Mercurial > hg > CbC > CbC_gcc
diff gcc/convert.c @ 0:a06113de4d67
first commit
author | kent <kent@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Jul 2009 14:47:48 +0900 |
parents | |
children | 58ad6c70ea60 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gcc/convert.c Fri Jul 17 14:47:48 2009 +0900 @@ -0,0 +1,892 @@ +/* Utility routines for data type conversion for GCC. + Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998, + 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 + Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + + +/* These routines are somewhat language-independent utility function + intended to be called by the language-specific convert () functions. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "tree.h" +#include "flags.h" +#include "convert.h" +#include "toplev.h" +#include "langhooks.h" +#include "real.h" +#include "fixed-value.h" + +/* Convert EXPR to some pointer or reference type TYPE. + EXPR must be pointer, reference, integer, enumeral, or literal zero; + in other cases error is called. */ + +tree +convert_to_pointer (tree type, tree expr) +{ + if (TREE_TYPE (expr) == type) + return expr; + + /* Propagate overflow to the NULL pointer. */ + if (integer_zerop (expr)) + return force_fit_type_double (type, 0, 0, 0, TREE_OVERFLOW (expr)); + + switch (TREE_CODE (TREE_TYPE (expr))) + { + case POINTER_TYPE: + case REFERENCE_TYPE: + return fold_build1 (NOP_EXPR, type, expr); + + case INTEGER_TYPE: + case ENUMERAL_TYPE: + case BOOLEAN_TYPE: + if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE) + expr = fold_build1 (NOP_EXPR, + lang_hooks.types.type_for_size (POINTER_SIZE, 0), + expr); + return fold_build1 (CONVERT_EXPR, type, expr); + + + default: + error ("cannot convert to a pointer type"); + return convert_to_pointer (type, integer_zero_node); + } +} + +/* Avoid any floating point extensions from EXP. */ +tree +strip_float_extensions (tree exp) +{ + tree sub, expt, subt; + + /* For floating point constant look up the narrowest type that can hold + it properly and handle it like (type)(narrowest_type)constant. + This way we can optimize for instance a=a*2.0 where "a" is float + but 2.0 is double constant. */ + if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp))) + { + REAL_VALUE_TYPE orig; + tree type = NULL; + + orig = TREE_REAL_CST (exp); + if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node) + && exact_real_truncate (TYPE_MODE (float_type_node), &orig)) + type = float_type_node; + else if (TYPE_PRECISION (TREE_TYPE (exp)) + > TYPE_PRECISION (double_type_node) + && exact_real_truncate (TYPE_MODE (double_type_node), &orig)) + type = double_type_node; + if (type) + return build_real (type, real_value_truncate (TYPE_MODE (type), orig)); + } + + if (!CONVERT_EXPR_P (exp)) + return exp; + + sub = TREE_OPERAND (exp, 0); + subt = TREE_TYPE (sub); + expt = TREE_TYPE (exp); + + if (!FLOAT_TYPE_P (subt)) + return exp; + + if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt)) + return exp; + + if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt)) + return exp; + + return strip_float_extensions (sub); +} + + +/* Convert EXPR to some floating-point type TYPE. + + EXPR must be float, fixed-point, integer, or enumeral; + in other cases error is called. */ + +tree +convert_to_real (tree type, tree expr) +{ + enum built_in_function fcode = builtin_mathfn_code (expr); + tree itype = TREE_TYPE (expr); + + /* Disable until we figure out how to decide whether the functions are + present in runtime. */ + /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */ + if (optimize + && (TYPE_MODE (type) == TYPE_MODE (double_type_node) + || TYPE_MODE (type) == TYPE_MODE (float_type_node))) + { + switch (fcode) + { +#define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L: + CASE_MATHFN (COSH) + CASE_MATHFN (EXP) + CASE_MATHFN (EXP10) + CASE_MATHFN (EXP2) + CASE_MATHFN (EXPM1) + CASE_MATHFN (GAMMA) + CASE_MATHFN (J0) + CASE_MATHFN (J1) + CASE_MATHFN (LGAMMA) + CASE_MATHFN (POW10) + CASE_MATHFN (SINH) + CASE_MATHFN (TGAMMA) + CASE_MATHFN (Y0) + CASE_MATHFN (Y1) + /* The above functions may set errno differently with float + input or output so this transformation is not safe with + -fmath-errno. */ + if (flag_errno_math) + break; + CASE_MATHFN (ACOS) + CASE_MATHFN (ACOSH) + CASE_MATHFN (ASIN) + CASE_MATHFN (ASINH) + CASE_MATHFN (ATAN) + CASE_MATHFN (ATANH) + CASE_MATHFN (CBRT) + CASE_MATHFN (COS) + CASE_MATHFN (ERF) + CASE_MATHFN (ERFC) + CASE_MATHFN (FABS) + CASE_MATHFN (LOG) + CASE_MATHFN (LOG10) + CASE_MATHFN (LOG2) + CASE_MATHFN (LOG1P) + CASE_MATHFN (LOGB) + CASE_MATHFN (SIN) + CASE_MATHFN (SQRT) + CASE_MATHFN (TAN) + CASE_MATHFN (TANH) +#undef CASE_MATHFN + { + tree arg0 = strip_float_extensions (CALL_EXPR_ARG (expr, 0)); + tree newtype = type; + + /* We have (outertype)sqrt((innertype)x). Choose the wider mode from + the both as the safe type for operation. */ + if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type)) + newtype = TREE_TYPE (arg0); + + /* Be careful about integer to fp conversions. + These may overflow still. */ + if (FLOAT_TYPE_P (TREE_TYPE (arg0)) + && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype) + && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node) + || TYPE_MODE (newtype) == TYPE_MODE (float_type_node))) + { + tree fn = mathfn_built_in (newtype, fcode); + + if (fn) + { + tree arg = fold (convert_to_real (newtype, arg0)); + expr = build_call_expr (fn, 1, arg); + if (newtype == type) + return expr; + } + } + } + default: + break; + } + } + if (optimize + && (((fcode == BUILT_IN_FLOORL + || fcode == BUILT_IN_CEILL + || fcode == BUILT_IN_ROUNDL + || fcode == BUILT_IN_RINTL + || fcode == BUILT_IN_TRUNCL + || fcode == BUILT_IN_NEARBYINTL) + && (TYPE_MODE (type) == TYPE_MODE (double_type_node) + || TYPE_MODE (type) == TYPE_MODE (float_type_node))) + || ((fcode == BUILT_IN_FLOOR + || fcode == BUILT_IN_CEIL + || fcode == BUILT_IN_ROUND + || fcode == BUILT_IN_RINT + || fcode == BUILT_IN_TRUNC + || fcode == BUILT_IN_NEARBYINT) + && (TYPE_MODE (type) == TYPE_MODE (float_type_node))))) + { + tree fn = mathfn_built_in (type, fcode); + + if (fn) + { + tree arg = strip_float_extensions (CALL_EXPR_ARG (expr, 0)); + + /* Make sure (type)arg0 is an extension, otherwise we could end up + changing (float)floor(double d) into floorf((float)d), which is + incorrect because (float)d uses round-to-nearest and can round + up to the next integer. */ + if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg))) + return build_call_expr (fn, 1, fold (convert_to_real (type, arg))); + } + } + + /* Propagate the cast into the operation. */ + if (itype != type && FLOAT_TYPE_P (type)) + switch (TREE_CODE (expr)) + { + /* Convert (float)-x into -(float)x. This is safe for + round-to-nearest rounding mode. */ + case ABS_EXPR: + case NEGATE_EXPR: + if (!flag_rounding_math + && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr))) + return build1 (TREE_CODE (expr), type, + fold (convert_to_real (type, + TREE_OPERAND (expr, 0)))); + break; + /* Convert (outertype)((innertype0)a+(innertype1)b) + into ((newtype)a+(newtype)b) where newtype + is the widest mode from all of these. */ + case PLUS_EXPR: + case MINUS_EXPR: + case MULT_EXPR: + case RDIV_EXPR: + { + tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0)); + tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1)); + + if (FLOAT_TYPE_P (TREE_TYPE (arg0)) + && FLOAT_TYPE_P (TREE_TYPE (arg1)) + && DECIMAL_FLOAT_TYPE_P (itype) == DECIMAL_FLOAT_TYPE_P (type)) + { + tree newtype = type; + + if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode + || TYPE_MODE (TREE_TYPE (arg1)) == SDmode + || TYPE_MODE (type) == SDmode) + newtype = dfloat32_type_node; + if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode + || TYPE_MODE (TREE_TYPE (arg1)) == DDmode + || TYPE_MODE (type) == DDmode) + newtype = dfloat64_type_node; + if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode + || TYPE_MODE (TREE_TYPE (arg1)) == TDmode + || TYPE_MODE (type) == TDmode) + newtype = dfloat128_type_node; + if (newtype == dfloat32_type_node + || newtype == dfloat64_type_node + || newtype == dfloat128_type_node) + { + expr = build2 (TREE_CODE (expr), newtype, + fold (convert_to_real (newtype, arg0)), + fold (convert_to_real (newtype, arg1))); + if (newtype == type) + return expr; + break; + } + + if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype)) + newtype = TREE_TYPE (arg0); + if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype)) + newtype = TREE_TYPE (arg1); + /* Sometimes this transformation is safe (cannot + change results through affecting double rounding + cases) and sometimes it is not. If NEWTYPE is + wider than TYPE, e.g. (float)((long double)double + + (long double)double) converted to + (float)(double + double), the transformation is + unsafe regardless of the details of the types + involved; double rounding can arise if the result + of NEWTYPE arithmetic is a NEWTYPE value half way + between two representable TYPE values but the + exact value is sufficiently different (in the + right direction) for this difference to be + visible in ITYPE arithmetic. If NEWTYPE is the + same as TYPE, however, the transformation may be + safe depending on the types involved: it is safe + if the ITYPE has strictly more than twice as many + mantissa bits as TYPE, can represent infinities + and NaNs if the TYPE can, and has sufficient + exponent range for the product or ratio of two + values representable in the TYPE to be within the + range of normal values of ITYPE. */ + if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype) + && (flag_unsafe_math_optimizations + || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type) + && real_can_shorten_arithmetic (TYPE_MODE (itype), + TYPE_MODE (type))))) + { + expr = build2 (TREE_CODE (expr), newtype, + fold (convert_to_real (newtype, arg0)), + fold (convert_to_real (newtype, arg1))); + if (newtype == type) + return expr; + } + } + } + break; + default: + break; + } + + switch (TREE_CODE (TREE_TYPE (expr))) + { + case REAL_TYPE: + /* Ignore the conversion if we don't need to store intermediate + results and neither type is a decimal float. */ + return build1 ((flag_float_store + || DECIMAL_FLOAT_TYPE_P (type) + || DECIMAL_FLOAT_TYPE_P (itype)) + ? CONVERT_EXPR : NOP_EXPR, type, expr); + + case INTEGER_TYPE: + case ENUMERAL_TYPE: + case BOOLEAN_TYPE: + return build1 (FLOAT_EXPR, type, expr); + + case FIXED_POINT_TYPE: + return build1 (FIXED_CONVERT_EXPR, type, expr); + + case COMPLEX_TYPE: + return convert (type, + fold_build1 (REALPART_EXPR, + TREE_TYPE (TREE_TYPE (expr)), expr)); + + case POINTER_TYPE: + case REFERENCE_TYPE: + error ("pointer value used where a floating point value was expected"); + return convert_to_real (type, integer_zero_node); + + default: + error ("aggregate value used where a float was expected"); + return convert_to_real (type, integer_zero_node); + } +} + +/* Convert EXPR to some integer (or enum) type TYPE. + + EXPR must be pointer, integer, discrete (enum, char, or bool), float, + fixed-point or vector; in other cases error is called. + + The result of this is always supposed to be a newly created tree node + not in use in any existing structure. */ + +tree +convert_to_integer (tree type, tree expr) +{ + enum tree_code ex_form = TREE_CODE (expr); + tree intype = TREE_TYPE (expr); + unsigned int inprec = TYPE_PRECISION (intype); + unsigned int outprec = TYPE_PRECISION (type); + + /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can + be. Consider `enum E = { a, b = (enum E) 3 };'. */ + if (!COMPLETE_TYPE_P (type)) + { + error ("conversion to incomplete type"); + return error_mark_node; + } + + /* Convert e.g. (long)round(d) -> lround(d). */ + /* If we're converting to char, we may encounter differing behavior + between converting from double->char vs double->long->char. + We're in "undefined" territory but we prefer to be conservative, + so only proceed in "unsafe" math mode. */ + if (optimize + && (flag_unsafe_math_optimizations + || (long_integer_type_node + && outprec >= TYPE_PRECISION (long_integer_type_node)))) + { + tree s_expr = strip_float_extensions (expr); + tree s_intype = TREE_TYPE (s_expr); + const enum built_in_function fcode = builtin_mathfn_code (s_expr); + tree fn = 0; + + switch (fcode) + { + CASE_FLT_FN (BUILT_IN_CEIL): + /* Only convert in ISO C99 mode. */ + if (!TARGET_C99_FUNCTIONS) + break; + if (outprec < TYPE_PRECISION (long_integer_type_node) + || (outprec == TYPE_PRECISION (long_integer_type_node) + && !TYPE_UNSIGNED (type))) + fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL); + else if (outprec == TYPE_PRECISION (long_long_integer_type_node) + && !TYPE_UNSIGNED (type)) + fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL); + break; + + CASE_FLT_FN (BUILT_IN_FLOOR): + /* Only convert in ISO C99 mode. */ + if (!TARGET_C99_FUNCTIONS) + break; + if (outprec < TYPE_PRECISION (long_integer_type_node) + || (outprec == TYPE_PRECISION (long_integer_type_node) + && !TYPE_UNSIGNED (type))) + fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR); + else if (outprec == TYPE_PRECISION (long_long_integer_type_node) + && !TYPE_UNSIGNED (type)) + fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR); + break; + + CASE_FLT_FN (BUILT_IN_ROUND): + if (outprec < TYPE_PRECISION (long_integer_type_node) + || (outprec == TYPE_PRECISION (long_integer_type_node) + && !TYPE_UNSIGNED (type))) + fn = mathfn_built_in (s_intype, BUILT_IN_LROUND); + else if (outprec == TYPE_PRECISION (long_long_integer_type_node) + && !TYPE_UNSIGNED (type)) + fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND); + break; + + CASE_FLT_FN (BUILT_IN_NEARBYINT): + /* Only convert nearbyint* if we can ignore math exceptions. */ + if (flag_trapping_math) + break; + /* ... Fall through ... */ + CASE_FLT_FN (BUILT_IN_RINT): + if (outprec < TYPE_PRECISION (long_integer_type_node) + || (outprec == TYPE_PRECISION (long_integer_type_node) + && !TYPE_UNSIGNED (type))) + fn = mathfn_built_in (s_intype, BUILT_IN_LRINT); + else if (outprec == TYPE_PRECISION (long_long_integer_type_node) + && !TYPE_UNSIGNED (type)) + fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT); + break; + + CASE_FLT_FN (BUILT_IN_TRUNC): + return convert_to_integer (type, CALL_EXPR_ARG (s_expr, 0)); + + default: + break; + } + + if (fn) + { + tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0)); + return convert_to_integer (type, newexpr); + } + } + + switch (TREE_CODE (intype)) + { + case POINTER_TYPE: + case REFERENCE_TYPE: + if (integer_zerop (expr)) + return build_int_cst (type, 0); + + /* Convert to an unsigned integer of the correct width first, + and from there widen/truncate to the required type. */ + expr = fold_build1 (CONVERT_EXPR, + lang_hooks.types.type_for_size (POINTER_SIZE, 0), + expr); + return fold_convert (type, expr); + + case INTEGER_TYPE: + case ENUMERAL_TYPE: + case BOOLEAN_TYPE: + case OFFSET_TYPE: + /* If this is a logical operation, which just returns 0 or 1, we can + change the type of the expression. */ + + if (TREE_CODE_CLASS (ex_form) == tcc_comparison) + { + expr = copy_node (expr); + TREE_TYPE (expr) = type; + return expr; + } + + /* If we are widening the type, put in an explicit conversion. + Similarly if we are not changing the width. After this, we know + we are truncating EXPR. */ + + else if (outprec >= inprec) + { + enum tree_code code; + tree tem; + + /* If the precision of the EXPR's type is K bits and the + destination mode has more bits, and the sign is changing, + it is not safe to use a NOP_EXPR. For example, suppose + that EXPR's type is a 3-bit unsigned integer type, the + TYPE is a 3-bit signed integer type, and the machine mode + for the types is 8-bit QImode. In that case, the + conversion necessitates an explicit sign-extension. In + the signed-to-unsigned case the high-order bits have to + be cleared. */ + if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr)) + && (TYPE_PRECISION (TREE_TYPE (expr)) + != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr))))) + code = CONVERT_EXPR; + else + code = NOP_EXPR; + + tem = fold_unary (code, type, expr); + if (tem) + return tem; + + tem = build1 (code, type, expr); + TREE_NO_WARNING (tem) = 1; + return tem; + } + + /* If TYPE is an enumeral type or a type with a precision less + than the number of bits in its mode, do the conversion to the + type corresponding to its mode, then do a nop conversion + to TYPE. */ + else if (TREE_CODE (type) == ENUMERAL_TYPE + || outprec != GET_MODE_BITSIZE (TYPE_MODE (type))) + return build1 (NOP_EXPR, type, + convert (lang_hooks.types.type_for_mode + (TYPE_MODE (type), TYPE_UNSIGNED (type)), + expr)); + + /* Here detect when we can distribute the truncation down past some + arithmetic. For example, if adding two longs and converting to an + int, we can equally well convert both to ints and then add. + For the operations handled here, such truncation distribution + is always safe. + It is desirable in these cases: + 1) when truncating down to full-word from a larger size + 2) when truncating takes no work. + 3) when at least one operand of the arithmetic has been extended + (as by C's default conversions). In this case we need two conversions + if we do the arithmetic as already requested, so we might as well + truncate both and then combine. Perhaps that way we need only one. + + Note that in general we cannot do the arithmetic in a type + shorter than the desired result of conversion, even if the operands + are both extended from a shorter type, because they might overflow + if combined in that type. The exceptions to this--the times when + two narrow values can be combined in their narrow type even to + make a wider result--are handled by "shorten" in build_binary_op. */ + + switch (ex_form) + { + case RSHIFT_EXPR: + /* We can pass truncation down through right shifting + when the shift count is a nonpositive constant. */ + if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST + && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0) + goto trunc1; + break; + + case LSHIFT_EXPR: + /* We can pass truncation down through left shifting + when the shift count is a nonnegative constant and + the target type is unsigned. */ + if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST + && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0 + && TYPE_UNSIGNED (type) + && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST) + { + /* If shift count is less than the width of the truncated type, + really shift. */ + if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type))) + /* In this case, shifting is like multiplication. */ + goto trunc1; + else + { + /* If it is >= that width, result is zero. + Handling this with trunc1 would give the wrong result: + (int) ((long long) a << 32) is well defined (as 0) + but (int) a << 32 is undefined and would get a + warning. */ + + tree t = build_int_cst (type, 0); + + /* If the original expression had side-effects, we must + preserve it. */ + if (TREE_SIDE_EFFECTS (expr)) + return build2 (COMPOUND_EXPR, type, expr, t); + else + return t; + } + } + break; + + case MAX_EXPR: + case MIN_EXPR: + case MULT_EXPR: + { + tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type); + tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type); + + /* Don't distribute unless the output precision is at least as big + as the actual inputs. Otherwise, the comparison of the + truncated values will be wrong. */ + if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0)) + && outprec >= TYPE_PRECISION (TREE_TYPE (arg1)) + /* If signedness of arg0 and arg1 don't match, + we can't necessarily find a type to compare them in. */ + && (TYPE_UNSIGNED (TREE_TYPE (arg0)) + == TYPE_UNSIGNED (TREE_TYPE (arg1)))) + goto trunc1; + break; + } + + case PLUS_EXPR: + case MINUS_EXPR: + case BIT_AND_EXPR: + case BIT_IOR_EXPR: + case BIT_XOR_EXPR: + trunc1: + { + tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type); + tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type); + + if (outprec >= BITS_PER_WORD + || TRULY_NOOP_TRUNCATION (outprec, inprec) + || inprec > TYPE_PRECISION (TREE_TYPE (arg0)) + || inprec > TYPE_PRECISION (TREE_TYPE (arg1))) + { + /* Do the arithmetic in type TYPEX, + then convert result to TYPE. */ + tree typex = type; + + /* Can't do arithmetic in enumeral types + so use an integer type that will hold the values. */ + if (TREE_CODE (typex) == ENUMERAL_TYPE) + typex = lang_hooks.types.type_for_size + (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex)); + + /* But now perhaps TYPEX is as wide as INPREC. + In that case, do nothing special here. + (Otherwise would recurse infinitely in convert. */ + if (TYPE_PRECISION (typex) != inprec) + { + /* Don't do unsigned arithmetic where signed was wanted, + or vice versa. + Exception: if both of the original operands were + unsigned then we can safely do the work as unsigned. + Exception: shift operations take their type solely + from the first argument. + Exception: the LSHIFT_EXPR case above requires that + we perform this operation unsigned lest we produce + signed-overflow undefinedness. + And we may need to do it as unsigned + if we truncate to the original size. */ + if (TYPE_UNSIGNED (TREE_TYPE (expr)) + || (TYPE_UNSIGNED (TREE_TYPE (arg0)) + && (TYPE_UNSIGNED (TREE_TYPE (arg1)) + || ex_form == LSHIFT_EXPR + || ex_form == RSHIFT_EXPR + || ex_form == LROTATE_EXPR + || ex_form == RROTATE_EXPR)) + || ex_form == LSHIFT_EXPR + /* If we have !flag_wrapv, and either ARG0 or + ARG1 is of a signed type, we have to do + PLUS_EXPR or MINUS_EXPR in an unsigned + type. Otherwise, we would introduce + signed-overflow undefinedness. */ + || ((!TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)) + || !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))) + && (ex_form == PLUS_EXPR + || ex_form == MINUS_EXPR))) + typex = unsigned_type_for (typex); + else + typex = signed_type_for (typex); + return convert (type, + fold_build2 (ex_form, typex, + convert (typex, arg0), + convert (typex, arg1))); + } + } + } + break; + + case NEGATE_EXPR: + case BIT_NOT_EXPR: + /* This is not correct for ABS_EXPR, + since we must test the sign before truncation. */ + { + tree typex; + + /* Don't do unsigned arithmetic where signed was wanted, + or vice versa. */ + if (TYPE_UNSIGNED (TREE_TYPE (expr))) + typex = unsigned_type_for (type); + else + typex = signed_type_for (type); + return convert (type, + fold_build1 (ex_form, typex, + convert (typex, + TREE_OPERAND (expr, 0)))); + } + + case NOP_EXPR: + /* Don't introduce a + "can't convert between vector values of different size" error. */ + if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE + && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0)))) + != GET_MODE_SIZE (TYPE_MODE (type)))) + break; + /* If truncating after truncating, might as well do all at once. + If truncating after extending, we may get rid of wasted work. */ + return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type)); + + case COND_EXPR: + /* It is sometimes worthwhile to push the narrowing down through + the conditional and never loses. */ + return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0), + convert (type, TREE_OPERAND (expr, 1)), + convert (type, TREE_OPERAND (expr, 2))); + + default: + break; + } + + return build1 (CONVERT_EXPR, type, expr); + + case REAL_TYPE: + return build1 (FIX_TRUNC_EXPR, type, expr); + + case FIXED_POINT_TYPE: + return build1 (FIXED_CONVERT_EXPR, type, expr); + + case COMPLEX_TYPE: + return convert (type, + fold_build1 (REALPART_EXPR, + TREE_TYPE (TREE_TYPE (expr)), expr)); + + case VECTOR_TYPE: + if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr)))) + { + error ("can't convert between vector values of different size"); + return error_mark_node; + } + return build1 (VIEW_CONVERT_EXPR, type, expr); + + default: + error ("aggregate value used where an integer was expected"); + return convert (type, integer_zero_node); + } +} + +/* Convert EXPR to the complex type TYPE in the usual ways. */ + +tree +convert_to_complex (tree type, tree expr) +{ + tree subtype = TREE_TYPE (type); + + switch (TREE_CODE (TREE_TYPE (expr))) + { + case REAL_TYPE: + case FIXED_POINT_TYPE: + case INTEGER_TYPE: + case ENUMERAL_TYPE: + case BOOLEAN_TYPE: + return build2 (COMPLEX_EXPR, type, convert (subtype, expr), + convert (subtype, integer_zero_node)); + + case COMPLEX_TYPE: + { + tree elt_type = TREE_TYPE (TREE_TYPE (expr)); + + if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype)) + return expr; + else if (TREE_CODE (expr) == COMPLEX_EXPR) + return fold_build2 (COMPLEX_EXPR, type, + convert (subtype, TREE_OPERAND (expr, 0)), + convert (subtype, TREE_OPERAND (expr, 1))); + else + { + expr = save_expr (expr); + return + fold_build2 (COMPLEX_EXPR, type, + convert (subtype, + fold_build1 (REALPART_EXPR, + TREE_TYPE (TREE_TYPE (expr)), + expr)), + convert (subtype, + fold_build1 (IMAGPART_EXPR, + TREE_TYPE (TREE_TYPE (expr)), + expr))); + } + } + + case POINTER_TYPE: + case REFERENCE_TYPE: + error ("pointer value used where a complex was expected"); + return convert_to_complex (type, integer_zero_node); + + default: + error ("aggregate value used where a complex was expected"); + return convert_to_complex (type, integer_zero_node); + } +} + +/* Convert EXPR to the vector type TYPE in the usual ways. */ + +tree +convert_to_vector (tree type, tree expr) +{ + switch (TREE_CODE (TREE_TYPE (expr))) + { + case INTEGER_TYPE: + case VECTOR_TYPE: + if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr)))) + { + error ("can't convert between vector values of different size"); + return error_mark_node; + } + return build1 (VIEW_CONVERT_EXPR, type, expr); + + default: + error ("can't convert value to a vector"); + return error_mark_node; + } +} + +/* Convert EXPR to some fixed-point type TYPE. + + EXPR must be fixed-point, float, integer, or enumeral; + in other cases error is called. */ + +tree +convert_to_fixed (tree type, tree expr) +{ + if (integer_zerop (expr)) + { + tree fixed_zero_node = build_fixed (type, FCONST0 (TYPE_MODE (type))); + return fixed_zero_node; + } + else if (integer_onep (expr) && ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type))) + { + tree fixed_one_node = build_fixed (type, FCONST1 (TYPE_MODE (type))); + return fixed_one_node; + } + + switch (TREE_CODE (TREE_TYPE (expr))) + { + case FIXED_POINT_TYPE: + case INTEGER_TYPE: + case ENUMERAL_TYPE: + case BOOLEAN_TYPE: + case REAL_TYPE: + return build1 (FIXED_CONVERT_EXPR, type, expr); + + case COMPLEX_TYPE: + return convert (type, + fold_build1 (REALPART_EXPR, + TREE_TYPE (TREE_TYPE (expr)), expr)); + + default: + error ("aggregate value used where a fixed-point was expected"); + return error_mark_node; + } +}