = get_alias_set_entry (subset);
+      /* If there is an entry for the subset, enter all of its children
+	 (if they are not already present) as children of the SUPERSET.  */
+      if (subset_entry)
+	{
+	  if (subset_entry->has_zero_child)
+	    superset_entry->has_zero_child = 1;
+
+	  splay_tree_foreach (subset_entry->children, insert_subset_children,
+			      superset_entry->children);
+	}
+
+      /* Enter the SUBSET itself as a child of the SUPERSET.  */
+      splay_tree_insert (superset_entry->children,
+			 (splay_tree_key) subset, 0);
+    }
+}
+
+/* Record that component types of TYPE, if any, are part of that type for
+   aliasing purposes.  For record types, we only record component types
+   for fields that are not marked non-addressable.  For array types, we
+   only record the component type if it is not marked non-aliased.  */
+
+void
+record_component_aliases (tree type)
+{
+  alias_set_type superset = get_alias_set (type);
+  tree field;
+
+  if (superset == 0)
+    return;
+
+  switch (TREE_CODE (type))
+    {
+    case RECORD_TYPE:
+    case UNION_TYPE:
+    case QUAL_UNION_TYPE:
+      /* Recursively record aliases for the base classes, if there are any.  */
+      if (TYPE_BINFO (type))
+	{
+	  int i;
+	  tree binfo, base_binfo;
+
+	  for (binfo = TYPE_BINFO (type), i = 0;
+	       BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
+	    record_alias_subset (superset,
+				 get_alias_set (BINFO_TYPE (base_binfo)));
+	}
+      for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
+	if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
+	  record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
+      break;
+
+    case COMPLEX_TYPE:
+      record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
+      break;
+
+    /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
+       element type.  */
+
+    default:
+      break;
+    }
+}
+
+/* Allocate an alias set for use in storing and reading from the varargs
+   spill area.  */
+
+static GTY(()) alias_set_type varargs_set = -1;
+
+alias_set_type
+get_varargs_alias_set (void)
+{
+#if 1
+  /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
+     varargs alias set to an INDIRECT_REF (FIXME!), so we can't
+     consistently use the varargs alias set for loads from the varargs
+     area.  So don't use it anywhere.  */
+  return 0;
+#else
+  if (varargs_set == -1)
+    varargs_set = new_alias_set ();
+
+  return varargs_set;
+#endif
+}
+
+/* Likewise, but used for the fixed portions of the frame, e.g., register
+   save areas.  */
+
+static GTY(()) alias_set_type frame_set = -1;
+
+alias_set_type
+get_frame_alias_set (void)
+{
+  if (frame_set == -1)
+    frame_set = new_alias_set ();
+
+  return frame_set;
+}
+
+/* Inside SRC, the source of a SET, find a base address.  */
+
+static rtx
+find_base_value (rtx src)
+{
+  unsigned int regno;
+
+#if defined (FIND_BASE_TERM)
+  /* Try machine-dependent ways to find the base term.  */
+  src = FIND_BASE_TERM (src);
+#endif
+
+  switch (GET_CODE (src))
+    {
+    case SYMBOL_REF:
+    case LABEL_REF:
+      return src;
+
+    case REG:
+      regno = REGNO (src);
+      /* At the start of a function, argument registers have known base
+	 values which may be lost later.  Returning an ADDRESS
+	 expression here allows optimization based on argument values
+	 even when the argument registers are used for other purposes.  */
+      if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
+	return new_reg_base_value[regno];
+
+      /* If a pseudo has a known base value, return it.  Do not do this
+	 for non-fixed hard regs since it can result in a circular
+	 dependency chain for registers which have values at function entry.
+
+	 The test above is not sufficient because the scheduler may move
+	 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN.  */
+      if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
+	  && regno < VEC_length (rtx, reg_base_value))
+	{
+	  /* If we're inside init_alias_analysis, use new_reg_base_value
+	     to reduce the number of relaxation iterations.  */
+	  if (new_reg_base_value && new_reg_base_value[regno]
+	      && DF_REG_DEF_COUNT (regno) == 1)
+	    return new_reg_base_value[regno];
+
+	  if (VEC_index (rtx, reg_base_value, regno))
+	    return VEC_index (rtx, reg_base_value, regno);
+	}
+
+      return 0;
+
+    case MEM:
+      /* Check for an argument passed in memory.  Only record in the
+	 copying-arguments block; it is too hard to track changes
+	 otherwise.  */
+      if (copying_arguments
+	  && (XEXP (src, 0) == arg_pointer_rtx
+	      || (GET_CODE (XEXP (src, 0)) == PLUS
+		  && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
+	return gen_rtx_ADDRESS (VOIDmode, src);
+      return 0;
+
+    case CONST:
+      src = XEXP (src, 0);
+      if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
+	break;
+
+      /* ... fall through ...  */
+
+    case PLUS:
+    case MINUS:
+      {
+	rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
+
+	/* If either operand is a REG that is a known pointer, then it
+	   is the base.  */
+	if (REG_P (src_0) && REG_POINTER (src_0))
+	  return find_base_value (src_0);
+	if (REG_P (src_1) && REG_POINTER (src_1))
+	  return find_base_value (src_1);
+
+	/* If either operand is a REG, then see if we already have
+	   a known value for it.  */
+	if (REG_P (src_0))
+	  {
+	    temp = find_base_value (src_0);
+	    if (temp != 0)
+	      src_0 = temp;
+	  }
+
+	if (REG_P (src_1))
+	  {
+	    temp = find_base_value (src_1);
+	    if (temp!= 0)
+	      src_1 = temp;
+	  }
+
+	/* If either base is named object or a special address
+	   (like an argument or stack reference), then use it for the
+	   base term.  */
+	if (src_0 != 0
+	    && (GET_CODE (src_0) == SYMBOL_REF
+		|| GET_CODE (src_0) == LABEL_REF
+		|| (GET_CODE (src_0) == ADDRESS
+		    && GET_MODE (src_0) != VOIDmode)))
+	  return src_0;
+
+	if (src_1 != 0
+	    && (GET_CODE (src_1) == SYMBOL_REF
+		|| GET_CODE (src_1) == LABEL_REF
+		|| (GET_CODE (src_1) == ADDRESS
+		    && GET_MODE (src_1) != VOIDmode)))
+	  return src_1;
+
+	/* Guess which operand is the base address:
+	   If either operand is a symbol, then it is the base.  If
+	   either operand is a CONST_INT, then the other is the base.  */
+	if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
+	  return find_base_value (src_0);
+	else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
+	  return find_base_value (src_1);
+
+	return 0;
+      }
+
+    case LO_SUM:
+      /* The standard form is (lo_sum reg sym) so look only at the
+	 second operand.  */
+      return find_base_value (XEXP (src, 1));
+
+    case AND:
+      /* If the second operand is constant set the base
+	 address to the first operand.  */
+      if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
+	return find_base_value (XEXP (src, 0));
+      return 0;
+
+    case TRUNCATE:
+      if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
+	break;
+      /* Fall through.  */
+    case HIGH:
+    case PRE_INC:
+    case PRE_DEC:
+    case POST_INC:
+    case POST_DEC:
+    case PRE_MODIFY:
+    case POST_MODIFY:
+      return find_base_value (XEXP (src, 0));
+
+    case ZERO_EXTEND:
+    case SIGN_EXTEND:	/* used for NT/Alpha pointers */
+      {
+	rtx temp = find_base_value (XEXP (src, 0));
+
+	if (temp != 0 && CONSTANT_P (temp))
+	  temp = convert_memory_address (Pmode, temp);
+
+	return temp;
+      }
+
+    default:
+      break;
+    }
+
+  return 0;
+}
+
+/* Called from init_alias_analysis indirectly through note_stores.  */
+
+/* While scanning insns to find base values, reg_seen[N] is nonzero if
+   register N has been set in this function.  */
+static char *reg_seen;
+
+/* Addresses which are known not to alias anything else are identified
+   by a unique integer.  */
+static int unique_id;
+
+static void
+record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
+{
+  unsigned regno;
+  rtx src;
+  int n;
+
+  if (!REG_P (dest))
+    return;
+
+  regno = REGNO (dest);
+
+  gcc_assert (regno < VEC_length (rtx, reg_base_value));
+
+  /* If this spans multiple hard registers, then we must indicate that every
+     register has an unusable value.  */
+  if (regno < FIRST_PSEUDO_REGISTER)
+    n = hard_regno_nregs[regno][GET_MODE (dest)];
+  else
+    n = 1;
+  if (n != 1)
+    {
+      while (--n >= 0)
+	{
+	  reg_seen[regno + n] = 1;
+	  new_reg_base_value[regno + n] = 0;
+	}
+      return;
+    }
+
+  if (set)
+    {
+      /* A CLOBBER wipes out any old value but does not prevent a previously
+	 unset register from acquiring a base address (i.e. reg_seen is not
+	 set).  */
+      if (GET_CODE (set) == CLOBBER)
+	{
+	  new_reg_base_value[regno] = 0;
+	  return;
+	}
+      src = SET_SRC (set);
+    }
+  else
+    {
+      if (reg_seen[regno])
+	{
+	  new_reg_base_value[regno] = 0;
+	  return;
+	}
+      reg_seen[regno] = 1;
+      new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
+						   GEN_INT (unique_id++));
+      return;
+    }
+
+  /* If this is not the first set of REGNO, see whether the new value
+     is related to the old one.  There are two cases of interest:
+
+	(1) The register might be assigned an entirely new value
+	    that has the same base term as the original set.
+
+	(2) The set might be a simple self-modification that
+	    cannot change REGNO's base value.
+
+     If neither case holds, reject the original base value as invalid.
+     Note that the following situation is not detected:
+
+	 extern int x, y;  int *p = &x; p += (&y-&x);
+
+     ANSI C does not allow computing the difference of addresses
+     of distinct top level objects.  */
+  if (new_reg_base_value[regno] != 0
+      && find_base_value (src) != new_reg_base_value[regno])
+    switch (GET_CODE (src))
+      {
+      case LO_SUM:
+      case MINUS:
+	if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
+	  new_reg_base_value[regno] = 0;
+	break;
+      case PLUS:
+	/* If the value we add in the PLUS is also a valid base value,
+	   this might be the actual base value, and the original value
+	   an index.  */
+	{
+	  rtx other = NULL_RTX;
+
+	  if (XEXP (src, 0) == dest)
+	    other = XEXP (src, 1);
+	  else if (XEXP (src, 1) == dest)
+	    other = XEXP (src, 0);
+
+	  if (! other || find_base_value (other))
+	    new_reg_base_value[regno] = 0;
+	  break;
+	}
+      case AND:
+	if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
+	  new_reg_base_value[regno] = 0;
+	break;
+      default:
+	new_reg_base_value[regno] = 0;
+	break;
+      }
+  /* If this is the first set of a register, record the value.  */
+  else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
+	   && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
+    new_reg_base_value[regno] = find_base_value (src);
+
+  reg_seen[regno] = 1;
+}
+
+/* If a value is known for REGNO, return it.  */
+
+rtx
+get_reg_known_value (unsigned int regno)
+{
+  if (regno >= FIRST_PSEUDO_REGISTER)
+    {
+      regno -= FIRST_PSEUDO_REGISTER;
+      if (regno < reg_known_value_size)
+	return reg_known_value[regno];
+    }
+  return NULL;
+}
+
+/* Set it.  */
+
+static void
+set_reg_known_value (unsigned int regno, rtx val)
+{
+  if (regno >= FIRST_PSEUDO_REGISTER)
+    {
+      regno -= FIRST_PSEUDO_REGISTER;
+      if (regno < reg_known_value_size)
+	reg_known_value[regno] = val;
+    }
+}
+
+/* Similarly for reg_known_equiv_p.  */
+
+bool
+get_reg_known_equiv_p (unsigned int regno)
+{
+  if (regno >= FIRST_PSEUDO_REGISTER)
+    {
+      regno -= FIRST_PSEUDO_REGISTER;
+      if (regno < reg_known_value_size)
+	return reg_known_equiv_p[regno];
+    }
+  return false;
+}
+
+static void
+set_reg_known_equiv_p (unsigned int regno, bool val)
+{
+  if (regno >= FIRST_PSEUDO_REGISTER)
+    {
+      regno -= FIRST_PSEUDO_REGISTER;
+      if (regno < reg_known_value_size)
+	reg_known_equiv_p[regno] = val;
+    }
+}
+
+
+/* Returns a canonical version of X, from the point of view alias
+   analysis.  (For example, if X is a MEM whose address is a register,
+   and the register has a known value (say a SYMBOL_REF), then a MEM
+   whose address is the SYMBOL_REF is returned.)  */
+
+rtx
+canon_rtx (rtx x)
+{
+  /* Recursively look for equivalences.  */
+  if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
+    {
+      rtx t = get_reg_known_value (REGNO (x));
+      if (t == x)
+	return x;
+      if (t)
+	return canon_rtx (t);
+    }
+
+  if (GET_CODE (x) == PLUS)
+    {
+      rtx x0 = canon_rtx (XEXP (x, 0));
+      rtx x1 = canon_rtx (XEXP (x, 1));
+
+      if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
+	{
+	  if (GET_CODE (x0) == CONST_INT)
+	    return plus_constant (x1, INTVAL (x0));
+	  else if (GET_CODE (x1) == CONST_INT)
+	    return plus_constant (x0, INTVAL (x1));
+	  return gen_rtx_PLUS (GET_MODE (x), x0, x1);
+	}
+    }
+
+  /* This gives us much better alias analysis when called from
+     the loop optimizer.   Note we want to leave the original
+     MEM alone, but need to return the canonicalized MEM with
+     all the flags with their original values.  */
+  else if (MEM_P (x))
+    x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
+
+  return x;
+}
+
+/* Return 1 if X and Y are identical-looking rtx's.
+   Expect that X and Y has been already canonicalized.
+
+   We use the data in reg_known_value above to see if two registers with
+   different numbers are, in fact, equivalent.  */
+
+static int
+rtx_equal_for_memref_p (const_rtx x, const_rtx y)
+{
+  int i;
+  int j;
+  enum rtx_code code;
+  const char *fmt;
+
+  if (x == 0 && y == 0)
+    return 1;
+  if (x == 0 || y == 0)
+    return 0;
+
+  if (x == y)
+    return 1;
+
+  code = GET_CODE (x);
+  /* Rtx's of different codes cannot be equal.  */
+  if (code != GET_CODE (y))
+    return 0;
+
+  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
+     (REG:SI x) and (REG:HI x) are NOT equivalent.  */
+
+  if (GET_MODE (x) != GET_MODE (y))
+    return 0;
+
+  /* Some RTL can be compared without a recursive examination.  */
+  switch (code)
+    {
+    case REG:
+      return REGNO (x) == REGNO (y);
+
+    case LABEL_REF:
+      return XEXP (x, 0) == XEXP (y, 0);
+
+    case SYMBOL_REF:
+      return XSTR (x, 0) == XSTR (y, 0);
+
+    case VALUE:
+    case CONST_INT:
+    case CONST_DOUBLE:
+    case CONST_FIXED:
+      /* There's no need to compare the contents of CONST_DOUBLEs or
+	 CONST_INTs because pointer equality is a good enough
+	 comparison for these nodes.  */
+      return 0;
+
+    default:
+      break;
+    }
+
+  /* canon_rtx knows how to handle plus.  No need to canonicalize.  */
+  if (code == PLUS)
+    return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
+	     && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
+	    || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
+		&& rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
+  /* For commutative operations, the RTX match if the operand match in any
+     order.  Also handle the simple binary and unary cases without a loop.  */
+  if (COMMUTATIVE_P (x))
+    {
+      rtx xop0 = canon_rtx (XEXP (x, 0));
+      rtx yop0 = canon_rtx (XEXP (y, 0));
+      rtx yop1 = canon_rtx (XEXP (y, 1));
+
+      return ((rtx_equal_for_memref_p (xop0, yop0)
+	       && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
+	      || (rtx_equal_for_memref_p (xop0, yop1)
+		  && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
+    }
+  else if (NON_COMMUTATIVE_P (x))
+    {
+      return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
+				      canon_rtx (XEXP (y, 0)))
+	      && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
+					 canon_rtx (XEXP (y, 1))));
+    }
+  else if (UNARY_P (x))
+    return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
+				   canon_rtx (XEXP (y, 0)));
+
+  /* Compare the elements.  If any pair of corresponding elements
+     fail to match, return 0 for the whole things.
+
+     Limit cases to types which actually appear in addresses.  */
+
+  fmt = GET_RTX_FORMAT (code);
+  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+    {
+      switch (fmt[i])
+	{
+	case 'i':
+	  if (XINT (x, i) != XINT (y, i))
+	    return 0;
+	  break;
+
+	case 'E':
+	  /* Two vectors must have the same length.  */
+	  if (XVECLEN (x, i) != XVECLEN (y, i))
+	    return 0;
+
+	  /* And the corresponding elements must match.  */
+	  for (j = 0; j < XVECLEN (x, i); j++)
+	    if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
+					canon_rtx (XVECEXP (y, i, j))) == 0)
+	      return 0;
+	  break;
+
+	case 'e':
+	  if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
+				      canon_rtx (XEXP (y, i))) == 0)
+	    return 0;
+	  break;
+
+	  /* This can happen for asm operands.  */
+	case 's':
+	  if (strcmp (XSTR (x, i), XSTR (y, i)))
+	    return 0;
+	  break;
+
+	/* This can happen for an asm which clobbers memory.  */
+	case '0':
+	  break;
+
+	  /* It is believed that rtx's at this level will never
+	     contain anything but integers and other rtx's,
+	     except for within LABEL_REFs and SYMBOL_REFs.  */
+	default:
+	  gcc_unreachable ();
+	}
+    }
+  return 1;
+}
+
+rtx
+find_base_term (rtx x)
+{
+  cselib_val *val;
+  struct elt_loc_list *l;
+
+#if defined (FIND_BASE_TERM)
+  /* Try machine-dependent ways to find the base term.  */
+  x = FIND_BASE_TERM (x);
+#endif
+
+  switch (GET_CODE (x))
+    {
+    case REG:
+      return REG_BASE_VALUE (x);
+
+    case TRUNCATE:
+      if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
+	return 0;
+      /* Fall through.  */
+    case HIGH:
+    case PRE_INC:
+    case PRE_DEC:
+    case POST_INC:
+    case POST_DEC:
+    case PRE_MODIFY:
+    case POST_MODIFY:
+      return find_base_term (XEXP (x, 0));
+
+    case ZERO_EXTEND:
+    case SIGN_EXTEND:	/* Used for Alpha/NT pointers */
+      {
+	rtx temp = find_base_term (XEXP (x, 0));
+
+	if (temp != 0 && CONSTANT_P (temp))
+	  temp = convert_memory_address (Pmode, temp);
+
+	return temp;
+      }
+
+    case VALUE:
+      val = CSELIB_VAL_PTR (x);
+      if (!val)
+	return 0;
+      for (l = val->locs; l; l = l->next)
+	if ((x = find_base_term (l->loc)) != 0)
+	  return x;
+      return 0;
+
+    case CONST:
+      x = XEXP (x, 0);
+      if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
+	return 0;
+      /* Fall through.  */
+    case LO_SUM:
+      /* The standard form is (lo_sum reg sym) so look only at the
+         second operand.  */
+      return find_base_term (XEXP (x, 1));
+    case PLUS:
+    case MINUS:
+      {
+	rtx tmp1 = XEXP (x, 0);
+	rtx tmp2 = XEXP (x, 1);
+
+	/* This is a little bit tricky since we have to determine which of
+	   the two operands represents the real base address.  Otherwise this
+	   routine may return the index register instead of the base register.
+
+	   That may cause us to believe no aliasing was possible, when in
+	   fact aliasing is possible.
+
+	   We use a few simple tests to guess the base register.  Additional
+	   tests can certainly be added.  For example, if one of the operands
+	   is a shift or multiply, then it must be the index register and the
+	   other operand is the base register.  */
+
+	if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
+	  return find_base_term (tmp2);
+
+	/* If either operand is known to be a pointer, then use it
+	   to determine the base term.  */
+	if (REG_P (tmp1) && REG_POINTER (tmp1))
+	  return find_base_term (tmp1);
+
+	if (REG_P (tmp2) && REG_POINTER (tmp2))
+	  return find_base_term (tmp2);
+
+	/* Neither operand was known to be a pointer.  Go ahead and find the
+	   base term for both operands.  */
+	tmp1 = find_base_term (tmp1);
+	tmp2 = find_base_term (tmp2);
+
+	/* If either base term is named object or a special address
+	   (like an argument or stack reference), then use it for the
+	   base term.  */
+	if (tmp1 != 0
+	    && (GET_CODE (tmp1) == SYMBOL_REF
+		|| GET_CODE (tmp1) == LABEL_REF
+		|| (GET_CODE (tmp1) == ADDRESS
+		    && GET_MODE (tmp1) != VOIDmode)))
+	  return tmp1;
+
+	if (tmp2 != 0
+	    && (GET_CODE (tmp2) == SYMBOL_REF
+		|| GET_CODE (tmp2) == LABEL_REF
+		|| (GET_CODE (tmp2) == ADDRESS
+		    && GET_MODE (tmp2) != VOIDmode)))
+	  return tmp2;
+
+	/* We could not determine which of the two operands was the
+	   base register and which was the index.  So we can determine
+	   nothing from the base alias check.  */
+	return 0;
+      }
+
+    case AND:
+      if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
+	return find_base_term (XEXP (x, 0));
+      return 0;
+
+    case SYMBOL_REF:
+    case LABEL_REF:
+      return x;
+
+    default:
+      return 0;
+    }
+}
+
+/* Return 0 if the addresses X and Y are known to point to different
+   objects, 1 if they might be pointers to the same object.  */
+
+static int
+base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
+		  enum machine_mode y_mode)
+{
+  rtx x_base = find_base_term (x);
+  rtx y_base = find_base_term (y);
+
+  /* If the address itself has no known base see if a known equivalent
+     value has one.  If either address still has no known base, nothing
+     is known about aliasing.  */
+  if (x_base == 0)
+    {
+      rtx x_c;
+
+      if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
+	return 1;
+
+      x_base = find_base_term (x_c);
+      if (x_base == 0)
+	return 1;
+    }
+
+  if (y_base == 0)
+    {
+      rtx y_c;
+      if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
+	return 1;
+
+      y_base = find_base_term (y_c);
+      if (y_base == 0)
+	return 1;
+    }
+
+  /* If the base addresses are equal nothing is known about aliasing.  */
+  if (rtx_equal_p (x_base, y_base))
+    return 1;
+
+  /* The base addresses are different expressions.  If they are not accessed
+     via AND, there is no conflict.  We can bring knowledge of object
+     alignment into play here.  For example, on alpha, "char a, b;" can
+     alias one another, though "char a; long b;" cannot.  AND addesses may
+     implicitly alias surrounding objects; i.e. unaligned access in DImode
+     via AND address can alias all surrounding object types except those
+     with aligment 8 or higher.  */
+  if (GET_CODE (x) == AND && GET_CODE (y) == AND)
+    return 1;
+  if (GET_CODE (x) == AND
+      && (GET_CODE (XEXP (x, 1)) != CONST_INT
+	  || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
+    return 1;
+  if (GET_CODE (y) == AND
+      && (GET_CODE (XEXP (y, 1)) != CONST_INT
+	  || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
+    return 1;
+
+  /* Differing symbols not accessed via AND never alias.  */
+  if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
+    return 0;
+
+  /* If one address is a stack reference there can be no alias:
+     stack references using different base registers do not alias,
+     a stack reference can not alias a parameter, and a stack reference
+     can not alias a global.  */
+  if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
+      || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
+    return 0;
+
+  if (! flag_argument_noalias)
+    return 1;
+
+  if (flag_argument_noalias > 1)
+    return 0;
+
+  /* Weak noalias assertion (arguments are distinct, but may match globals).  */
+  return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
+}
+
+/* Convert the address X into something we can use.  This is done by returning
+   it unchanged unless it is a value; in the latter case we call cselib to get
+   a more useful rtx.  */
+
+rtx
+get_addr (rtx x)
+{
+  cselib_val *v;
+  struct elt_loc_list *l;
+
+  if (GET_CODE (x) != VALUE)
+    return x;
+  v = CSELIB_VAL_PTR (x);
+  if (v)
+    {
+      for (l = v->locs; l; l = l->next)
+	if (CONSTANT_P (l->loc))
+	  return l->loc;
+      for (l = v->locs; l; l = l->next)
+	if (!REG_P (l->loc) && !MEM_P (l->loc))
+	  return l->loc;
+      if (v->locs)
+	return v->locs->loc;
+    }
+  return x;
+}
+
+/*  Return the address of the (N_REFS + 1)th memory reference to ADDR
+    where SIZE is the size in bytes of the memory reference.  If ADDR
+    is not modified by the memory reference then ADDR is returned.  */
+
+static rtx
+addr_side_effect_eval (rtx addr, int size, int n_refs)
+{
+  int offset = 0;
+
+  switch (GET_CODE (addr))
+    {
+    case PRE_INC:
+      offset = (n_refs + 1) * size;
+      break;
+    case PRE_DEC:
+      offset = -(n_refs + 1) * size;
+      break;
+    case POST_INC:
+      offset = n_refs * size;
+      break;
+    case POST_DEC:
+      offset = -n_refs * size;
+      break;
+
+    default:
+      return addr;
+    }
+
+  if (offset)
+    addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
+			 GEN_INT (offset));
+  else
+    addr = XEXP (addr, 0);
+  addr = canon_rtx (addr);
+
+  return addr;
+}
+
+/* Return nonzero if X and Y (memory addresses) could reference the
+   same location in memory.  C is an offset accumulator.  When
+   C is nonzero, we are testing aliases between X and Y + C.
+   XSIZE is the size in bytes of the X reference,
+   similarly YSIZE is the size in bytes for Y.
+   Expect that canon_rtx has been already called for X and Y.
+
+   If XSIZE or YSIZE is zero, we do not know the amount of memory being
+   referenced (the reference was BLKmode), so make the most pessimistic
+   assumptions.
+
+   If XSIZE or YSIZE is negative, we may access memory outside the object
+   being referenced as a side effect.  This can happen when using AND to
+   align memory references, as is done on the Alpha.
+
+   Nice to notice that varying addresses cannot conflict with fp if no
+   local variables had their addresses taken, but that's too hard now.  */
+
+static int
+memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
+{
+  if (GET_CODE (x) == VALUE)
+    x = get_addr (x);
+  if (GET_CODE (y) == VALUE)
+    y = get_addr (y);
+  if (GET_CODE (x) == HIGH)
+    x = XEXP (x, 0);
+  else if (GET_CODE (x) == LO_SUM)
+    x = XEXP (x, 1);
+  else
+    x = addr_side_effect_eval (x, xsize, 0);
+  if (GET_CODE (y) == HIGH)
+    y = XEXP (y, 0);
+  else if (GET_CODE (y) == LO_SUM)
+    y = XEXP (y, 1);
+  else
+    y = addr_side_effect_eval (y, ysize, 0);
+
+  if (rtx_equal_for_memref_p (x, y))
+    {
+      if (xsize <= 0 || ysize <= 0)
+	return 1;
+      if (c >= 0 && xsize > c)
+	return 1;
+      if (c < 0 && ysize+c > 0)
+	return 1;
+      return 0;
+    }
+
+  /* This code used to check for conflicts involving stack references and
+     globals but the base address alias code now handles these cases.  */
+
+  if (GET_CODE (x) == PLUS)
+    {
+      /* The fact that X is canonicalized means that this
+	 PLUS rtx is canonicalized.  */
+      rtx x0 = XEXP (x, 0);
+      rtx x1 = XEXP (x, 1);
+
+      if (GET_CODE (y) == PLUS)
+	{
+	  /* The fact that Y is canonicalized means that this
+	     PLUS rtx is canonicalized.  */
+	  rtx y0 = XEXP (y, 0);
+	  rtx y1 = XEXP (y, 1);
+
+	  if (rtx_equal_for_memref_p (x1, y1))
+	    return memrefs_conflict_p (xsize, x0, ysize, y0, c);
+	  if (rtx_equal_for_memref_p (x0, y0))
+	    return memrefs_conflict_p (xsize, x1, ysize, y1, c);
+	  if (GET_CODE (x1) == CONST_INT)
+	    {
+	      if (GET_CODE (y1) == CONST_INT)
+		return memrefs_conflict_p (xsize, x0, ysize, y0,
+					   c - INTVAL (x1) + INTVAL (y1));
+	      else
+		return memrefs_conflict_p (xsize, x0, ysize, y,
+					   c - INTVAL (x1));
+	    }
+	  else if (GET_CODE (y1) == CONST_INT)
+	    return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
+
+	  return 1;
+	}
+      else if (GET_CODE (x1) == CONST_INT)
+	return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
+    }
+  else if (GET_CODE (y) == PLUS)
+    {
+      /* The fact that Y is canonicalized means that this
+	 PLUS rtx is canonicalized.  */
+      rtx y0 = XEXP (y, 0);
+      rtx y1 = XEXP (y, 1);
+
+      if (GET_CODE (y1) == CONST_INT)
+	return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
+      else
+	return 1;
+    }
+
+  if (GET_CODE (x) == GET_CODE (y))
+    switch (GET_CODE (x))
+      {
+      case MULT:
+	{
+	  /* Handle cases where we expect the second operands to be the
+	     same, and check only whether the first operand would conflict
+	     or not.  */
+	  rtx x0, y0;
+	  rtx x1 = canon_rtx (XEXP (x, 1));
+	  rtx y1 = canon_rtx (XEXP (y, 1));
+	  if (! rtx_equal_for_memref_p (x1, y1))
+	    return 1;
+	  x0 = canon_rtx (XEXP (x, 0));
+	  y0 = canon_rtx (XEXP (y, 0));
+	  if (rtx_equal_for_memref_p (x0, y0))
+	    return (xsize == 0 || ysize == 0
+		    || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
+
+	  /* Can't properly adjust our sizes.  */
+	  if (GET_CODE (x1) != CONST_INT)
+	    return 1;
+	  xsize /= INTVAL (x1);
+	  ysize /= INTVAL (x1);
+	  c /= INTVAL (x1);
+	  return memrefs_conflict_p (xsize, x0, ysize, y0, c);
+	}
+
+      default:
+	break;
+      }
+
+  /* Treat an access through an AND (e.g. a subword access on an Alpha)
+     as an access with indeterminate size.  Assume that references
+     besides AND are aligned, so if the size of the other reference is
+     at least as large as the alignment, assume no other overlap.  */
+  if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
+    {
+      if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
+	xsize = -1;
+      return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
+    }
+  if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
+    {
+      /* ??? If we are indexing far enough into the array/structure, we
+	 may yet be able to determine that we can not overlap.  But we
+	 also need to that we are far enough from the end not to overlap
+	 a following reference, so we do nothing with that for now.  */
+      if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
+	ysize = -1;
+      return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
+    }
+
+  if (CONSTANT_P (x))
+    {
+      if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
+	{
+	  c += (INTVAL (y) - INTVAL (x));
+	  return (xsize <= 0 || ysize <= 0
+		  || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
+	}
+
+      if (GET_CODE (x) == CONST)
+	{
+	  if (GET_CODE (y) == CONST)
+	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
+				       ysize, canon_rtx (XEXP (y, 0)), c);
+	  else
+	    return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
+				       ysize, y, c);
+	}
+      if (GET_CODE (y) == CONST)
+	return memrefs_conflict_p (xsize, x, ysize,
+				   canon_rtx (XEXP (y, 0)), c);
+
+      if (CONSTANT_P (y))
+	return (xsize <= 0 || ysize <= 0
+		|| (rtx_equal_for_memref_p (x, y)
+		    && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
+
+      return 1;
+    }
+  return 1;
+}
+
+/* Functions to compute memory dependencies.
+
+   Since we process the insns in execution order, we can build tables
+   to keep track of what registers are fixed (and not aliased), what registers
+   are varying in known ways, and what registers are varying in unknown
+   ways.
+
+   If both memory references are volatile, then there must always be a
+   dependence between the two references, since their order can not be
+   changed.  A volatile and non-volatile reference can be interchanged
+   though.
+
+   A MEM_IN_STRUCT reference at a non-AND varying address can never
+   conflict with a non-MEM_IN_STRUCT reference at a fixed address.  We
+   also must allow AND addresses, because they may generate accesses
+   outside the object being referenced.  This is used to generate
+   aligned addresses from unaligned addresses, for instance, the alpha
+   storeqi_unaligned pattern.  */
+
+/* Read dependence: X is read after read in MEM takes place.  There can
+   only be a dependence here if both reads are volatile.  */
+
+int
+read_dependence (const_rtx mem, const_rtx x)
+{
+  return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
+}
+
+/* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
+   MEM2 is a reference to a structure at a varying address, or returns
+   MEM2 if vice versa.  Otherwise, returns NULL_RTX.  If a non-NULL
+   value is returned MEM1 and MEM2 can never alias.  VARIES_P is used
+   to decide whether or not an address may vary; it should return
+   nonzero whenever variation is possible.
+   MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2.  */
+
+static const_rtx
+fixed_scalar_and_varying_struct_p (const_rtx mem1, const_rtx mem2, rtx mem1_addr,
+				   rtx mem2_addr,
+				   bool (*varies_p) (const_rtx, bool))
+{
+  if (! flag_strict_aliasing)
+    return NULL_RTX;
+
+  if (MEM_ALIAS_SET (mem2)
+      && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
+      && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
+    /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
+       varying address.  */
+    return mem1;
+
+  if (MEM_ALIAS_SET (mem1)
+      && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
+      && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
+    /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
+       varying address.  */
+    return mem2;
+
+  return NULL_RTX;
+}
+
+/* Returns nonzero if something about the mode or address format MEM1
+   indicates that it might well alias *anything*.  */
+
+static int
+aliases_everything_p (const_rtx mem)
+{
+  if (GET_CODE (XEXP (mem, 0)) == AND)
+    /* If the address is an AND, it's very hard to know at what it is
+       actually pointing.  */
+    return 1;
+
+  return 0;
+}
+
+/* Return true if we can determine that the fields referenced cannot
+   overlap for any pair of objects.  */
+
+static bool
+nonoverlapping_component_refs_p (const_tree x, const_tree y)
+{
+  const_tree fieldx, fieldy, typex, typey, orig_y;
+
+  do
+    {
+      /* The comparison has to be done at a common type, since we don't
+	 know how the inheritance hierarchy works.  */
+      orig_y = y;
+      do
+	{
+	  fieldx = TREE_OPERAND (x, 1);
+	  typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
+
+	  y = orig_y;
+	  do
+	    {
+	      fieldy = TREE_OPERAND (y, 1);
+	      typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
+
+	      if (typex == typey)
+		goto found;
+
+	      y = TREE_OPERAND (y, 0);
+	    }
+	  while (y && TREE_CODE (y) == COMPONENT_REF);
+
+	  x = TREE_OPERAND (x, 0);
+	}
+      while (x && TREE_CODE (x) == COMPONENT_REF);
+      /* Never found a common type.  */
+      return false;
+
+    found:
+      /* If we're left with accessing different fields of a structure,
+	 then no overlap.  */
+      if (TREE_CODE (typex) == RECORD_TYPE
+	  && fieldx != fieldy)
+	return true;
+
+      /* The comparison on the current field failed.  If we're accessing
+	 a very nested structure, look at the next outer level.  */
+      x = TREE_OPERAND (x, 0);
+      y = TREE_OPERAND (y, 0);
+    }
+  while (x && y
+	 && TREE_CODE (x) == COMPONENT_REF
+	 && TREE_CODE (y) == COMPONENT_REF);
+
+  return false;
+}
+
+/* Look at the bottom of the COMPONENT_REF list for a DECL, and return it.  */
+
+static tree
+decl_for_component_ref (tree x)
+{
+  do
+    {
+      x = TREE_OPERAND (x, 0);
+    }
+  while (x && TREE_CODE (x) == COMPONENT_REF);
+
+  return x && DECL_P (x) ? x : NULL_TREE;
+}
+
+/* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
+   offset of the field reference.  */
+
+static rtx
+adjust_offset_for_component_ref (tree x, rtx offset)
+{
+  HOST_WIDE_INT ioffset;
+
+  if (! offset)
+    return NULL_RTX;
+
+  ioffset = INTVAL (offset);
+  do
+    {
+      tree offset = component_ref_field_offset (x);
+      tree field = TREE_OPERAND (x, 1);
+
+      if (! host_integerp (offset, 1))
+	return NULL_RTX;
+      ioffset += (tree_low_cst (offset, 1)
+		  + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
+		     / BITS_PER_UNIT));
+
+      x = TREE_OPERAND (x, 0);
+    }
+  while (x && TREE_CODE (x) == COMPONENT_REF);
+
+  return GEN_INT (ioffset);
+}
+
+/* Return nonzero if we can determine the exprs corresponding to memrefs
+   X and Y and they do not overlap.  */
+
+int
+nonoverlapping_memrefs_p (const_rtx x, const_rtx y)
+{
+  tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
+  rtx rtlx, rtly;
+  rtx basex, basey;
+  rtx moffsetx, moffsety;
+  HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
+
+  /* Unless both have exprs, we can't tell anything.  */
+  if (exprx == 0 || expry == 0)
+    return 0;
+
+  /* If both are field references, we may be able to determine something.  */
+  if (TREE_CODE (exprx) == COMPONENT_REF
+      && TREE_CODE (expry) == COMPONENT_REF
+      && nonoverlapping_component_refs_p (exprx, expry))
+    return 1;
+
+
+  /* If the field reference test failed, look at the DECLs involved.  */
+  moffsetx = MEM_OFFSET (x);
+  if (TREE_CODE (exprx) == COMPONENT_REF)
+    {
+      if (TREE_CODE (expry) == VAR_DECL
+	  && POINTER_TYPE_P (TREE_TYPE (expry)))
+	{
+	 tree field = TREE_OPERAND (exprx, 1);
+	 tree fieldcontext = DECL_FIELD_CONTEXT (field);
+	 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
+						       TREE_TYPE (field)))
+	   return 1;
+	}
+      {
+	tree t = decl_for_component_ref (exprx);
+	if (! t)
+	  return 0;
+	moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
+	exprx = t;
+      }
+    }
+  else if (INDIRECT_REF_P (exprx))
+    {
+      exprx = TREE_OPERAND (exprx, 0);
+      if (flag_argument_noalias < 2
+	  || TREE_CODE (exprx) != PARM_DECL)
+	return 0;
+    }
+
+  moffsety = MEM_OFFSET (y);
+  if (TREE_CODE (expry) == COMPONENT_REF)
+    {
+      if (TREE_CODE (exprx) == VAR_DECL
+	  && POINTER_TYPE_P (TREE_TYPE (exprx)))
+	{
+	 tree field = TREE_OPERAND (expry, 1);
+	 tree fieldcontext = DECL_FIELD_CONTEXT (field);
+	 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
+						       TREE_TYPE (field)))
+	   return 1;
+	}
+      {
+	tree t = decl_for_component_ref (expry);
+	if (! t)
+	  return 0;
+	moffsety = adjust_offset_for_component_ref (expry, moffsety);
+	expry = t;
+      }
+    }
+  else if (INDIRECT_REF_P (expry))
+    {
+      expry = TREE_OPERAND (expry, 0);
+      if (flag_argument_noalias < 2
+	  || TREE_CODE (expry) != PARM_DECL)
+	return 0;
+    }
+
+  if (! DECL_P (exprx) || ! DECL_P (expry))
+    return 0;
+
+  rtlx = DECL_RTL (exprx);
+  rtly = DECL_RTL (expry);
+
+  /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
+     can't overlap unless they are the same because we never reuse that part
+     of the stack frame used for locals for spilled pseudos.  */
+  if ((!MEM_P (rtlx) || !MEM_P (rtly))
+      && ! rtx_equal_p (rtlx, rtly))
+    return 1;
+
+  /* Get the base and offsets of both decls.  If either is a register, we
+     know both are and are the same, so use that as the base.  The only
+     we can avoid overlap is if we can deduce that they are nonoverlapping
+     pieces of that decl, which is very rare.  */
+  basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
+  if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
+    offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
+
+  basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
+  if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
+    offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
+
+  /* If the bases are different, we know they do not overlap if both
+     are constants or if one is a constant and the other a pointer into the
+     stack frame.  Otherwise a different base means we can't tell if they
+     overlap or not.  */
+  if (! rtx_equal_p (basex, basey))
+    return ((CONSTANT_P (basex) && CONSTANT_P (basey))
+	    || (CONSTANT_P (basex) && REG_P (basey)
+		&& REGNO_PTR_FRAME_P (REGNO (basey)))
+	    || (CONSTANT_P (basey) && REG_P (basex)
+		&& REGNO_PTR_FRAME_P (REGNO (basex))));
+
+  sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
+	   : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
+	   : -1);
+  sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
+	   : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
+	   -1);
+
+  /* If we have an offset for either memref, it can update the values computed
+     above.  */
+  if (moffsetx)
+    offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
+  if (moffsety)
+    offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
+
+  /* If a memref has both a size and an offset, we can use the smaller size.
+     We can't do this if the offset isn't known because we must view this
+     memref as being anywhere inside the DECL's MEM.  */
+  if (MEM_SIZE (x) && moffsetx)
+    sizex = INTVAL (MEM_SIZE (x));
+  if (MEM_SIZE (y) && moffsety)
+    sizey = INTVAL (MEM_SIZE (y));
+
+  /* Put the values of the memref with the lower offset in X's values.  */
+  if (offsetx > offsety)
+    {
+      tem = offsetx, offsetx = offsety, offsety = tem;
+      tem = sizex, sizex = sizey, sizey = tem;
+    }
+
+  /* If we don't know the size of the lower-offset value, we can't tell
+     if they conflict.  Otherwise, we do the test.  */
+  return sizex >= 0 && offsety >= offsetx + sizex;
+}
+
+/* True dependence: X is read after store in MEM takes place.  */
+
+int
+true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x,
+		 bool (*varies) (const_rtx, bool))
+{
+  rtx x_addr, mem_addr;
+  rtx base;
+
+  if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
+    return 1;
+
+  /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
+     This is used in epilogue deallocation functions, and in cselib.  */
+  if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
+    return 1;
+  if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
+    return 1;
+  if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
+      || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
+    return 1;
+
+  if (DIFFERENT_ALIAS_SETS_P (x, mem))
+    return 0;
+
+  /* Read-only memory is by definition never modified, and therefore can't
+     conflict with anything.  We don't expect to find read-only set on MEM,
+     but stupid user tricks can produce them, so don't die.  */
+  if (MEM_READONLY_P (x))
+    return 0;
+
+  if (nonoverlapping_memrefs_p (mem, x))
+    return 0;
+
+  if (mem_mode == VOIDmode)
+    mem_mode = GET_MODE (mem);
+
+  x_addr = get_addr (XEXP (x, 0));
+  mem_addr = get_addr (XEXP (mem, 0));
+
+  base = find_base_term (x_addr);
+  if (base && (GET_CODE (base) == LABEL_REF
+	       || (GET_CODE (base) == SYMBOL_REF
+		   && CONSTANT_POOL_ADDRESS_P (base))))
+    return 0;
+
+  if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
+    return 0;
+
+  x_addr = canon_rtx (x_addr);
+  mem_addr = canon_rtx (mem_addr);
+
+  if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
+			    SIZE_FOR_MODE (x), x_addr, 0))
+    return 0;
+
+  if (aliases_everything_p (x))
+    return 1;
+
+  /* We cannot use aliases_everything_p to test MEM, since we must look
+     at MEM_MODE, rather than GET_MODE (MEM).  */
+  if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
+    return 1;
+
+  /* In true_dependence we also allow BLKmode to alias anything.  Why
+     don't we do this in anti_dependence and output_dependence?  */
+  if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
+    return 1;
+
+  return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
+					      varies);
+}
+
+/* Canonical true dependence: X is read after store in MEM takes place.
+   Variant of true_dependence which assumes MEM has already been
+   canonicalized (hence we no longer do that here).
+   The mem_addr argument has been added, since true_dependence computed
+   this value prior to canonicalizing.  */
+
+int
+canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
+		       const_rtx x, bool (*varies) (const_rtx, bool))
+{
+  rtx x_addr;
+
+  if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
+    return 1;
+
+  /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
+     This is used in epilogue deallocation functions.  */
+  if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
+    return 1;
+  if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
+    return 1;
+  if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
+      || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
+    return 1;
+
+  if (DIFFERENT_ALIAS_SETS_P (x, mem))
+    return 0;
+
+  /* Read-only memory is by definition never modified, and therefore can't
+     conflict with anything.  We don't expect to find read-only set on MEM,
+     but stupid user tricks can produce them, so don't die.  */
+  if (MEM_READONLY_P (x))
+    return 0;
+
+  if (nonoverlapping_memrefs_p (x, mem))
+    return 0;
+
+  x_addr = get_addr (XEXP (x, 0));
+
+  if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
+    return 0;
+
+  x_addr = canon_rtx (x_addr);
+  if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
+			    SIZE_FOR_MODE (x), x_addr, 0))
+    return 0;
+
+  if (aliases_everything_p (x))
+    return 1;
+
+  /* We cannot use aliases_everything_p to test MEM, since we must look
+     at MEM_MODE, rather than GET_MODE (MEM).  */
+  if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
+    return 1;
+
+  /* In true_dependence we also allow BLKmode to alias anything.  Why
+     don't we do this in anti_dependence and output_dependence?  */
+  if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
+    return 1;
+
+  return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
+					      varies);
+}
+
+/* Returns nonzero if a write to X might alias a previous read from
+   (or, if WRITEP is nonzero, a write to) MEM.  */
+
+static int
+write_dependence_p (const_rtx mem, const_rtx x, int writep)
+{
+  rtx x_addr, mem_addr;
+  const_rtx fixed_scalar;
+  rtx base;
+
+  if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
+    return 1;
+
+  /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
+     This is used in epilogue deallocation functions.  */
+  if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
+    return 1;
+  if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
+    return 1;
+  if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
+      || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
+    return 1;
+
+  if (DIFFERENT_ALIAS_SETS_P (x, mem))
+    return 0;
+
+  /* A read from read-only memory can't conflict with read-write memory.  */
+  if (!writep && MEM_READONLY_P (mem))
+    return 0;
+
+  if (nonoverlapping_memrefs_p (x, mem))
+    return 0;
+
+  x_addr = get_addr (XEXP (x, 0));
+  mem_addr = get_addr (XEXP (mem, 0));
+
+  if (! writep)
+    {
+      base = find_base_term (mem_addr);
+      if (base && (GET_CODE (base) == LABEL_REF
+		   || (GET_CODE (base) == SYMBOL_REF
+		       && CONSTANT_POOL_ADDRESS_P (base))))
+	return 0;
+    }
+
+  if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
+			  GET_MODE (mem)))
+    return 0;
+
+  x_addr = canon_rtx (x_addr);
+  mem_addr = canon_rtx (mem_addr);
+
+  if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
+			   SIZE_FOR_MODE (x), x_addr, 0))
+    return 0;
+
+  fixed_scalar
+    = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
+					 rtx_addr_varies_p);
+
+  return (!(fixed_scalar == mem && !aliases_everything_p (x))
+	  && !(fixed_scalar == x && !aliases_everything_p (mem)));
+}
+
+/* Anti dependence: X is written after read in MEM takes place.  */
+
+int
+anti_dependence (const_rtx mem, const_rtx x)
+{
+  return write_dependence_p (mem, x, /*writep=*/0);
+}
+
+/* Output dependence: X is written after store in MEM takes place.  */
+
+int
+output_dependence (const_rtx mem, const_rtx x)
+{
+  return write_dependence_p (mem, x, /*writep=*/1);
+}
+
+
+void
+init_alias_target (void)
+{
+  int i;
+
+  memset (static_reg_base_value, 0, sizeof static_reg_base_value);
+
+  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+    /* Check whether this register can hold an incoming pointer
+       argument.  FUNCTION_ARG_REGNO_P tests outgoing register
+       numbers, so translate if necessary due to register windows.  */
+    if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
+	&& HARD_REGNO_MODE_OK (i, Pmode))
+      static_reg_base_value[i]
+	= gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
+
+  static_reg_base_value[STACK_POINTER_REGNUM]
+    = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
+  static_reg_base_value[ARG_POINTER_REGNUM]
+    = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
+  static_reg_base_value[FRAME_POINTER_REGNUM]
+    = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
+#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
+  static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
+    = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
+#endif
+}
+
+/* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
+   to be memory reference.  */
+static bool memory_modified;
+static void
+memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
+{
+  if (MEM_P (x))
+    {
+      if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
+	memory_modified = true;
+    }
+}
+
+
+/* Return true when INSN possibly modify memory contents of MEM
+   (i.e. address can be modified).  */
+bool
+memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
+{
+  if (!INSN_P (insn))
+    return false;
+  memory_modified = false;
+  note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
+  return memory_modified;
+}
+
+/* Initialize the aliasing machinery.  Initialize the REG_KNOWN_VALUE
+   array.  */
+
+void
+init_alias_analysis (void)
+{
+  unsigned int maxreg = max_reg_num ();
+  int changed, pass;
+  int i;
+  unsigned int ui;
+  rtx insn;
+
+  timevar_push (TV_ALIAS_ANALYSIS);
+
+  reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
+  reg_known_value = GGC_CNEWVEC (rtx, reg_known_value_size);
+  reg_known_equiv_p = XCNEWVEC (bool, reg_known_value_size);
+
+  /* If we have memory allocated from the previous run, use it.  */
+  if (old_reg_base_value)
+    reg_base_value = old_reg_base_value;
+
+  if (reg_base_value)
+    VEC_truncate (rtx, reg_base_value, 0);
+
+  VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
+
+  new_reg_base_value = XNEWVEC (rtx, maxreg);
+  reg_seen = XNEWVEC (char, maxreg);
+
+  /* The basic idea is that each pass through this loop will use the
+     "constant" information from the previous pass to propagate alias
+     information through another level of assignments.
+
+     This could get expensive if the assignment chains are long.  Maybe
+     we should throttle the number of iterations, possibly based on
+     the optimization level or flag_expensive_optimizations.
+
+     We could propagate more information in the first pass by making use
+     of DF_REG_DEF_COUNT to determine immediately that the alias information
+     for a pseudo is "constant".
+
+     A program with an uninitialized variable can cause an infinite loop
+     here.  Instead of doing a full dataflow analysis to detect such problems
+     we just cap the number of iterations for the loop.
+
+     The state of the arrays for the set chain in question does not matter
+     since the program has undefined behavior.  */
+
+  pass = 0;
+  do
+    {
+      /* Assume nothing will change this iteration of the loop.  */
+      changed = 0;
+
+      /* We want to assign the same IDs each iteration of this loop, so
+	 start counting from zero each iteration of the loop.  */
+      unique_id = 0;
+
+      /* We're at the start of the function each iteration through the
+	 loop, so we're copying arguments.  */
+      copying_arguments = true;
+
+      /* Wipe the potential alias information clean for this pass.  */
+      memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
+
+      /* Wipe the reg_seen array clean.  */
+      memset (reg_seen, 0, maxreg);
+
+      /* Mark all hard registers which may contain an address.
+	 The stack, frame and argument pointers may contain an address.
+	 An argument register which can hold a Pmode value may contain
+	 an address even if it is not in BASE_REGS.
+
+	 The address expression is VOIDmode for an argument and
+	 Pmode for other registers.  */
+
+      memcpy (new_reg_base_value, static_reg_base_value,
+	      FIRST_PSEUDO_REGISTER * sizeof (rtx));
+
+      /* Walk the insns adding values to the new_reg_base_value array.  */
+      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+	{
+	  if (INSN_P (insn))
+	    {
+	      rtx note, set;
+
+#if defined (HAVE_prologue) || defined (HAVE_epilogue)
+	      /* The prologue/epilogue insns are not threaded onto the
+		 insn chain until after reload has completed.  Thus,
+		 there is no sense wasting time checking if INSN is in
+		 the prologue/epilogue until after reload has completed.  */
+	      if (reload_completed
+		  && prologue_epilogue_contains (insn))
+		continue;
+#endif
+
+	      /* If this insn has a noalias note, process it,  Otherwise,
+		 scan for sets.  A simple set will have no side effects
+		 which could change the base value of any other register.  */
+
+	      if (GET_CODE (PATTERN (insn)) == SET
+		  && REG_NOTES (insn) != 0
+		  && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
+		record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
+	      else
+		note_stores (PATTERN (insn), record_set, NULL);
+
+	      set = single_set (insn);
+
+	      if (set != 0
+		  && REG_P (SET_DEST (set))
+		  && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
+		{
+		  unsigned int regno = REGNO (SET_DEST (set));
+		  rtx src = SET_SRC (set);
+		  rtx t;
+
+		  note = find_reg_equal_equiv_note (insn);
+		  if (note && REG_NOTE_KIND (note) == REG_EQUAL
+		      && DF_REG_DEF_COUNT (regno) != 1)
+		    note = NULL_RTX;
+
+		  if (note != NULL_RTX
+		      && GET_CODE (XEXP (note, 0)) != EXPR_LIST
+		      && ! rtx_varies_p (XEXP (note, 0), 1)
+		      && ! reg_overlap_mentioned_p (SET_DEST (set),
+						    XEXP (note, 0)))
+		    {
+		      set_reg_known_value (regno, XEXP (note, 0));
+		      set_reg_known_equiv_p (regno,
+			REG_NOTE_KIND (note) == REG_EQUIV);
+		    }
+		  else if (DF_REG_DEF_COUNT (regno) == 1
+			   && GET_CODE (src) == PLUS
+			   && REG_P (XEXP (src, 0))
+			   && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
+			   && GET_CODE (XEXP (src, 1)) == CONST_INT)
+		    {
+		      t = plus_constant (t, INTVAL (XEXP (src, 1)));
+		      set_reg_known_value (regno, t);
+		      set_reg_known_equiv_p (regno, 0);
+		    }
+		  else if (DF_REG_DEF_COUNT (regno) == 1
+			   && ! rtx_varies_p (src, 1))
+		    {
+		      set_reg_known_value (regno, src);
+		      set_reg_known_equiv_p (regno, 0);
+		    }
+		}
+	    }
+	  else if (NOTE_P (insn)
+		   && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
+	    copying_arguments = false;
+	}
+
+      /* Now propagate values from new_reg_base_value to reg_base_value.  */
+      gcc_assert (maxreg == (unsigned int) max_reg_num ());
+
+      for (ui = 0; ui < maxreg; ui++)
+	{
+	  if (new_reg_base_value[ui]
+	      && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
+	      && ! rtx_equal_p (new_reg_base_value[ui],
+				VEC_index (rtx, reg_base_value, ui)))
+	    {
+	      VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
+	      changed = 1;
+	    }
+	}
+    }
+  while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
+
+  /* Fill in the remaining entries.  */
+  for (i = 0; i < (int)reg_known_value_size; i++)
+    if (reg_known_value[i] == 0)
+      reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
+
+  /* Clean up.  */
+  free (new_reg_base_value);
+  new_reg_base_value = 0;
+  free (reg_seen);
+  reg_seen = 0;
+  timevar_pop (TV_ALIAS_ANALYSIS);
+}
+
+void
+end_alias_analysis (void)
+{
+  old_reg_base_value = reg_base_value;
+  ggc_free (reg_known_value);
+  reg_known_value = 0;
+  reg_known_value_size = 0;
+  free (reg_known_equiv_p);
+  reg_known_equiv_p = 0;
+}
+
+#include "gt-alias.h"