diff gcc/function.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children caeb520cebed 58ad6c70ea60
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/gcc/function.c	Fri Jul 17 14:47:48 2009 +0900
@@ -0,0 +1,5645 @@
+/* Expands front end tree to back end RTL for GCC.
+   Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
+   1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
+   Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 3, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
+
+/* This file handles the generation of rtl code from tree structure
+   at the level of the function as a whole.
+   It creates the rtl expressions for parameters and auto variables
+   and has full responsibility for allocating stack slots.
+
+   `expand_function_start' is called at the beginning of a function,
+   before the function body is parsed, and `expand_function_end' is
+   called after parsing the body.
+
+   Call `assign_stack_local' to allocate a stack slot for a local variable.
+   This is usually done during the RTL generation for the function body,
+   but it can also be done in the reload pass when a pseudo-register does
+   not get a hard register.  */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "rtl.h"
+#include "tree.h"
+#include "flags.h"
+#include "except.h"
+#include "function.h"
+#include "expr.h"
+#include "optabs.h"
+#include "libfuncs.h"
+#include "regs.h"
+#include "hard-reg-set.h"
+#include "insn-config.h"
+#include "recog.h"
+#include "output.h"
+#include "basic-block.h"
+#include "toplev.h"
+#include "hashtab.h"
+#include "ggc.h"
+#include "tm_p.h"
+#include "integrate.h"
+#include "langhooks.h"
+#include "target.h"
+#include "cfglayout.h"
+#include "gimple.h"
+#include "tree-pass.h"
+#include "predict.h"
+#include "df.h"
+#include "timevar.h"
+#include "vecprim.h"
+
+/* So we can assign to cfun in this file.  */
+#undef cfun
+
+#ifndef STACK_ALIGNMENT_NEEDED
+#define STACK_ALIGNMENT_NEEDED 1
+#endif
+
+#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
+
+/* Some systems use __main in a way incompatible with its use in gcc, in these
+   cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
+   give the same symbol without quotes for an alternative entry point.  You
+   must define both, or neither.  */
+#ifndef NAME__MAIN
+#define NAME__MAIN "__main"
+#endif
+
+/* Round a value to the lowest integer less than it that is a multiple of
+   the required alignment.  Avoid using division in case the value is
+   negative.  Assume the alignment is a power of two.  */
+#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
+
+/* Similar, but round to the next highest integer that meets the
+   alignment.  */
+#define CEIL_ROUND(VALUE,ALIGN)	(((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
+
+/* Nonzero if function being compiled doesn't contain any calls
+   (ignoring the prologue and epilogue).  This is set prior to
+   local register allocation and is valid for the remaining
+   compiler passes.  */
+int current_function_is_leaf;
+
+/* Nonzero if function being compiled doesn't modify the stack pointer
+   (ignoring the prologue and epilogue).  This is only valid after
+   pass_stack_ptr_mod has run.  */
+int current_function_sp_is_unchanging;
+
+/* Nonzero if the function being compiled is a leaf function which only
+   uses leaf registers.  This is valid after reload (specifically after
+   sched2) and is useful only if the port defines LEAF_REGISTERS.  */
+int current_function_uses_only_leaf_regs;
+
+/* Nonzero once virtual register instantiation has been done.
+   assign_stack_local uses frame_pointer_rtx when this is nonzero.
+   calls.c:emit_library_call_value_1 uses it to set up
+   post-instantiation libcalls.  */
+int virtuals_instantiated;
+
+/* Assign unique numbers to labels generated for profiling, debugging, etc.  */
+static GTY(()) int funcdef_no;
+
+/* These variables hold pointers to functions to create and destroy
+   target specific, per-function data structures.  */
+struct machine_function * (*init_machine_status) (void);
+
+/* The currently compiled function.  */
+struct function *cfun = 0;
+
+/* These arrays record the INSN_UIDs of the prologue and epilogue insns.  */
+static VEC(int,heap) *prologue;
+static VEC(int,heap) *epilogue;
+
+/* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
+   in this function.  */
+static VEC(int,heap) *sibcall_epilogue;
+
+/* Forward declarations.  */
+
+static struct temp_slot *find_temp_slot_from_address (rtx);
+static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
+static void pad_below (struct args_size *, enum machine_mode, tree);
+static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
+static int all_blocks (tree, tree *);
+static tree *get_block_vector (tree, int *);
+extern tree debug_find_var_in_block_tree (tree, tree);
+/* We always define `record_insns' even if it's not used so that we
+   can always export `prologue_epilogue_contains'.  */
+static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
+static int contains (const_rtx, VEC(int,heap) **);
+#ifdef HAVE_return
+static void emit_return_into_block (basic_block);
+#endif
+static void prepare_function_start (void);
+static void do_clobber_return_reg (rtx, void *);
+static void do_use_return_reg (rtx, void *);
+static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
+
+/* Stack of nested functions.  */
+/* Keep track of the cfun stack.  */
+
+typedef struct function *function_p;
+
+DEF_VEC_P(function_p);
+DEF_VEC_ALLOC_P(function_p,heap);
+static VEC(function_p,heap) *function_context_stack;
+
+/* Save the current context for compilation of a nested function.
+   This is called from language-specific code.  */
+
+void
+push_function_context (void)
+{
+  if (cfun == 0)
+    allocate_struct_function (NULL, false);
+
+  VEC_safe_push (function_p, heap, function_context_stack, cfun);
+  set_cfun (NULL);
+}
+
+/* Restore the last saved context, at the end of a nested function.
+   This function is called from language-specific code.  */
+
+void
+pop_function_context (void)
+{
+  struct function *p = VEC_pop (function_p, function_context_stack);
+  set_cfun (p);
+  current_function_decl = p->decl;
+
+  /* Reset variables that have known state during rtx generation.  */
+  virtuals_instantiated = 0;
+  generating_concat_p = 1;
+}
+
+/* Clear out all parts of the state in F that can safely be discarded
+   after the function has been parsed, but not compiled, to let
+   garbage collection reclaim the memory.  */
+
+void
+free_after_parsing (struct function *f)
+{
+  f->language = 0;
+}
+
+/* Clear out all parts of the state in F that can safely be discarded
+   after the function has been compiled, to let garbage collection
+   reclaim the memory.  */
+
+void
+free_after_compilation (struct function *f)
+{
+  VEC_free (int, heap, prologue);
+  VEC_free (int, heap, epilogue);
+  VEC_free (int, heap, sibcall_epilogue);
+  if (crtl->emit.regno_pointer_align)
+    free (crtl->emit.regno_pointer_align);
+
+  memset (crtl, 0, sizeof (struct rtl_data));
+  f->eh = NULL;
+  f->machine = NULL;
+  f->cfg = NULL;
+
+  regno_reg_rtx = NULL;
+  insn_locators_free ();
+}
+
+/* Return size needed for stack frame based on slots so far allocated.
+   This size counts from zero.  It is not rounded to PREFERRED_STACK_BOUNDARY;
+   the caller may have to do that.  */
+
+HOST_WIDE_INT
+get_frame_size (void)
+{
+  if (FRAME_GROWS_DOWNWARD)
+    return -frame_offset;
+  else
+    return frame_offset;
+}
+
+/* Issue an error message and return TRUE if frame OFFSET overflows in
+   the signed target pointer arithmetics for function FUNC.  Otherwise
+   return FALSE.  */
+
+bool
+frame_offset_overflow (HOST_WIDE_INT offset, tree func)
+{  
+  unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
+
+  if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
+	       /* Leave room for the fixed part of the frame.  */
+	       - 64 * UNITS_PER_WORD)
+    {
+      error ("%Jtotal size of local objects too large", func);
+      return TRUE;
+    }
+
+  return FALSE;
+}
+
+/* Return stack slot alignment in bits for TYPE and MODE.  */
+
+static unsigned int
+get_stack_local_alignment (tree type, enum machine_mode mode)
+{
+  unsigned int alignment;
+
+  if (mode == BLKmode)
+    alignment = BIGGEST_ALIGNMENT;
+  else
+    alignment = GET_MODE_ALIGNMENT (mode);
+
+  /* Allow the frond-end to (possibly) increase the alignment of this
+     stack slot.  */
+  if (! type)
+    type = lang_hooks.types.type_for_mode (mode, 0);
+
+  return STACK_SLOT_ALIGNMENT (type, mode, alignment);
+}
+
+/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
+   with machine mode MODE.
+
+   ALIGN controls the amount of alignment for the address of the slot:
+   0 means according to MODE,
+   -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
+   -2 means use BITS_PER_UNIT,
+   positive specifies alignment boundary in bits.
+
+   If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
+
+   We do not round to stack_boundary here.  */
+
+rtx
+assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
+		      int align,
+		      bool reduce_alignment_ok ATTRIBUTE_UNUSED)
+{
+  rtx x, addr;
+  int bigend_correction = 0;
+  unsigned int alignment, alignment_in_bits;
+  int frame_off, frame_alignment, frame_phase;
+
+  if (align == 0)
+    {
+      alignment = get_stack_local_alignment (NULL, mode);
+      alignment /= BITS_PER_UNIT;
+    }
+  else if (align == -1)
+    {
+      alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
+      size = CEIL_ROUND (size, alignment);
+    }
+  else if (align == -2)
+    alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
+  else
+    alignment = align / BITS_PER_UNIT;
+
+  alignment_in_bits = alignment * BITS_PER_UNIT;
+
+  if (FRAME_GROWS_DOWNWARD)
+    frame_offset -= size;
+
+  /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT.  */
+  if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
+    {
+      alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
+      alignment = alignment_in_bits / BITS_PER_UNIT;
+    }
+
+  if (SUPPORTS_STACK_ALIGNMENT)
+    {
+      if (crtl->stack_alignment_estimated < alignment_in_bits)
+	{
+          if (!crtl->stack_realign_processed)
+	    crtl->stack_alignment_estimated = alignment_in_bits;
+          else
+	    {
+	      /* If stack is realigned and stack alignment value
+		 hasn't been finalized, it is OK not to increase
+		 stack_alignment_estimated.  The bigger alignment
+		 requirement is recorded in stack_alignment_needed
+		 below.  */
+	      gcc_assert (!crtl->stack_realign_finalized);
+	      if (!crtl->stack_realign_needed)
+		{
+		  /* It is OK to reduce the alignment as long as the
+		     requested size is 0 or the estimated stack
+		     alignment >= mode alignment.  */
+		  gcc_assert (reduce_alignment_ok
+		              || size == 0
+			      || (crtl->stack_alignment_estimated
+				  >= GET_MODE_ALIGNMENT (mode)));
+		  alignment_in_bits = crtl->stack_alignment_estimated;
+		  alignment = alignment_in_bits / BITS_PER_UNIT;
+		}
+	    }
+	}
+    }
+
+  if (crtl->stack_alignment_needed < alignment_in_bits)
+    crtl->stack_alignment_needed = alignment_in_bits;
+  if (crtl->max_used_stack_slot_alignment < crtl->stack_alignment_needed)
+    crtl->max_used_stack_slot_alignment = crtl->stack_alignment_needed;
+
+  /* Calculate how many bytes the start of local variables is off from
+     stack alignment.  */
+  frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
+  frame_off = STARTING_FRAME_OFFSET % frame_alignment;
+  frame_phase = frame_off ? frame_alignment - frame_off : 0;
+
+  /* Round the frame offset to the specified alignment.  The default is
+     to always honor requests to align the stack but a port may choose to
+     do its own stack alignment by defining STACK_ALIGNMENT_NEEDED.  */
+  if (STACK_ALIGNMENT_NEEDED
+      || mode != BLKmode
+      || size != 0)
+    {
+      /*  We must be careful here, since FRAME_OFFSET might be negative and
+	  division with a negative dividend isn't as well defined as we might
+	  like.  So we instead assume that ALIGNMENT is a power of two and
+	  use logical operations which are unambiguous.  */
+      if (FRAME_GROWS_DOWNWARD)
+	frame_offset
+	  = (FLOOR_ROUND (frame_offset - frame_phase,
+			  (unsigned HOST_WIDE_INT) alignment)
+	     + frame_phase);
+      else
+	frame_offset
+	  = (CEIL_ROUND (frame_offset - frame_phase,
+			 (unsigned HOST_WIDE_INT) alignment)
+	     + frame_phase);
+    }
+
+  /* On a big-endian machine, if we are allocating more space than we will use,
+     use the least significant bytes of those that are allocated.  */
+  if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
+    bigend_correction = size - GET_MODE_SIZE (mode);
+
+  /* If we have already instantiated virtual registers, return the actual
+     address relative to the frame pointer.  */
+  if (virtuals_instantiated)
+    addr = plus_constant (frame_pointer_rtx,
+			  trunc_int_for_mode
+			  (frame_offset + bigend_correction
+			   + STARTING_FRAME_OFFSET, Pmode));
+  else
+    addr = plus_constant (virtual_stack_vars_rtx,
+			  trunc_int_for_mode
+			  (frame_offset + bigend_correction,
+			   Pmode));
+
+  if (!FRAME_GROWS_DOWNWARD)
+    frame_offset += size;
+
+  x = gen_rtx_MEM (mode, addr);
+  set_mem_align (x, alignment_in_bits);
+  MEM_NOTRAP_P (x) = 1;
+
+  stack_slot_list
+    = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
+
+  if (frame_offset_overflow (frame_offset, current_function_decl))
+    frame_offset = 0;
+
+  return x;
+}
+
+/* Wrap up assign_stack_local_1 with last parameter as false.  */
+
+rtx
+assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
+{
+  return assign_stack_local_1 (mode, size, align, false);
+}
+
+
+/* In order to evaluate some expressions, such as function calls returning
+   structures in memory, we need to temporarily allocate stack locations.
+   We record each allocated temporary in the following structure.
+
+   Associated with each temporary slot is a nesting level.  When we pop up
+   one level, all temporaries associated with the previous level are freed.
+   Normally, all temporaries are freed after the execution of the statement
+   in which they were created.  However, if we are inside a ({...}) grouping,
+   the result may be in a temporary and hence must be preserved.  If the
+   result could be in a temporary, we preserve it if we can determine which
+   one it is in.  If we cannot determine which temporary may contain the
+   result, all temporaries are preserved.  A temporary is preserved by
+   pretending it was allocated at the previous nesting level.
+
+   Automatic variables are also assigned temporary slots, at the nesting
+   level where they are defined.  They are marked a "kept" so that
+   free_temp_slots will not free them.  */
+
+struct temp_slot GTY(())
+{
+  /* Points to next temporary slot.  */
+  struct temp_slot *next;
+  /* Points to previous temporary slot.  */
+  struct temp_slot *prev;
+  /* The rtx to used to reference the slot.  */
+  rtx slot;
+  /* The size, in units, of the slot.  */
+  HOST_WIDE_INT size;
+  /* The type of the object in the slot, or zero if it doesn't correspond
+     to a type.  We use this to determine whether a slot can be reused.
+     It can be reused if objects of the type of the new slot will always
+     conflict with objects of the type of the old slot.  */
+  tree type;
+  /* The alignment (in bits) of the slot.  */
+  unsigned int align;
+  /* Nonzero if this temporary is currently in use.  */
+  char in_use;
+  /* Nonzero if this temporary has its address taken.  */
+  char addr_taken;
+  /* Nesting level at which this slot is being used.  */
+  int level;
+  /* Nonzero if this should survive a call to free_temp_slots.  */
+  int keep;
+  /* The offset of the slot from the frame_pointer, including extra space
+     for alignment.  This info is for combine_temp_slots.  */
+  HOST_WIDE_INT base_offset;
+  /* The size of the slot, including extra space for alignment.  This
+     info is for combine_temp_slots.  */
+  HOST_WIDE_INT full_size;
+};
+
+/* A table of addresses that represent a stack slot.  The table is a mapping
+   from address RTXen to a temp slot.  */
+static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
+
+/* Entry for the above hash table.  */
+struct temp_slot_address_entry GTY(())
+{
+  hashval_t hash;
+  rtx address;
+  struct temp_slot *temp_slot;
+};
+
+/* Removes temporary slot TEMP from LIST.  */
+
+static void
+cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
+{
+  if (temp->next)
+    temp->next->prev = temp->prev;
+  if (temp->prev)
+    temp->prev->next = temp->next;
+  else
+    *list = temp->next;
+
+  temp->prev = temp->next = NULL;
+}
+
+/* Inserts temporary slot TEMP to LIST.  */
+
+static void
+insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
+{
+  temp->next = *list;
+  if (*list)
+    (*list)->prev = temp;
+  temp->prev = NULL;
+  *list = temp;
+}
+
+/* Returns the list of used temp slots at LEVEL.  */
+
+static struct temp_slot **
+temp_slots_at_level (int level)
+{
+  if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
+    VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
+
+  return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
+}
+
+/* Returns the maximal temporary slot level.  */
+
+static int
+max_slot_level (void)
+{
+  if (!used_temp_slots)
+    return -1;
+
+  return VEC_length (temp_slot_p, used_temp_slots) - 1;
+}
+
+/* Moves temporary slot TEMP to LEVEL.  */
+
+static void
+move_slot_to_level (struct temp_slot *temp, int level)
+{
+  cut_slot_from_list (temp, temp_slots_at_level (temp->level));
+  insert_slot_to_list (temp, temp_slots_at_level (level));
+  temp->level = level;
+}
+
+/* Make temporary slot TEMP available.  */
+
+static void
+make_slot_available (struct temp_slot *temp)
+{
+  cut_slot_from_list (temp, temp_slots_at_level (temp->level));
+  insert_slot_to_list (temp, &avail_temp_slots);
+  temp->in_use = 0;
+  temp->level = -1;
+}
+
+/* Compute the hash value for an address -> temp slot mapping.
+   The value is cached on the mapping entry.  */
+static hashval_t
+temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
+{
+  int do_not_record = 0;
+  return hash_rtx (t->address, GET_MODE (t->address),
+		   &do_not_record, NULL, false);
+}
+
+/* Return the hash value for an address -> temp slot mapping.  */
+static hashval_t
+temp_slot_address_hash (const void *p)
+{
+  const struct temp_slot_address_entry *t;
+  t = (const struct temp_slot_address_entry *) p;
+  return t->hash;
+}
+
+/* Compare two address -> temp slot mapping entries.  */
+static int
+temp_slot_address_eq (const void *p1, const void *p2)
+{
+  const struct temp_slot_address_entry *t1, *t2;
+  t1 = (const struct temp_slot_address_entry *) p1;
+  t2 = (const struct temp_slot_address_entry *) p2;
+  return exp_equiv_p (t1->address, t2->address, 0, true);
+}
+
+/* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping.  */
+static void
+insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
+{
+  void **slot;
+  struct temp_slot_address_entry *t = GGC_NEW (struct temp_slot_address_entry);
+  t->address = address;
+  t->temp_slot = temp_slot;
+  t->hash = temp_slot_address_compute_hash (t);
+  slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
+  *slot = t;
+}
+
+/* Remove an address -> temp slot mapping entry if the temp slot is
+   not in use anymore.  Callback for remove_unused_temp_slot_addresses.  */
+static int
+remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
+{
+  const struct temp_slot_address_entry *t;
+  t = (const struct temp_slot_address_entry *) *slot;
+  if (! t->temp_slot->in_use)
+    *slot = NULL;
+  return 1;
+}
+
+/* Remove all mappings of addresses to unused temp slots.  */
+static void
+remove_unused_temp_slot_addresses (void)
+{
+  htab_traverse (temp_slot_address_table,
+		 remove_unused_temp_slot_addresses_1,
+		 NULL);
+}
+
+/* Find the temp slot corresponding to the object at address X.  */
+
+static struct temp_slot *
+find_temp_slot_from_address (rtx x)
+{
+  struct temp_slot *p;
+  struct temp_slot_address_entry tmp, *t;
+
+  /* First try the easy way:
+     See if X exists in the address -> temp slot mapping.  */
+  tmp.address = x;
+  tmp.temp_slot = NULL;
+  tmp.hash = temp_slot_address_compute_hash (&tmp);
+  t = (struct temp_slot_address_entry *)
+    htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
+  if (t)
+    return t->temp_slot;
+
+  /* If we have a sum involving a register, see if it points to a temp
+     slot.  */
+  if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
+      && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
+    return p;
+  else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
+	   && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
+    return p;
+
+  /* Last resort: Address is a virtual stack var address.  */
+  if (GET_CODE (x) == PLUS
+      && XEXP (x, 0) == virtual_stack_vars_rtx
+      && GET_CODE (XEXP (x, 1)) == CONST_INT)
+    {
+      int i;
+      for (i = max_slot_level (); i >= 0; i--)
+	for (p = *temp_slots_at_level (i); p; p = p->next)
+	  {
+	    if (INTVAL (XEXP (x, 1)) >= p->base_offset
+		&& INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
+	      return p;
+	  }
+    }
+
+  return NULL;
+}
+
+/* Allocate a temporary stack slot and record it for possible later
+   reuse.
+
+   MODE is the machine mode to be given to the returned rtx.
+
+   SIZE is the size in units of the space required.  We do no rounding here
+   since assign_stack_local will do any required rounding.
+
+   KEEP is 1 if this slot is to be retained after a call to
+   free_temp_slots.  Automatic variables for a block are allocated
+   with this flag.  KEEP values of 2 or 3 were needed respectively
+   for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
+   or for SAVE_EXPRs, but they are now unused.
+
+   TYPE is the type that will be used for the stack slot.  */
+
+rtx
+assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
+			    int keep, tree type)
+{
+  unsigned int align;
+  struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
+  rtx slot;
+
+  /* If SIZE is -1 it means that somebody tried to allocate a temporary
+     of a variable size.  */
+  gcc_assert (size != -1);
+
+  /* These are now unused.  */
+  gcc_assert (keep <= 1);
+
+  align = get_stack_local_alignment (type, mode);
+
+  /* Try to find an available, already-allocated temporary of the proper
+     mode which meets the size and alignment requirements.  Choose the
+     smallest one with the closest alignment.
+   
+     If assign_stack_temp is called outside of the tree->rtl expansion,
+     we cannot reuse the stack slots (that may still refer to
+     VIRTUAL_STACK_VARS_REGNUM).  */
+  if (!virtuals_instantiated)
+    {
+      for (p = avail_temp_slots; p; p = p->next)
+	{
+	  if (p->align >= align && p->size >= size
+	      && GET_MODE (p->slot) == mode
+	      && objects_must_conflict_p (p->type, type)
+	      && (best_p == 0 || best_p->size > p->size
+		  || (best_p->size == p->size && best_p->align > p->align)))
+	    {
+	      if (p->align == align && p->size == size)
+		{
+		  selected = p;
+		  cut_slot_from_list (selected, &avail_temp_slots);
+		  best_p = 0;
+		  break;
+		}
+	      best_p = p;
+	    }
+	}
+    }
+
+  /* Make our best, if any, the one to use.  */
+  if (best_p)
+    {
+      selected = best_p;
+      cut_slot_from_list (selected, &avail_temp_slots);
+
+      /* If there are enough aligned bytes left over, make them into a new
+	 temp_slot so that the extra bytes don't get wasted.  Do this only
+	 for BLKmode slots, so that we can be sure of the alignment.  */
+      if (GET_MODE (best_p->slot) == BLKmode)
+	{
+	  int alignment = best_p->align / BITS_PER_UNIT;
+	  HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
+
+	  if (best_p->size - rounded_size >= alignment)
+	    {
+	      p = GGC_NEW (struct temp_slot);
+	      p->in_use = p->addr_taken = 0;
+	      p->size = best_p->size - rounded_size;
+	      p->base_offset = best_p->base_offset + rounded_size;
+	      p->full_size = best_p->full_size - rounded_size;
+	      p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
+	      p->align = best_p->align;
+	      p->type = best_p->type;
+	      insert_slot_to_list (p, &avail_temp_slots);
+
+	      stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
+						   stack_slot_list);
+
+	      best_p->size = rounded_size;
+	      best_p->full_size = rounded_size;
+	    }
+	}
+    }
+
+  /* If we still didn't find one, make a new temporary.  */
+  if (selected == 0)
+    {
+      HOST_WIDE_INT frame_offset_old = frame_offset;
+
+      p = GGC_NEW (struct temp_slot);
+
+      /* We are passing an explicit alignment request to assign_stack_local.
+	 One side effect of that is assign_stack_local will not round SIZE
+	 to ensure the frame offset remains suitably aligned.
+
+	 So for requests which depended on the rounding of SIZE, we go ahead
+	 and round it now.  We also make sure ALIGNMENT is at least
+	 BIGGEST_ALIGNMENT.  */
+      gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
+      p->slot = assign_stack_local (mode,
+				    (mode == BLKmode
+				     ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
+				     : size),
+				    align);
+
+      p->align = align;
+
+      /* The following slot size computation is necessary because we don't
+	 know the actual size of the temporary slot until assign_stack_local
+	 has performed all the frame alignment and size rounding for the
+	 requested temporary.  Note that extra space added for alignment
+	 can be either above or below this stack slot depending on which
+	 way the frame grows.  We include the extra space if and only if it
+	 is above this slot.  */
+      if (FRAME_GROWS_DOWNWARD)
+	p->size = frame_offset_old - frame_offset;
+      else
+	p->size = size;
+
+      /* Now define the fields used by combine_temp_slots.  */
+      if (FRAME_GROWS_DOWNWARD)
+	{
+	  p->base_offset = frame_offset;
+	  p->full_size = frame_offset_old - frame_offset;
+	}
+      else
+	{
+	  p->base_offset = frame_offset_old;
+	  p->full_size = frame_offset - frame_offset_old;
+	}
+
+      selected = p;
+    }
+
+  p = selected;
+  p->in_use = 1;
+  p->addr_taken = 0;
+  p->type = type;
+  p->level = temp_slot_level;
+  p->keep = keep;
+
+  pp = temp_slots_at_level (p->level);
+  insert_slot_to_list (p, pp);
+  insert_temp_slot_address (XEXP (p->slot, 0), p);
+
+  /* Create a new MEM rtx to avoid clobbering MEM flags of old slots.  */
+  slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
+  stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
+
+  /* If we know the alias set for the memory that will be used, use
+     it.  If there's no TYPE, then we don't know anything about the
+     alias set for the memory.  */
+  set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
+  set_mem_align (slot, align);
+
+  /* If a type is specified, set the relevant flags.  */
+  if (type != 0)
+    {
+      MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
+      MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
+				  || TREE_CODE (type) == COMPLEX_TYPE));
+    }
+  MEM_NOTRAP_P (slot) = 1;
+
+  return slot;
+}
+
+/* Allocate a temporary stack slot and record it for possible later
+   reuse.  First three arguments are same as in preceding function.  */
+
+rtx
+assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
+{
+  return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
+}
+
+/* Assign a temporary.
+   If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
+   and so that should be used in error messages.  In either case, we
+   allocate of the given type.
+   KEEP is as for assign_stack_temp.
+   MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
+   it is 0 if a register is OK.
+   DONT_PROMOTE is 1 if we should not promote values in register
+   to wider modes.  */
+
+rtx
+assign_temp (tree type_or_decl, int keep, int memory_required,
+	     int dont_promote ATTRIBUTE_UNUSED)
+{
+  tree type, decl;
+  enum machine_mode mode;
+#ifdef PROMOTE_MODE
+  int unsignedp;
+#endif
+
+  if (DECL_P (type_or_decl))
+    decl = type_or_decl, type = TREE_TYPE (decl);
+  else
+    decl = NULL, type = type_or_decl;
+
+  mode = TYPE_MODE (type);
+#ifdef PROMOTE_MODE
+  unsignedp = TYPE_UNSIGNED (type);
+#endif
+
+  if (mode == BLKmode || memory_required)
+    {
+      HOST_WIDE_INT size = int_size_in_bytes (type);
+      rtx tmp;
+
+      /* Zero sized arrays are GNU C extension.  Set size to 1 to avoid
+	 problems with allocating the stack space.  */
+      if (size == 0)
+	size = 1;
+
+      /* Unfortunately, we don't yet know how to allocate variable-sized
+	 temporaries.  However, sometimes we can find a fixed upper limit on
+	 the size, so try that instead.  */
+      else if (size == -1)
+	size = max_int_size_in_bytes (type);
+
+      /* The size of the temporary may be too large to fit into an integer.  */
+      /* ??? Not sure this should happen except for user silliness, so limit
+	 this to things that aren't compiler-generated temporaries.  The
+	 rest of the time we'll die in assign_stack_temp_for_type.  */
+      if (decl && size == -1
+	  && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
+	{
+	  error ("size of variable %q+D is too large", decl);
+	  size = 1;
+	}
+
+      tmp = assign_stack_temp_for_type (mode, size, keep, type);
+      return tmp;
+    }
+
+#ifdef PROMOTE_MODE
+  if (! dont_promote)
+    mode = promote_mode (type, mode, &unsignedp, 0);
+#endif
+
+  return gen_reg_rtx (mode);
+}
+
+/* Combine temporary stack slots which are adjacent on the stack.
+
+   This allows for better use of already allocated stack space.  This is only
+   done for BLKmode slots because we can be sure that we won't have alignment
+   problems in this case.  */
+
+static void
+combine_temp_slots (void)
+{
+  struct temp_slot *p, *q, *next, *next_q;
+  int num_slots;
+
+  /* We can't combine slots, because the information about which slot
+     is in which alias set will be lost.  */
+  if (flag_strict_aliasing)
+    return;
+
+  /* If there are a lot of temp slots, don't do anything unless
+     high levels of optimization.  */
+  if (! flag_expensive_optimizations)
+    for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
+      if (num_slots > 100 || (num_slots > 10 && optimize == 0))
+	return;
+
+  for (p = avail_temp_slots; p; p = next)
+    {
+      int delete_p = 0;
+
+      next = p->next;
+
+      if (GET_MODE (p->slot) != BLKmode)
+	continue;
+
+      for (q = p->next; q; q = next_q)
+	{
+       	  int delete_q = 0;
+
+	  next_q = q->next;
+
+	  if (GET_MODE (q->slot) != BLKmode)
+	    continue;
+
+	  if (p->base_offset + p->full_size == q->base_offset)
+	    {
+	      /* Q comes after P; combine Q into P.  */
+	      p->size += q->size;
+	      p->full_size += q->full_size;
+	      delete_q = 1;
+	    }
+	  else if (q->base_offset + q->full_size == p->base_offset)
+	    {
+	      /* P comes after Q; combine P into Q.  */
+	      q->size += p->size;
+	      q->full_size += p->full_size;
+	      delete_p = 1;
+	      break;
+	    }
+	  if (delete_q)
+	    cut_slot_from_list (q, &avail_temp_slots);
+	}
+
+      /* Either delete P or advance past it.  */
+      if (delete_p)
+	cut_slot_from_list (p, &avail_temp_slots);
+    }
+}
+
+/* Indicate that NEW_RTX is an alternate way of referring to the temp
+   slot that previously was known by OLD_RTX.  */
+
+void
+update_temp_slot_address (rtx old_rtx, rtx new_rtx)
+{
+  struct temp_slot *p;
+
+  if (rtx_equal_p (old_rtx, new_rtx))
+    return;
+
+  p = find_temp_slot_from_address (old_rtx);
+
+  /* If we didn't find one, see if both OLD_RTX is a PLUS.  If so, and
+     NEW_RTX is a register, see if one operand of the PLUS is a
+     temporary location.  If so, NEW_RTX points into it.  Otherwise,
+     if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
+     in common between them.  If so, try a recursive call on those
+     values.  */
+  if (p == 0)
+    {
+      if (GET_CODE (old_rtx) != PLUS)
+	return;
+
+      if (REG_P (new_rtx))
+	{
+	  update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
+	  update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
+	  return;
+	}
+      else if (GET_CODE (new_rtx) != PLUS)
+	return;
+
+      if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
+	update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
+      else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
+	update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
+      else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
+	update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
+      else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
+	update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
+
+      return;
+    }
+
+  /* Otherwise add an alias for the temp's address.  */
+  insert_temp_slot_address (new_rtx, p);
+}
+
+/* If X could be a reference to a temporary slot, mark the fact that its
+   address was taken.  */
+
+void
+mark_temp_addr_taken (rtx x)
+{
+  struct temp_slot *p;
+
+  if (x == 0)
+    return;
+
+  /* If X is not in memory or is at a constant address, it cannot be in
+     a temporary slot.  */
+  if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
+    return;
+
+  p = find_temp_slot_from_address (XEXP (x, 0));
+  if (p != 0)
+    p->addr_taken = 1;
+}
+
+/* If X could be a reference to a temporary slot, mark that slot as
+   belonging to the to one level higher than the current level.  If X
+   matched one of our slots, just mark that one.  Otherwise, we can't
+   easily predict which it is, so upgrade all of them.  Kept slots
+   need not be touched.
+
+   This is called when an ({...}) construct occurs and a statement
+   returns a value in memory.  */
+
+void
+preserve_temp_slots (rtx x)
+{
+  struct temp_slot *p = 0, *next;
+
+  /* If there is no result, we still might have some objects whose address
+     were taken, so we need to make sure they stay around.  */
+  if (x == 0)
+    {
+      for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
+	{
+	  next = p->next;
+
+	  if (p->addr_taken)
+	    move_slot_to_level (p, temp_slot_level - 1);
+	}
+
+      return;
+    }
+
+  /* If X is a register that is being used as a pointer, see if we have
+     a temporary slot we know it points to.  To be consistent with
+     the code below, we really should preserve all non-kept slots
+     if we can't find a match, but that seems to be much too costly.  */
+  if (REG_P (x) && REG_POINTER (x))
+    p = find_temp_slot_from_address (x);
+
+  /* If X is not in memory or is at a constant address, it cannot be in
+     a temporary slot, but it can contain something whose address was
+     taken.  */
+  if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
+    {
+      for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
+	{
+	  next = p->next;
+
+	  if (p->addr_taken)
+	    move_slot_to_level (p, temp_slot_level - 1);
+	}
+
+      return;
+    }
+
+  /* First see if we can find a match.  */
+  if (p == 0)
+    p = find_temp_slot_from_address (XEXP (x, 0));
+
+  if (p != 0)
+    {
+      /* Move everything at our level whose address was taken to our new
+	 level in case we used its address.  */
+      struct temp_slot *q;
+
+      if (p->level == temp_slot_level)
+	{
+	  for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
+	    {
+	      next = q->next;
+
+	      if (p != q && q->addr_taken)
+		move_slot_to_level (q, temp_slot_level - 1);
+	    }
+
+	  move_slot_to_level (p, temp_slot_level - 1);
+	  p->addr_taken = 0;
+	}
+      return;
+    }
+
+  /* Otherwise, preserve all non-kept slots at this level.  */
+  for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
+    {
+      next = p->next;
+
+      if (!p->keep)
+	move_slot_to_level (p, temp_slot_level - 1);
+    }
+}
+
+/* Free all temporaries used so far.  This is normally called at the
+   end of generating code for a statement.  */
+
+void
+free_temp_slots (void)
+{
+  struct temp_slot *p, *next;
+
+  for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
+    {
+      next = p->next;
+
+      if (!p->keep)
+	make_slot_available (p);
+    }
+
+  remove_unused_temp_slot_addresses ();
+  combine_temp_slots ();
+}
+
+/* Push deeper into the nesting level for stack temporaries.  */
+
+void
+push_temp_slots (void)
+{
+  temp_slot_level++;
+}
+
+/* Pop a temporary nesting level.  All slots in use in the current level
+   are freed.  */
+
+void
+pop_temp_slots (void)
+{
+  struct temp_slot *p, *next;
+
+  for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
+    {
+      next = p->next;
+      make_slot_available (p);
+    }
+
+  remove_unused_temp_slot_addresses ();
+  combine_temp_slots ();
+
+  temp_slot_level--;
+}
+
+/* Initialize temporary slots.  */
+
+void
+init_temp_slots (void)
+{
+  /* We have not allocated any temporaries yet.  */
+  avail_temp_slots = 0;
+  used_temp_slots = 0;
+  temp_slot_level = 0;
+
+  /* Set up the table to map addresses to temp slots.  */
+  if (! temp_slot_address_table)
+    temp_slot_address_table = htab_create_ggc (32,
+					       temp_slot_address_hash,
+					       temp_slot_address_eq,
+					       NULL);
+  else
+    htab_empty (temp_slot_address_table);
+}
+
+/* These routines are responsible for converting virtual register references
+   to the actual hard register references once RTL generation is complete.
+
+   The following four variables are used for communication between the
+   routines.  They contain the offsets of the virtual registers from their
+   respective hard registers.  */
+
+static int in_arg_offset;
+static int var_offset;
+static int dynamic_offset;
+static int out_arg_offset;
+static int cfa_offset;
+
+/* In most machines, the stack pointer register is equivalent to the bottom
+   of the stack.  */
+
+#ifndef STACK_POINTER_OFFSET
+#define STACK_POINTER_OFFSET	0
+#endif
+
+/* If not defined, pick an appropriate default for the offset of dynamically
+   allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
+   REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE.  */
+
+#ifndef STACK_DYNAMIC_OFFSET
+
+/* The bottom of the stack points to the actual arguments.  If
+   REG_PARM_STACK_SPACE is defined, this includes the space for the register
+   parameters.  However, if OUTGOING_REG_PARM_STACK space is not defined,
+   stack space for register parameters is not pushed by the caller, but
+   rather part of the fixed stack areas and hence not included in
+   `crtl->outgoing_args_size'.  Nevertheless, we must allow
+   for it when allocating stack dynamic objects.  */
+
+#if defined(REG_PARM_STACK_SPACE)
+#define STACK_DYNAMIC_OFFSET(FNDECL)	\
+((ACCUMULATE_OUTGOING_ARGS						      \
+  ? (crtl->outgoing_args_size				      \
+     + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
+					       : REG_PARM_STACK_SPACE (FNDECL))) \
+  : 0) + (STACK_POINTER_OFFSET))
+#else
+#define STACK_DYNAMIC_OFFSET(FNDECL)	\
+((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0)	      \
+ + (STACK_POINTER_OFFSET))
+#endif
+#endif
+
+
+/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
+   is a virtual register, return the equivalent hard register and set the
+   offset indirectly through the pointer.  Otherwise, return 0.  */
+
+static rtx
+instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
+{
+  rtx new_rtx;
+  HOST_WIDE_INT offset;
+
+  if (x == virtual_incoming_args_rtx)
+    {
+      if (stack_realign_drap)
+        {
+	  /* Replace virtual_incoming_args_rtx with internal arg
+	     pointer if DRAP is used to realign stack.  */
+          new_rtx = crtl->args.internal_arg_pointer;
+          offset = 0;
+        }
+      else
+        new_rtx = arg_pointer_rtx, offset = in_arg_offset;
+    }
+  else if (x == virtual_stack_vars_rtx)
+    new_rtx = frame_pointer_rtx, offset = var_offset;
+  else if (x == virtual_stack_dynamic_rtx)
+    new_rtx = stack_pointer_rtx, offset = dynamic_offset;
+  else if (x == virtual_outgoing_args_rtx)
+    new_rtx = stack_pointer_rtx, offset = out_arg_offset;
+  else if (x == virtual_cfa_rtx)
+    {
+#ifdef FRAME_POINTER_CFA_OFFSET
+      new_rtx = frame_pointer_rtx;
+#else
+      new_rtx = arg_pointer_rtx;
+#endif
+      offset = cfa_offset;
+    }
+  else
+    return NULL_RTX;
+
+  *poffset = offset;
+  return new_rtx;
+}
+
+/* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
+   Instantiate any virtual registers present inside of *LOC.  The expression
+   is simplified, as much as possible, but is not to be considered "valid"
+   in any sense implied by the target.  If any change is made, set CHANGED
+   to true.  */
+
+static int
+instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
+{
+  HOST_WIDE_INT offset;
+  bool *changed = (bool *) data;
+  rtx x, new_rtx;
+
+  x = *loc;
+  if (x == 0)
+    return 0;
+
+  switch (GET_CODE (x))
+    {
+    case REG:
+      new_rtx = instantiate_new_reg (x, &offset);
+      if (new_rtx)
+	{
+	  *loc = plus_constant (new_rtx, offset);
+	  if (changed)
+	    *changed = true;
+	}
+      return -1;
+
+    case PLUS:
+      new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
+      if (new_rtx)
+	{
+	  new_rtx = plus_constant (new_rtx, offset);
+	  *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
+	  if (changed)
+	    *changed = true;
+	  return -1;
+	}
+
+      /* FIXME -- from old code */
+	  /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
+	     we can commute the PLUS and SUBREG because pointers into the
+	     frame are well-behaved.  */
+      break;
+
+    default:
+      break;
+    }
+
+  return 0;
+}
+
+/* A subroutine of instantiate_virtual_regs_in_insn.  Return true if X
+   matches the predicate for insn CODE operand OPERAND.  */
+
+static int
+safe_insn_predicate (int code, int operand, rtx x)
+{
+  const struct insn_operand_data *op_data;
+
+  if (code < 0)
+    return true;
+
+  op_data = &insn_data[code].operand[operand];
+  if (op_data->predicate == NULL)
+    return true;
+
+  return op_data->predicate (x, op_data->mode);
+}
+
+/* A subroutine of instantiate_virtual_regs.  Instantiate any virtual
+   registers present inside of insn.  The result will be a valid insn.  */
+
+static void
+instantiate_virtual_regs_in_insn (rtx insn)
+{
+  HOST_WIDE_INT offset;
+  int insn_code, i;
+  bool any_change = false;
+  rtx set, new_rtx, x, seq;
+
+  /* There are some special cases to be handled first.  */
+  set = single_set (insn);
+  if (set)
+    {
+      /* We're allowed to assign to a virtual register.  This is interpreted
+	 to mean that the underlying register gets assigned the inverse
+	 transformation.  This is used, for example, in the handling of
+	 non-local gotos.  */
+      new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
+      if (new_rtx)
+	{
+	  start_sequence ();
+
+	  for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
+	  x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
+				   GEN_INT (-offset));
+	  x = force_operand (x, new_rtx);
+	  if (x != new_rtx)
+	    emit_move_insn (new_rtx, x);
+
+	  seq = get_insns ();
+	  end_sequence ();
+
+	  emit_insn_before (seq, insn);
+	  delete_insn (insn);
+	  return;
+	}
+
+      /* Handle a straight copy from a virtual register by generating a
+	 new add insn.  The difference between this and falling through
+	 to the generic case is avoiding a new pseudo and eliminating a
+	 move insn in the initial rtl stream.  */
+      new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
+      if (new_rtx && offset != 0
+	  && REG_P (SET_DEST (set))
+	  && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
+	{
+	  start_sequence ();
+
+	  x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
+				   new_rtx, GEN_INT (offset), SET_DEST (set),
+				   1, OPTAB_LIB_WIDEN);
+	  if (x != SET_DEST (set))
+	    emit_move_insn (SET_DEST (set), x);
+
+	  seq = get_insns ();
+	  end_sequence ();
+
+	  emit_insn_before (seq, insn);
+	  delete_insn (insn);
+	  return;
+	}
+
+      extract_insn (insn);
+      insn_code = INSN_CODE (insn);
+
+      /* Handle a plus involving a virtual register by determining if the
+	 operands remain valid if they're modified in place.  */
+      if (GET_CODE (SET_SRC (set)) == PLUS
+	  && recog_data.n_operands >= 3
+	  && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
+	  && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
+	  && GET_CODE (recog_data.operand[2]) == CONST_INT
+	  && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
+	{
+	  offset += INTVAL (recog_data.operand[2]);
+
+	  /* If the sum is zero, then replace with a plain move.  */
+	  if (offset == 0
+	      && REG_P (SET_DEST (set))
+	      && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
+	    {
+	      start_sequence ();
+	      emit_move_insn (SET_DEST (set), new_rtx);
+	      seq = get_insns ();
+	      end_sequence ();
+
+	      emit_insn_before (seq, insn);
+	      delete_insn (insn);
+	      return;
+	    }
+
+	  x = gen_int_mode (offset, recog_data.operand_mode[2]);
+
+	  /* Using validate_change and apply_change_group here leaves
+	     recog_data in an invalid state.  Since we know exactly what
+	     we want to check, do those two by hand.  */
+	  if (safe_insn_predicate (insn_code, 1, new_rtx)
+	      && safe_insn_predicate (insn_code, 2, x))
+	    {
+	      *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
+	      *recog_data.operand_loc[2] = recog_data.operand[2] = x;
+	      any_change = true;
+
+	      /* Fall through into the regular operand fixup loop in
+		 order to take care of operands other than 1 and 2.  */
+	    }
+	}
+    }
+  else
+    {
+      extract_insn (insn);
+      insn_code = INSN_CODE (insn);
+    }
+
+  /* In the general case, we expect virtual registers to appear only in
+     operands, and then only as either bare registers or inside memories.  */
+  for (i = 0; i < recog_data.n_operands; ++i)
+    {
+      x = recog_data.operand[i];
+      switch (GET_CODE (x))
+	{
+	case MEM:
+	  {
+	    rtx addr = XEXP (x, 0);
+	    bool changed = false;
+
+	    for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
+	    if (!changed)
+	      continue;
+
+	    start_sequence ();
+	    x = replace_equiv_address (x, addr);
+	    /* It may happen that the address with the virtual reg
+	       was valid (e.g. based on the virtual stack reg, which might
+	       be acceptable to the predicates with all offsets), whereas
+	       the address now isn't anymore, for instance when the address
+	       is still offsetted, but the base reg isn't virtual-stack-reg
+	       anymore.  Below we would do a force_reg on the whole operand,
+	       but this insn might actually only accept memory.  Hence,
+	       before doing that last resort, try to reload the address into
+	       a register, so this operand stays a MEM.  */
+	    if (!safe_insn_predicate (insn_code, i, x))
+	      {
+		addr = force_reg (GET_MODE (addr), addr);
+		x = replace_equiv_address (x, addr);
+	      }
+	    seq = get_insns ();
+	    end_sequence ();
+	    if (seq)
+	      emit_insn_before (seq, insn);
+	  }
+	  break;
+
+	case REG:
+	  new_rtx = instantiate_new_reg (x, &offset);
+	  if (new_rtx == NULL)
+	    continue;
+	  if (offset == 0)
+	    x = new_rtx;
+	  else
+	    {
+	      start_sequence ();
+
+	      /* Careful, special mode predicates may have stuff in
+		 insn_data[insn_code].operand[i].mode that isn't useful
+		 to us for computing a new value.  */
+	      /* ??? Recognize address_operand and/or "p" constraints
+		 to see if (plus new offset) is a valid before we put
+		 this through expand_simple_binop.  */
+	      x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
+				       GEN_INT (offset), NULL_RTX,
+				       1, OPTAB_LIB_WIDEN);
+	      seq = get_insns ();
+	      end_sequence ();
+	      emit_insn_before (seq, insn);
+	    }
+	  break;
+
+	case SUBREG:
+	  new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
+	  if (new_rtx == NULL)
+	    continue;
+	  if (offset != 0)
+	    {
+	      start_sequence ();
+	      new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
+					 GEN_INT (offset), NULL_RTX,
+					 1, OPTAB_LIB_WIDEN);
+	      seq = get_insns ();
+	      end_sequence ();
+	      emit_insn_before (seq, insn);
+	    }
+	  x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
+				   GET_MODE (new_rtx), SUBREG_BYTE (x));
+	  gcc_assert (x);
+	  break;
+
+	default:
+	  continue;
+	}
+
+      /* At this point, X contains the new value for the operand.
+	 Validate the new value vs the insn predicate.  Note that
+	 asm insns will have insn_code -1 here.  */
+      if (!safe_insn_predicate (insn_code, i, x))
+	{
+	  start_sequence ();
+	  x = force_reg (insn_data[insn_code].operand[i].mode, x);
+	  seq = get_insns ();
+	  end_sequence ();
+	  if (seq)
+	    emit_insn_before (seq, insn);
+	}
+
+      *recog_data.operand_loc[i] = recog_data.operand[i] = x;
+      any_change = true;
+    }
+
+  if (any_change)
+    {
+      /* Propagate operand changes into the duplicates.  */
+      for (i = 0; i < recog_data.n_dups; ++i)
+	*recog_data.dup_loc[i]
+	  = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
+
+      /* Force re-recognition of the instruction for validation.  */
+      INSN_CODE (insn) = -1;
+    }
+
+  if (asm_noperands (PATTERN (insn)) >= 0)
+    {
+      if (!check_asm_operands (PATTERN (insn)))
+	{
+	  error_for_asm (insn, "impossible constraint in %<asm%>");
+	  delete_insn (insn);
+	}
+    }
+  else
+    {
+      if (recog_memoized (insn) < 0)
+	fatal_insn_not_found (insn);
+    }
+}
+
+/* Subroutine of instantiate_decls.  Given RTL representing a decl,
+   do any instantiation required.  */
+
+void
+instantiate_decl_rtl (rtx x)
+{
+  rtx addr;
+
+  if (x == 0)
+    return;
+
+  /* If this is a CONCAT, recurse for the pieces.  */
+  if (GET_CODE (x) == CONCAT)
+    {
+      instantiate_decl_rtl (XEXP (x, 0));
+      instantiate_decl_rtl (XEXP (x, 1));
+      return;
+    }
+
+  /* If this is not a MEM, no need to do anything.  Similarly if the
+     address is a constant or a register that is not a virtual register.  */
+  if (!MEM_P (x))
+    return;
+
+  addr = XEXP (x, 0);
+  if (CONSTANT_P (addr)
+      || (REG_P (addr)
+	  && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
+	      || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
+    return;
+
+  for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
+}
+
+/* Helper for instantiate_decls called via walk_tree: Process all decls
+   in the given DECL_VALUE_EXPR.  */
+
+static tree
+instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
+{
+  tree t = *tp;
+  if (! EXPR_P (t))
+    {
+      *walk_subtrees = 0;
+      if (DECL_P (t) && DECL_RTL_SET_P (t))
+	instantiate_decl_rtl (DECL_RTL (t));
+    }
+  return NULL;
+}
+
+/* Subroutine of instantiate_decls: Process all decls in the given
+   BLOCK node and all its subblocks.  */
+
+static void
+instantiate_decls_1 (tree let)
+{
+  tree t;
+
+  for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
+    {
+      if (DECL_RTL_SET_P (t))
+	instantiate_decl_rtl (DECL_RTL (t));
+      if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
+	{
+	  tree v = DECL_VALUE_EXPR (t);
+	  walk_tree (&v, instantiate_expr, NULL, NULL);
+	}
+    }
+
+  /* Process all subblocks.  */
+  for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
+    instantiate_decls_1 (t);
+}
+
+/* Scan all decls in FNDECL (both variables and parameters) and instantiate
+   all virtual registers in their DECL_RTL's.  */
+
+static void
+instantiate_decls (tree fndecl)
+{
+  tree decl, t, next;
+
+  /* Process all parameters of the function.  */
+  for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
+    {
+      instantiate_decl_rtl (DECL_RTL (decl));
+      instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
+      if (DECL_HAS_VALUE_EXPR_P (decl))
+	{
+	  tree v = DECL_VALUE_EXPR (decl);
+	  walk_tree (&v, instantiate_expr, NULL, NULL);
+	}
+    }
+
+  /* Now process all variables defined in the function or its subblocks.  */
+  instantiate_decls_1 (DECL_INITIAL (fndecl));
+
+  t = cfun->local_decls;
+  cfun->local_decls = NULL_TREE;
+  for (; t; t = next)
+    {
+      next = TREE_CHAIN (t);
+      decl = TREE_VALUE (t);
+      if (DECL_RTL_SET_P (decl))
+	instantiate_decl_rtl (DECL_RTL (decl));
+      ggc_free (t);
+    }
+}
+
+/* Pass through the INSNS of function FNDECL and convert virtual register
+   references to hard register references.  */
+
+static unsigned int
+instantiate_virtual_regs (void)
+{
+  rtx insn;
+
+  /* Compute the offsets to use for this function.  */
+  in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
+  var_offset = STARTING_FRAME_OFFSET;
+  dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
+  out_arg_offset = STACK_POINTER_OFFSET;
+#ifdef FRAME_POINTER_CFA_OFFSET
+  cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
+#else
+  cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
+#endif
+
+  /* Initialize recognition, indicating that volatile is OK.  */
+  init_recog ();
+
+  /* Scan through all the insns, instantiating every virtual register still
+     present.  */
+  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+    if (INSN_P (insn))
+      {
+	/* These patterns in the instruction stream can never be recognized.
+	   Fortunately, they shouldn't contain virtual registers either.  */
+	if (GET_CODE (PATTERN (insn)) == USE
+	    || GET_CODE (PATTERN (insn)) == CLOBBER
+	    || GET_CODE (PATTERN (insn)) == ADDR_VEC
+	    || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
+	    || GET_CODE (PATTERN (insn)) == ASM_INPUT)
+	  continue;
+
+	instantiate_virtual_regs_in_insn (insn);
+
+	if (INSN_DELETED_P (insn))
+	  continue;
+
+	for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
+
+	/* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE.  */
+	if (GET_CODE (insn) == CALL_INSN)
+	  for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
+			instantiate_virtual_regs_in_rtx, NULL);
+      }
+
+  /* Instantiate the virtual registers in the DECLs for debugging purposes.  */
+  instantiate_decls (current_function_decl);
+
+  targetm.instantiate_decls ();
+
+  /* Indicate that, from now on, assign_stack_local should use
+     frame_pointer_rtx.  */
+  virtuals_instantiated = 1;
+  return 0;
+}
+
+struct rtl_opt_pass pass_instantiate_virtual_regs =
+{
+ {
+  RTL_PASS,
+  "vregs",                              /* name */
+  NULL,                                 /* gate */
+  instantiate_virtual_regs,             /* execute */
+  NULL,                                 /* sub */
+  NULL,                                 /* next */
+  0,                                    /* static_pass_number */
+  0,                                    /* tv_id */
+  0,                                    /* properties_required */
+  0,                                    /* properties_provided */
+  0,                                    /* properties_destroyed */
+  0,                                    /* todo_flags_start */
+  TODO_dump_func                        /* todo_flags_finish */
+ }
+};
+
+
+/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
+   This means a type for which function calls must pass an address to the
+   function or get an address back from the function.
+   EXP may be a type node or an expression (whose type is tested).  */
+
+int
+aggregate_value_p (const_tree exp, const_tree fntype)
+{
+  int i, regno, nregs;
+  rtx reg;
+
+  const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
+
+  /* DECL node associated with FNTYPE when relevant, which we might need to
+     check for by-invisible-reference returns, typically for CALL_EXPR input
+     EXPressions.  */
+  const_tree fndecl = NULL_TREE;
+  
+  if (fntype)
+    switch (TREE_CODE (fntype))
+      {
+      case CALL_EXPR:
+	fndecl = get_callee_fndecl (fntype);
+	fntype = (fndecl
+		  ? TREE_TYPE (fndecl)
+		  : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
+	break;
+      case FUNCTION_DECL:
+	fndecl = fntype;
+	fntype = TREE_TYPE (fndecl);
+	break;
+      case FUNCTION_TYPE:
+      case METHOD_TYPE:
+        break;
+      case IDENTIFIER_NODE:
+	fntype = 0;
+	break;
+      default:
+	/* We don't expect other rtl types here.  */
+	gcc_unreachable ();
+      }
+
+  if (TREE_CODE (type) == VOID_TYPE)
+    return 0;
+
+  /* If the front end has decided that this needs to be passed by
+     reference, do so.  */
+  if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
+      && DECL_BY_REFERENCE (exp))
+    return 1;
+
+  /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
+     called function RESULT_DECL, meaning the function returns in memory by
+     invisible reference.  This check lets front-ends not set TREE_ADDRESSABLE
+     on the function type, which used to be the way to request such a return
+     mechanism but might now be causing troubles at gimplification time if
+     temporaries with the function type need to be created.  */
+  if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
+      && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
+    return 1;
+      
+  if (targetm.calls.return_in_memory (type, fntype))
+    return 1;
+  /* Types that are TREE_ADDRESSABLE must be constructed in memory,
+     and thus can't be returned in registers.  */
+  if (TREE_ADDRESSABLE (type))
+    return 1;
+  if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
+    return 1;
+  /* Make sure we have suitable call-clobbered regs to return
+     the value in; if not, we must return it in memory.  */
+  reg = hard_function_value (type, 0, fntype, 0);
+
+  /* If we have something other than a REG (e.g. a PARALLEL), then assume
+     it is OK.  */
+  if (!REG_P (reg))
+    return 0;
+
+  regno = REGNO (reg);
+  nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
+  for (i = 0; i < nregs; i++)
+    if (! call_used_regs[regno + i])
+      return 1;
+  return 0;
+}
+
+/* Return true if we should assign DECL a pseudo register; false if it
+   should live on the local stack.  */
+
+bool
+use_register_for_decl (const_tree decl)
+{
+  if (!targetm.calls.allocate_stack_slots_for_args())
+    return true;
+  
+  /* Honor volatile.  */
+  if (TREE_SIDE_EFFECTS (decl))
+    return false;
+
+  /* Honor addressability.  */
+  if (TREE_ADDRESSABLE (decl))
+    return false;
+
+  /* Only register-like things go in registers.  */
+  if (DECL_MODE (decl) == BLKmode)
+    return false;
+
+  /* If -ffloat-store specified, don't put explicit float variables
+     into registers.  */
+  /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
+     propagates values across these stores, and it probably shouldn't.  */
+  if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
+    return false;
+
+  /* If we're not interested in tracking debugging information for
+     this decl, then we can certainly put it in a register.  */
+  if (DECL_IGNORED_P (decl))
+    return true;
+
+  if (optimize)
+    return true;
+
+  if (!DECL_REGISTER (decl))
+    return false;
+
+  switch (TREE_CODE (TREE_TYPE (decl)))
+    {
+    case RECORD_TYPE:
+    case UNION_TYPE:
+    case QUAL_UNION_TYPE:
+      /* When not optimizing, disregard register keyword for variables with
+	 types containing methods, otherwise the methods won't be callable
+	 from the debugger.  */
+      if (TYPE_METHODS (TREE_TYPE (decl)))
+	return false;
+      break;
+    default:
+      break;
+    }
+
+  return true;
+}
+
+/* Return true if TYPE should be passed by invisible reference.  */
+
+bool
+pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
+		   tree type, bool named_arg)
+{
+  if (type)
+    {
+      /* If this type contains non-trivial constructors, then it is
+	 forbidden for the middle-end to create any new copies.  */
+      if (TREE_ADDRESSABLE (type))
+	return true;
+
+      /* GCC post 3.4 passes *all* variable sized types by reference.  */
+      if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
+	return true;
+    }
+
+  return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
+}
+
+/* Return true if TYPE, which is passed by reference, should be callee
+   copied instead of caller copied.  */
+
+bool
+reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
+			 tree type, bool named_arg)
+{
+  if (type && TREE_ADDRESSABLE (type))
+    return false;
+  return targetm.calls.callee_copies (ca, mode, type, named_arg);
+}
+
+/* Structures to communicate between the subroutines of assign_parms.
+   The first holds data persistent across all parameters, the second
+   is cleared out for each parameter.  */
+
+struct assign_parm_data_all
+{
+  CUMULATIVE_ARGS args_so_far;
+  struct args_size stack_args_size;
+  tree function_result_decl;
+  tree orig_fnargs;
+  rtx first_conversion_insn;
+  rtx last_conversion_insn;
+  HOST_WIDE_INT pretend_args_size;
+  HOST_WIDE_INT extra_pretend_bytes;
+  int reg_parm_stack_space;
+};
+
+struct assign_parm_data_one
+{
+  tree nominal_type;
+  tree passed_type;
+  rtx entry_parm;
+  rtx stack_parm;
+  enum machine_mode nominal_mode;
+  enum machine_mode passed_mode;
+  enum machine_mode promoted_mode;
+  struct locate_and_pad_arg_data locate;
+  int partial;
+  BOOL_BITFIELD named_arg : 1;
+  BOOL_BITFIELD passed_pointer : 1;
+  BOOL_BITFIELD on_stack : 1;
+  BOOL_BITFIELD loaded_in_reg : 1;
+};
+
+/* A subroutine of assign_parms.  Initialize ALL.  */
+
+static void
+assign_parms_initialize_all (struct assign_parm_data_all *all)
+{
+  tree fntype;
+
+  memset (all, 0, sizeof (*all));
+
+  fntype = TREE_TYPE (current_function_decl);
+
+#ifdef INIT_CUMULATIVE_INCOMING_ARGS
+  INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
+#else
+  INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
+			current_function_decl, -1);
+#endif
+
+#ifdef REG_PARM_STACK_SPACE
+  all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
+#endif
+}
+
+/* If ARGS contains entries with complex types, split the entry into two
+   entries of the component type.  Return a new list of substitutions are
+   needed, else the old list.  */
+
+static tree
+split_complex_args (tree args)
+{
+  tree p;
+
+  /* Before allocating memory, check for the common case of no complex.  */
+  for (p = args; p; p = TREE_CHAIN (p))
+    {
+      tree type = TREE_TYPE (p);
+      if (TREE_CODE (type) == COMPLEX_TYPE
+	  && targetm.calls.split_complex_arg (type))
+        goto found;
+    }
+  return args;
+
+ found:
+  args = copy_list (args);
+
+  for (p = args; p; p = TREE_CHAIN (p))
+    {
+      tree type = TREE_TYPE (p);
+      if (TREE_CODE (type) == COMPLEX_TYPE
+	  && targetm.calls.split_complex_arg (type))
+	{
+	  tree decl;
+	  tree subtype = TREE_TYPE (type);
+	  bool addressable = TREE_ADDRESSABLE (p);
+
+	  /* Rewrite the PARM_DECL's type with its component.  */
+	  TREE_TYPE (p) = subtype;
+	  DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
+	  DECL_MODE (p) = VOIDmode;
+	  DECL_SIZE (p) = NULL;
+	  DECL_SIZE_UNIT (p) = NULL;
+	  /* If this arg must go in memory, put it in a pseudo here.
+	     We can't allow it to go in memory as per normal parms,
+	     because the usual place might not have the imag part
+	     adjacent to the real part.  */
+	  DECL_ARTIFICIAL (p) = addressable;
+	  DECL_IGNORED_P (p) = addressable;
+	  TREE_ADDRESSABLE (p) = 0;
+	  layout_decl (p, 0);
+
+	  /* Build a second synthetic decl.  */
+	  decl = build_decl (PARM_DECL, NULL_TREE, subtype);
+	  DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
+	  DECL_ARTIFICIAL (decl) = addressable;
+	  DECL_IGNORED_P (decl) = addressable;
+	  layout_decl (decl, 0);
+
+	  /* Splice it in; skip the new decl.  */
+	  TREE_CHAIN (decl) = TREE_CHAIN (p);
+	  TREE_CHAIN (p) = decl;
+	  p = decl;
+	}
+    }
+
+  return args;
+}
+
+/* A subroutine of assign_parms.  Adjust the parameter list to incorporate
+   the hidden struct return argument, and (abi willing) complex args.
+   Return the new parameter list.  */
+
+static tree
+assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
+{
+  tree fndecl = current_function_decl;
+  tree fntype = TREE_TYPE (fndecl);
+  tree fnargs = DECL_ARGUMENTS (fndecl);
+
+  /* If struct value address is treated as the first argument, make it so.  */
+  if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
+      && ! cfun->returns_pcc_struct
+      && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
+    {
+      tree type = build_pointer_type (TREE_TYPE (fntype));
+      tree decl;
+
+      decl = build_decl (PARM_DECL, NULL_TREE, type);
+      DECL_ARG_TYPE (decl) = type;
+      DECL_ARTIFICIAL (decl) = 1;
+      DECL_IGNORED_P (decl) = 1;
+
+      TREE_CHAIN (decl) = fnargs;
+      fnargs = decl;
+      all->function_result_decl = decl;
+    }
+
+  all->orig_fnargs = fnargs;
+
+  /* If the target wants to split complex arguments into scalars, do so.  */
+  if (targetm.calls.split_complex_arg)
+    fnargs = split_complex_args (fnargs);
+
+  return fnargs;
+}
+
+/* A subroutine of assign_parms.  Examine PARM and pull out type and mode
+   data for the parameter.  Incorporate ABI specifics such as pass-by-
+   reference and type promotion.  */
+
+static void
+assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
+			     struct assign_parm_data_one *data)
+{
+  tree nominal_type, passed_type;
+  enum machine_mode nominal_mode, passed_mode, promoted_mode;
+
+  memset (data, 0, sizeof (*data));
+
+  /* NAMED_ARG is a misnomer.  We really mean 'non-variadic'. */
+  if (!cfun->stdarg)
+    data->named_arg = 1;  /* No variadic parms.  */
+  else if (TREE_CHAIN (parm))
+    data->named_arg = 1;  /* Not the last non-variadic parm. */
+  else if (targetm.calls.strict_argument_naming (&all->args_so_far))
+    data->named_arg = 1;  /* Only variadic ones are unnamed.  */
+  else
+    data->named_arg = 0;  /* Treat as variadic.  */
+
+  nominal_type = TREE_TYPE (parm);
+  passed_type = DECL_ARG_TYPE (parm);
+
+  /* Look out for errors propagating this far.  Also, if the parameter's
+     type is void then its value doesn't matter.  */
+  if (TREE_TYPE (parm) == error_mark_node
+      /* This can happen after weird syntax errors
+	 or if an enum type is defined among the parms.  */
+      || TREE_CODE (parm) != PARM_DECL
+      || passed_type == NULL
+      || VOID_TYPE_P (nominal_type))
+    {
+      nominal_type = passed_type = void_type_node;
+      nominal_mode = passed_mode = promoted_mode = VOIDmode;
+      goto egress;
+    }
+
+  /* Find mode of arg as it is passed, and mode of arg as it should be
+     during execution of this function.  */
+  passed_mode = TYPE_MODE (passed_type);
+  nominal_mode = TYPE_MODE (nominal_type);
+
+  /* If the parm is to be passed as a transparent union, use the type of
+     the first field for the tests below.  We have already verified that
+     the modes are the same.  */
+  if (TREE_CODE (passed_type) == UNION_TYPE
+      && TYPE_TRANSPARENT_UNION (passed_type))
+    passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
+
+  /* See if this arg was passed by invisible reference.  */
+  if (pass_by_reference (&all->args_so_far, passed_mode,
+			 passed_type, data->named_arg))
+    {
+      passed_type = nominal_type = build_pointer_type (passed_type);
+      data->passed_pointer = true;
+      passed_mode = nominal_mode = Pmode;
+    }
+
+  /* Find mode as it is passed by the ABI.  */
+  promoted_mode = passed_mode;
+  if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
+    {
+      int unsignedp = TYPE_UNSIGNED (passed_type);
+      promoted_mode = promote_mode (passed_type, promoted_mode,
+				    &unsignedp, 1);
+    }
+
+ egress:
+  data->nominal_type = nominal_type;
+  data->passed_type = passed_type;
+  data->nominal_mode = nominal_mode;
+  data->passed_mode = passed_mode;
+  data->promoted_mode = promoted_mode;
+}
+
+/* A subroutine of assign_parms.  Invoke setup_incoming_varargs.  */
+
+static void
+assign_parms_setup_varargs (struct assign_parm_data_all *all,
+			    struct assign_parm_data_one *data, bool no_rtl)
+{
+  int varargs_pretend_bytes = 0;
+
+  targetm.calls.setup_incoming_varargs (&all->args_so_far,
+					data->promoted_mode,
+					data->passed_type,
+					&varargs_pretend_bytes, no_rtl);
+
+  /* If the back-end has requested extra stack space, record how much is
+     needed.  Do not change pretend_args_size otherwise since it may be
+     nonzero from an earlier partial argument.  */
+  if (varargs_pretend_bytes > 0)
+    all->pretend_args_size = varargs_pretend_bytes;
+}
+
+/* A subroutine of assign_parms.  Set DATA->ENTRY_PARM corresponding to
+   the incoming location of the current parameter.  */
+
+static void
+assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
+			    struct assign_parm_data_one *data)
+{
+  HOST_WIDE_INT pretend_bytes = 0;
+  rtx entry_parm;
+  bool in_regs;
+
+  if (data->promoted_mode == VOIDmode)
+    {
+      data->entry_parm = data->stack_parm = const0_rtx;
+      return;
+    }
+
+#ifdef FUNCTION_INCOMING_ARG
+  entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
+				      data->passed_type, data->named_arg);
+#else
+  entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
+			     data->passed_type, data->named_arg);
+#endif
+
+  if (entry_parm == 0)
+    data->promoted_mode = data->passed_mode;
+
+  /* Determine parm's home in the stack, in case it arrives in the stack
+     or we should pretend it did.  Compute the stack position and rtx where
+     the argument arrives and its size.
+
+     There is one complexity here:  If this was a parameter that would
+     have been passed in registers, but wasn't only because it is
+     __builtin_va_alist, we want locate_and_pad_parm to treat it as if
+     it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
+     In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
+     as it was the previous time.  */
+  in_regs = entry_parm != 0;
+#ifdef STACK_PARMS_IN_REG_PARM_AREA
+  in_regs = true;
+#endif
+  if (!in_regs && !data->named_arg)
+    {
+      if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
+	{
+	  rtx tem;
+#ifdef FUNCTION_INCOMING_ARG
+	  tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
+				       data->passed_type, true);
+#else
+	  tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
+			      data->passed_type, true);
+#endif
+	  in_regs = tem != NULL;
+	}
+    }
+
+  /* If this parameter was passed both in registers and in the stack, use
+     the copy on the stack.  */
+  if (targetm.calls.must_pass_in_stack (data->promoted_mode,
+					data->passed_type))
+    entry_parm = 0;
+
+  if (entry_parm)
+    {
+      int partial;
+
+      partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
+						 data->promoted_mode,
+						 data->passed_type,
+						 data->named_arg);
+      data->partial = partial;
+
+      /* The caller might already have allocated stack space for the
+	 register parameters.  */
+      if (partial != 0 && all->reg_parm_stack_space == 0)
+	{
+	  /* Part of this argument is passed in registers and part
+	     is passed on the stack.  Ask the prologue code to extend
+	     the stack part so that we can recreate the full value.
+
+	     PRETEND_BYTES is the size of the registers we need to store.
+	     CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
+	     stack space that the prologue should allocate.
+
+	     Internally, gcc assumes that the argument pointer is aligned
+	     to STACK_BOUNDARY bits.  This is used both for alignment
+	     optimizations (see init_emit) and to locate arguments that are
+	     aligned to more than PARM_BOUNDARY bits.  We must preserve this
+	     invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
+	     a stack boundary.  */
+
+	  /* We assume at most one partial arg, and it must be the first
+	     argument on the stack.  */
+	  gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
+
+	  pretend_bytes = partial;
+	  all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
+
+	  /* We want to align relative to the actual stack pointer, so
+	     don't include this in the stack size until later.  */
+	  all->extra_pretend_bytes = all->pretend_args_size;
+	}
+    }
+
+  locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
+		       entry_parm ? data->partial : 0, current_function_decl,
+		       &all->stack_args_size, &data->locate);
+
+  /* Update parm_stack_boundary if this parameter is passed in the
+     stack.  */
+  if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
+    crtl->parm_stack_boundary = data->locate.boundary;
+
+  /* Adjust offsets to include the pretend args.  */
+  pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
+  data->locate.slot_offset.constant += pretend_bytes;
+  data->locate.offset.constant += pretend_bytes;
+
+  data->entry_parm = entry_parm;
+}
+
+/* A subroutine of assign_parms.  If there is actually space on the stack
+   for this parm, count it in stack_args_size and return true.  */
+
+static bool
+assign_parm_is_stack_parm (struct assign_parm_data_all *all,
+			   struct assign_parm_data_one *data)
+{
+  /* Trivially true if we've no incoming register.  */
+  if (data->entry_parm == NULL)
+    ;
+  /* Also true if we're partially in registers and partially not,
+     since we've arranged to drop the entire argument on the stack.  */
+  else if (data->partial != 0)
+    ;
+  /* Also true if the target says that it's passed in both registers
+     and on the stack.  */
+  else if (GET_CODE (data->entry_parm) == PARALLEL
+	   && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
+    ;
+  /* Also true if the target says that there's stack allocated for
+     all register parameters.  */
+  else if (all->reg_parm_stack_space > 0)
+    ;
+  /* Otherwise, no, this parameter has no ABI defined stack slot.  */
+  else
+    return false;
+
+  all->stack_args_size.constant += data->locate.size.constant;
+  if (data->locate.size.var)
+    ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
+
+  return true;
+}
+
+/* A subroutine of assign_parms.  Given that this parameter is allocated
+   stack space by the ABI, find it.  */
+
+static void
+assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
+{
+  rtx offset_rtx, stack_parm;
+  unsigned int align, boundary;
+
+  /* If we're passing this arg using a reg, make its stack home the
+     aligned stack slot.  */
+  if (data->entry_parm)
+    offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
+  else
+    offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
+
+  stack_parm = crtl->args.internal_arg_pointer;
+  if (offset_rtx != const0_rtx)
+    stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
+  stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
+
+  set_mem_attributes (stack_parm, parm, 1);
+  /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
+     while promoted mode's size is needed.  */
+  if (data->promoted_mode != BLKmode
+      && data->promoted_mode != DECL_MODE (parm))
+    {
+      set_mem_size (stack_parm, GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
+      if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
+	{
+	  int offset = subreg_lowpart_offset (DECL_MODE (parm),
+					      data->promoted_mode);
+	  if (offset)
+	    set_mem_offset (stack_parm,
+			    plus_constant (MEM_OFFSET (stack_parm), -offset));
+	}
+    }
+
+  boundary = data->locate.boundary;
+  align = BITS_PER_UNIT;
+
+  /* If we're padding upward, we know that the alignment of the slot
+     is FUNCTION_ARG_BOUNDARY.  If we're using slot_offset, we're
+     intentionally forcing upward padding.  Otherwise we have to come
+     up with a guess at the alignment based on OFFSET_RTX.  */
+  if (data->locate.where_pad != downward || data->entry_parm)
+    align = boundary;
+  else if (GET_CODE (offset_rtx) == CONST_INT)
+    {
+      align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
+      align = align & -align;
+    }
+  set_mem_align (stack_parm, align);
+
+  if (data->entry_parm)
+    set_reg_attrs_for_parm (data->entry_parm, stack_parm);
+
+  data->stack_parm = stack_parm;
+}
+
+/* A subroutine of assign_parms.  Adjust DATA->ENTRY_RTL such that it's
+   always valid and contiguous.  */
+
+static void
+assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
+{
+  rtx entry_parm = data->entry_parm;
+  rtx stack_parm = data->stack_parm;
+
+  /* If this parm was passed part in regs and part in memory, pretend it
+     arrived entirely in memory by pushing the register-part onto the stack.
+     In the special case of a DImode or DFmode that is split, we could put
+     it together in a pseudoreg directly, but for now that's not worth
+     bothering with.  */
+  if (data->partial != 0)
+    {
+      /* Handle calls that pass values in multiple non-contiguous
+	 locations.  The Irix 6 ABI has examples of this.  */
+      if (GET_CODE (entry_parm) == PARALLEL)
+	emit_group_store (validize_mem (stack_parm), entry_parm,
+			  data->passed_type, 
+			  int_size_in_bytes (data->passed_type));
+      else
+	{
+	  gcc_assert (data->partial % UNITS_PER_WORD == 0);
+	  move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
+			       data->partial / UNITS_PER_WORD);
+	}
+
+      entry_parm = stack_parm;
+    }
+
+  /* If we didn't decide this parm came in a register, by default it came
+     on the stack.  */
+  else if (entry_parm == NULL)
+    entry_parm = stack_parm;
+
+  /* When an argument is passed in multiple locations, we can't make use
+     of this information, but we can save some copying if the whole argument
+     is passed in a single register.  */
+  else if (GET_CODE (entry_parm) == PARALLEL
+	   && data->nominal_mode != BLKmode
+	   && data->passed_mode != BLKmode)
+    {
+      size_t i, len = XVECLEN (entry_parm, 0);
+
+      for (i = 0; i < len; i++)
+	if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
+	    && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
+	    && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
+		== data->passed_mode)
+	    && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
+	  {
+	    entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
+	    break;
+	  }
+    }
+
+  data->entry_parm = entry_parm;
+}
+
+/* A subroutine of assign_parms.  Reconstitute any values which were
+   passed in multiple registers and would fit in a single register.  */
+
+static void
+assign_parm_remove_parallels (struct assign_parm_data_one *data)
+{
+  rtx entry_parm = data->entry_parm;
+
+  /* Convert the PARALLEL to a REG of the same mode as the parallel.
+     This can be done with register operations rather than on the
+     stack, even if we will store the reconstituted parameter on the
+     stack later.  */
+  if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
+    {
+      rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
+      emit_group_store (parmreg, entry_parm, data->passed_type,
+			GET_MODE_SIZE (GET_MODE (entry_parm)));
+      entry_parm = parmreg;
+    }
+
+  data->entry_parm = entry_parm;
+}
+
+/* A subroutine of assign_parms.  Adjust DATA->STACK_RTL such that it's
+   always valid and properly aligned.  */
+
+static void
+assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
+{
+  rtx stack_parm = data->stack_parm;
+
+  /* If we can't trust the parm stack slot to be aligned enough for its
+     ultimate type, don't use that slot after entry.  We'll make another
+     stack slot, if we need one.  */
+  if (stack_parm
+      && ((STRICT_ALIGNMENT
+	   && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
+	  || (data->nominal_type
+	      && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
+	      && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
+    stack_parm = NULL;
+
+  /* If parm was passed in memory, and we need to convert it on entry,
+     don't store it back in that same slot.  */
+  else if (data->entry_parm == stack_parm
+	   && data->nominal_mode != BLKmode
+	   && data->nominal_mode != data->passed_mode)
+    stack_parm = NULL;
+
+  /* If stack protection is in effect for this function, don't leave any
+     pointers in their passed stack slots.  */
+  else if (crtl->stack_protect_guard
+	   && (flag_stack_protect == 2
+	       || data->passed_pointer
+	       || POINTER_TYPE_P (data->nominal_type)))
+    stack_parm = NULL;
+
+  data->stack_parm = stack_parm;
+}
+
+/* A subroutine of assign_parms.  Return true if the current parameter
+   should be stored as a BLKmode in the current frame.  */
+
+static bool
+assign_parm_setup_block_p (struct assign_parm_data_one *data)
+{
+  if (data->nominal_mode == BLKmode)
+    return true;
+  if (GET_MODE (data->entry_parm) == BLKmode)
+    return true;
+
+#ifdef BLOCK_REG_PADDING
+  /* Only assign_parm_setup_block knows how to deal with register arguments
+     that are padded at the least significant end.  */
+  if (REG_P (data->entry_parm)
+      && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
+      && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
+	  == (BYTES_BIG_ENDIAN ? upward : downward)))
+    return true;
+#endif
+
+  return false;
+}
+
+/* A subroutine of assign_parms.  Arrange for the parameter to be 
+   present and valid in DATA->STACK_RTL.  */
+
+static void
+assign_parm_setup_block (struct assign_parm_data_all *all,
+			 tree parm, struct assign_parm_data_one *data)
+{
+  rtx entry_parm = data->entry_parm;
+  rtx stack_parm = data->stack_parm;
+  HOST_WIDE_INT size;
+  HOST_WIDE_INT size_stored;
+
+  if (GET_CODE (entry_parm) == PARALLEL)
+    entry_parm = emit_group_move_into_temps (entry_parm);
+
+  size = int_size_in_bytes (data->passed_type);
+  size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
+  if (stack_parm == 0)
+    {
+      DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
+      stack_parm = assign_stack_local (BLKmode, size_stored,
+				       DECL_ALIGN (parm));
+      if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
+	PUT_MODE (stack_parm, GET_MODE (entry_parm));
+      set_mem_attributes (stack_parm, parm, 1);
+    }
+
+  /* If a BLKmode arrives in registers, copy it to a stack slot.  Handle
+     calls that pass values in multiple non-contiguous locations.  */
+  if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
+    {
+      rtx mem;
+
+      /* Note that we will be storing an integral number of words.
+	 So we have to be careful to ensure that we allocate an
+	 integral number of words.  We do this above when we call
+	 assign_stack_local if space was not allocated in the argument
+	 list.  If it was, this will not work if PARM_BOUNDARY is not
+	 a multiple of BITS_PER_WORD.  It isn't clear how to fix this
+	 if it becomes a problem.  Exception is when BLKmode arrives
+	 with arguments not conforming to word_mode.  */
+
+      if (data->stack_parm == 0)
+	;
+      else if (GET_CODE (entry_parm) == PARALLEL)
+	;
+      else
+	gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
+
+      mem = validize_mem (stack_parm);
+
+      /* Handle values in multiple non-contiguous locations.  */
+      if (GET_CODE (entry_parm) == PARALLEL)
+	{
+	  push_to_sequence2 (all->first_conversion_insn,
+			     all->last_conversion_insn);
+	  emit_group_store (mem, entry_parm, data->passed_type, size);
+	  all->first_conversion_insn = get_insns ();
+	  all->last_conversion_insn = get_last_insn ();
+	  end_sequence ();
+	}
+
+      else if (size == 0)
+	;
+
+      /* If SIZE is that of a mode no bigger than a word, just use
+	 that mode's store operation.  */
+      else if (size <= UNITS_PER_WORD)
+	{
+	  enum machine_mode mode
+	    = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
+
+	  if (mode != BLKmode
+#ifdef BLOCK_REG_PADDING
+	      && (size == UNITS_PER_WORD
+		  || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
+		      != (BYTES_BIG_ENDIAN ? upward : downward)))
+#endif
+	      )
+	    {
+	      rtx reg;
+
+	      /* We are really truncating a word_mode value containing
+		 SIZE bytes into a value of mode MODE.  If such an
+		 operation requires no actual instructions, we can refer
+		 to the value directly in mode MODE, otherwise we must
+		 start with the register in word_mode and explicitly
+		 convert it.  */
+	      if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
+		reg = gen_rtx_REG (mode, REGNO (entry_parm));
+	      else
+		{
+		  reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
+		  reg = convert_to_mode (mode, copy_to_reg (reg), 1);
+		}
+	      emit_move_insn (change_address (mem, mode, 0), reg);
+	    }
+
+	  /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
+	     machine must be aligned to the left before storing
+	     to memory.  Note that the previous test doesn't
+	     handle all cases (e.g. SIZE == 3).  */
+	  else if (size != UNITS_PER_WORD
+#ifdef BLOCK_REG_PADDING
+		   && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
+		       == downward)
+#else
+		   && BYTES_BIG_ENDIAN
+#endif
+		   )
+	    {
+	      rtx tem, x;
+	      int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
+	      rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
+
+	      x = expand_shift (LSHIFT_EXPR, word_mode, reg,
+				build_int_cst (NULL_TREE, by),
+				NULL_RTX, 1);
+	      tem = change_address (mem, word_mode, 0);
+	      emit_move_insn (tem, x);
+	    }
+	  else
+	    move_block_from_reg (REGNO (entry_parm), mem,
+				 size_stored / UNITS_PER_WORD);
+	}
+      else
+	move_block_from_reg (REGNO (entry_parm), mem,
+			     size_stored / UNITS_PER_WORD);
+    }
+  else if (data->stack_parm == 0)
+    {
+      push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
+      emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
+		       BLOCK_OP_NORMAL);
+      all->first_conversion_insn = get_insns ();
+      all->last_conversion_insn = get_last_insn ();
+      end_sequence ();
+    }
+
+  data->stack_parm = stack_parm;
+  SET_DECL_RTL (parm, stack_parm);
+}
+
+/* A subroutine of assign_parms.  Allocate a pseudo to hold the current
+   parameter.  Get it there.  Perform all ABI specified conversions.  */
+
+static void
+assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
+		       struct assign_parm_data_one *data)
+{
+  rtx parmreg;
+  enum machine_mode promoted_nominal_mode;
+  int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
+  bool did_conversion = false;
+
+  /* Store the parm in a pseudoregister during the function, but we may
+     need to do it in a wider mode.  */
+
+  /* This is not really promoting for a call.  However we need to be
+     consistent with assign_parm_find_data_types and expand_expr_real_1.  */
+  promoted_nominal_mode
+    = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
+
+  parmreg = gen_reg_rtx (promoted_nominal_mode);
+
+  if (!DECL_ARTIFICIAL (parm))
+    mark_user_reg (parmreg);
+
+  /* If this was an item that we received a pointer to,
+     set DECL_RTL appropriately.  */
+  if (data->passed_pointer)
+    {
+      rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
+      set_mem_attributes (x, parm, 1);
+      SET_DECL_RTL (parm, x);
+    }
+  else
+    SET_DECL_RTL (parm, parmreg);
+
+  assign_parm_remove_parallels (data);
+
+  /* Copy the value into the register.  */
+  if (data->nominal_mode != data->passed_mode
+      || promoted_nominal_mode != data->promoted_mode)
+    {
+      int save_tree_used;
+
+      /* ENTRY_PARM has been converted to PROMOTED_MODE, its
+	 mode, by the caller.  We now have to convert it to
+	 NOMINAL_MODE, if different.  However, PARMREG may be in
+	 a different mode than NOMINAL_MODE if it is being stored
+	 promoted.
+
+	 If ENTRY_PARM is a hard register, it might be in a register
+	 not valid for operating in its mode (e.g., an odd-numbered
+	 register for a DFmode).  In that case, moves are the only
+	 thing valid, so we can't do a convert from there.  This
+	 occurs when the calling sequence allow such misaligned
+	 usages.
+
+	 In addition, the conversion may involve a call, which could
+	 clobber parameters which haven't been copied to pseudo
+	 registers yet.  Therefore, we must first copy the parm to
+	 a pseudo reg here, and save the conversion until after all
+	 parameters have been moved.  */
+
+      rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
+
+      emit_move_insn (tempreg, validize_mem (data->entry_parm));
+
+      push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
+      tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
+
+      if (GET_CODE (tempreg) == SUBREG
+	  && GET_MODE (tempreg) == data->nominal_mode
+	  && REG_P (SUBREG_REG (tempreg))
+	  && data->nominal_mode == data->passed_mode
+	  && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
+	  && GET_MODE_SIZE (GET_MODE (tempreg))
+	     < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
+	{
+	  /* The argument is already sign/zero extended, so note it
+	     into the subreg.  */
+	  SUBREG_PROMOTED_VAR_P (tempreg) = 1;
+	  SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
+	}
+
+      /* TREE_USED gets set erroneously during expand_assignment.  */
+      save_tree_used = TREE_USED (parm);
+      expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
+      TREE_USED (parm) = save_tree_used;
+      all->first_conversion_insn = get_insns ();
+      all->last_conversion_insn = get_last_insn ();
+      end_sequence ();
+
+      did_conversion = true;
+    }
+  else
+    emit_move_insn (parmreg, validize_mem (data->entry_parm));
+
+  /* If we were passed a pointer but the actual value can safely live
+     in a register, put it in one.  */
+  if (data->passed_pointer
+      && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
+      /* If by-reference argument was promoted, demote it.  */
+      && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
+	  || use_register_for_decl (parm)))
+    {
+      /* We can't use nominal_mode, because it will have been set to
+	 Pmode above.  We must use the actual mode of the parm.  */
+      parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
+      mark_user_reg (parmreg);
+
+      if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
+	{
+	  rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
+	  int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
+
+	  push_to_sequence2 (all->first_conversion_insn,
+			     all->last_conversion_insn);
+	  emit_move_insn (tempreg, DECL_RTL (parm));
+	  tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
+	  emit_move_insn (parmreg, tempreg);
+	  all->first_conversion_insn = get_insns ();
+	  all->last_conversion_insn = get_last_insn ();
+	  end_sequence ();
+
+	  did_conversion = true;
+	}
+      else
+	emit_move_insn (parmreg, DECL_RTL (parm));
+
+      SET_DECL_RTL (parm, parmreg);
+
+      /* STACK_PARM is the pointer, not the parm, and PARMREG is
+	 now the parm.  */
+      data->stack_parm = NULL;
+    }
+
+  /* Mark the register as eliminable if we did no conversion and it was
+     copied from memory at a fixed offset, and the arg pointer was not
+     copied to a pseudo-reg.  If the arg pointer is a pseudo reg or the
+     offset formed an invalid address, such memory-equivalences as we
+     make here would screw up life analysis for it.  */
+  if (data->nominal_mode == data->passed_mode
+      && !did_conversion
+      && data->stack_parm != 0
+      && MEM_P (data->stack_parm)
+      && data->locate.offset.var == 0
+      && reg_mentioned_p (virtual_incoming_args_rtx,
+			  XEXP (data->stack_parm, 0)))
+    {
+      rtx linsn = get_last_insn ();
+      rtx sinsn, set;
+
+      /* Mark complex types separately.  */
+      if (GET_CODE (parmreg) == CONCAT)
+	{
+	  enum machine_mode submode
+	    = GET_MODE_INNER (GET_MODE (parmreg));
+	  int regnor = REGNO (XEXP (parmreg, 0));
+	  int regnoi = REGNO (XEXP (parmreg, 1));
+	  rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
+	  rtx stacki = adjust_address_nv (data->stack_parm, submode,
+					  GET_MODE_SIZE (submode));
+
+	  /* Scan backwards for the set of the real and
+	     imaginary parts.  */
+	  for (sinsn = linsn; sinsn != 0;
+	       sinsn = prev_nonnote_insn (sinsn))
+	    {
+	      set = single_set (sinsn);
+	      if (set == 0)
+		continue;
+
+	      if (SET_DEST (set) == regno_reg_rtx [regnoi])
+		set_unique_reg_note (sinsn, REG_EQUIV, stacki);
+	      else if (SET_DEST (set) == regno_reg_rtx [regnor])
+		set_unique_reg_note (sinsn, REG_EQUIV, stackr);
+	    }
+	}
+      else if ((set = single_set (linsn)) != 0
+	       && SET_DEST (set) == parmreg)
+	set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
+    }
+
+  /* For pointer data type, suggest pointer register.  */
+  if (POINTER_TYPE_P (TREE_TYPE (parm)))
+    mark_reg_pointer (parmreg,
+		      TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
+}
+
+/* A subroutine of assign_parms.  Allocate stack space to hold the current
+   parameter.  Get it there.  Perform all ABI specified conversions.  */
+
+static void
+assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
+		         struct assign_parm_data_one *data)
+{
+  /* Value must be stored in the stack slot STACK_PARM during function
+     execution.  */
+  bool to_conversion = false;
+
+  assign_parm_remove_parallels (data);
+
+  if (data->promoted_mode != data->nominal_mode)
+    {
+      /* Conversion is required.  */
+      rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
+
+      emit_move_insn (tempreg, validize_mem (data->entry_parm));
+
+      push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
+      to_conversion = true;
+
+      data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
+					  TYPE_UNSIGNED (TREE_TYPE (parm)));
+
+      if (data->stack_parm)
+	/* ??? This may need a big-endian conversion on sparc64.  */
+	data->stack_parm
+	  = adjust_address (data->stack_parm, data->nominal_mode, 0);
+    }
+
+  if (data->entry_parm != data->stack_parm)
+    {
+      rtx src, dest;
+
+      if (data->stack_parm == 0)
+	{
+	  int align = STACK_SLOT_ALIGNMENT (data->passed_type,
+					    GET_MODE (data->entry_parm),
+					    TYPE_ALIGN (data->passed_type));
+	  data->stack_parm
+	    = assign_stack_local (GET_MODE (data->entry_parm),
+				  GET_MODE_SIZE (GET_MODE (data->entry_parm)),
+				  align);
+	  set_mem_attributes (data->stack_parm, parm, 1);
+	}
+
+      dest = validize_mem (data->stack_parm);
+      src = validize_mem (data->entry_parm);
+
+      if (MEM_P (src))
+	{
+	  /* Use a block move to handle potentially misaligned entry_parm.  */
+	  if (!to_conversion)
+	    push_to_sequence2 (all->first_conversion_insn,
+			       all->last_conversion_insn);
+	  to_conversion = true;
+
+	  emit_block_move (dest, src,
+			   GEN_INT (int_size_in_bytes (data->passed_type)),
+			   BLOCK_OP_NORMAL);
+	}
+      else
+	emit_move_insn (dest, src);
+    }
+
+  if (to_conversion)
+    {
+      all->first_conversion_insn = get_insns ();
+      all->last_conversion_insn = get_last_insn ();
+      end_sequence ();
+    }
+
+  SET_DECL_RTL (parm, data->stack_parm);
+}
+
+/* A subroutine of assign_parms.  If the ABI splits complex arguments, then
+   undo the frobbing that we did in assign_parms_augmented_arg_list.  */
+
+static void
+assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
+{
+  tree parm;
+  tree orig_fnargs = all->orig_fnargs;
+
+  for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
+    {
+      if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
+	  && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
+	{
+	  rtx tmp, real, imag;
+	  enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
+
+	  real = DECL_RTL (fnargs);
+	  imag = DECL_RTL (TREE_CHAIN (fnargs));
+	  if (inner != GET_MODE (real))
+	    {
+	      real = gen_lowpart_SUBREG (inner, real);
+	      imag = gen_lowpart_SUBREG (inner, imag);
+	    }
+
+	  if (TREE_ADDRESSABLE (parm))
+	    {
+	      rtx rmem, imem;
+	      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
+	      int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
+						DECL_MODE (parm),
+						TYPE_ALIGN (TREE_TYPE (parm)));
+
+	      /* split_complex_arg put the real and imag parts in
+		 pseudos.  Move them to memory.  */
+	      tmp = assign_stack_local (DECL_MODE (parm), size, align);
+	      set_mem_attributes (tmp, parm, 1);
+	      rmem = adjust_address_nv (tmp, inner, 0);
+	      imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
+	      push_to_sequence2 (all->first_conversion_insn,
+				 all->last_conversion_insn);
+	      emit_move_insn (rmem, real);
+	      emit_move_insn (imem, imag);
+	      all->first_conversion_insn = get_insns ();
+	      all->last_conversion_insn = get_last_insn ();
+	      end_sequence ();
+	    }
+	  else
+	    tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
+	  SET_DECL_RTL (parm, tmp);
+
+	  real = DECL_INCOMING_RTL (fnargs);
+	  imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
+	  if (inner != GET_MODE (real))
+	    {
+	      real = gen_lowpart_SUBREG (inner, real);
+	      imag = gen_lowpart_SUBREG (inner, imag);
+	    }
+	  tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
+	  set_decl_incoming_rtl (parm, tmp, false);
+	  fnargs = TREE_CHAIN (fnargs);
+	}
+      else
+	{
+	  SET_DECL_RTL (parm, DECL_RTL (fnargs));
+	  set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
+
+	  /* Set MEM_EXPR to the original decl, i.e. to PARM,
+	     instead of the copy of decl, i.e. FNARGS.  */
+	  if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
+	    set_mem_expr (DECL_INCOMING_RTL (parm), parm);
+	}
+
+      fnargs = TREE_CHAIN (fnargs);
+    }
+}
+
+/* Assign RTL expressions to the function's parameters.  This may involve
+   copying them into registers and using those registers as the DECL_RTL.  */
+
+static void
+assign_parms (tree fndecl)
+{
+  struct assign_parm_data_all all;
+  tree fnargs, parm;
+
+  crtl->args.internal_arg_pointer
+    = targetm.calls.internal_arg_pointer ();
+
+  assign_parms_initialize_all (&all);
+  fnargs = assign_parms_augmented_arg_list (&all);
+
+  for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
+    {
+      struct assign_parm_data_one data;
+
+      /* Extract the type of PARM; adjust it according to ABI.  */
+      assign_parm_find_data_types (&all, parm, &data);
+
+      /* Early out for errors and void parameters.  */
+      if (data.passed_mode == VOIDmode)
+	{
+	  SET_DECL_RTL (parm, const0_rtx);
+	  DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
+	  continue;
+	}
+
+      /* Estimate stack alignment from parameter alignment.  */
+      if (SUPPORTS_STACK_ALIGNMENT)
+        {
+          unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
+						      data.passed_type);
+	  if (TYPE_ALIGN (data.nominal_type) > align)
+	    align = TYPE_ALIGN (data.passed_type);
+	  if (crtl->stack_alignment_estimated < align)
+	    {
+	      gcc_assert (!crtl->stack_realign_processed);
+	      crtl->stack_alignment_estimated = align;
+	    }
+	}
+	
+      if (cfun->stdarg && !TREE_CHAIN (parm))
+	assign_parms_setup_varargs (&all, &data, false);
+
+      /* Find out where the parameter arrives in this function.  */
+      assign_parm_find_entry_rtl (&all, &data);
+
+      /* Find out where stack space for this parameter might be.  */
+      if (assign_parm_is_stack_parm (&all, &data))
+	{
+	  assign_parm_find_stack_rtl (parm, &data);
+	  assign_parm_adjust_entry_rtl (&data);
+	}
+
+      /* Record permanently how this parm was passed.  */
+      set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
+
+      /* Update info on where next arg arrives in registers.  */
+      FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
+			    data.passed_type, data.named_arg);
+
+      assign_parm_adjust_stack_rtl (&data);
+
+      if (assign_parm_setup_block_p (&data))
+	assign_parm_setup_block (&all, parm, &data);
+      else if (data.passed_pointer || use_register_for_decl (parm))
+	assign_parm_setup_reg (&all, parm, &data);
+      else
+	assign_parm_setup_stack (&all, parm, &data);
+    }
+
+  if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
+    assign_parms_unsplit_complex (&all, fnargs);
+
+  /* Output all parameter conversion instructions (possibly including calls)
+     now that all parameters have been copied out of hard registers.  */
+  emit_insn (all.first_conversion_insn);
+
+  /* Estimate reload stack alignment from scalar return mode.  */
+  if (SUPPORTS_STACK_ALIGNMENT)
+    {
+      if (DECL_RESULT (fndecl))
+	{
+	  tree type = TREE_TYPE (DECL_RESULT (fndecl));
+	  enum machine_mode mode = TYPE_MODE (type);
+
+	  if (mode != BLKmode
+	      && mode != VOIDmode
+	      && !AGGREGATE_TYPE_P (type))
+	    {
+	      unsigned int align = GET_MODE_ALIGNMENT (mode);
+	      if (crtl->stack_alignment_estimated < align)
+		{
+		  gcc_assert (!crtl->stack_realign_processed);
+		  crtl->stack_alignment_estimated = align;
+		}
+	    }
+	} 
+    }
+
+  /* If we are receiving a struct value address as the first argument, set up
+     the RTL for the function result. As this might require code to convert
+     the transmitted address to Pmode, we do this here to ensure that possible
+     preliminary conversions of the address have been emitted already.  */
+  if (all.function_result_decl)
+    {
+      tree result = DECL_RESULT (current_function_decl);
+      rtx addr = DECL_RTL (all.function_result_decl);
+      rtx x;
+
+      if (DECL_BY_REFERENCE (result))
+	x = addr;
+      else
+	{
+	  addr = convert_memory_address (Pmode, addr);
+	  x = gen_rtx_MEM (DECL_MODE (result), addr);
+	  set_mem_attributes (x, result, 1);
+	}
+      SET_DECL_RTL (result, x);
+    }
+
+  /* We have aligned all the args, so add space for the pretend args.  */
+  crtl->args.pretend_args_size = all.pretend_args_size;
+  all.stack_args_size.constant += all.extra_pretend_bytes;
+  crtl->args.size = all.stack_args_size.constant;
+
+  /* Adjust function incoming argument size for alignment and
+     minimum length.  */
+
+#ifdef REG_PARM_STACK_SPACE
+  crtl->args.size = MAX (crtl->args.size,
+				    REG_PARM_STACK_SPACE (fndecl));
+#endif
+
+  crtl->args.size = CEIL_ROUND (crtl->args.size,
+					   PARM_BOUNDARY / BITS_PER_UNIT);
+
+#ifdef ARGS_GROW_DOWNWARD
+  crtl->args.arg_offset_rtx
+    = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
+       : expand_expr (size_diffop (all.stack_args_size.var,
+				   size_int (-all.stack_args_size.constant)),
+		      NULL_RTX, VOIDmode, 0));
+#else
+  crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
+#endif
+
+  /* See how many bytes, if any, of its args a function should try to pop
+     on return.  */
+
+  crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
+						 crtl->args.size);
+
+  /* For stdarg.h function, save info about
+     regs and stack space used by the named args.  */
+
+  crtl->args.info = all.args_so_far;
+
+  /* Set the rtx used for the function return value.  Put this in its
+     own variable so any optimizers that need this information don't have
+     to include tree.h.  Do this here so it gets done when an inlined
+     function gets output.  */
+
+  crtl->return_rtx
+    = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
+       ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
+
+  /* If scalar return value was computed in a pseudo-reg, or was a named
+     return value that got dumped to the stack, copy that to the hard
+     return register.  */
+  if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
+    {
+      tree decl_result = DECL_RESULT (fndecl);
+      rtx decl_rtl = DECL_RTL (decl_result);
+
+      if (REG_P (decl_rtl)
+	  ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
+	  : DECL_REGISTER (decl_result))
+	{
+	  rtx real_decl_rtl;
+
+	  real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
+							fndecl, true);
+	  REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
+	  /* The delay slot scheduler assumes that crtl->return_rtx
+	     holds the hard register containing the return value, not a
+	     temporary pseudo.  */
+	  crtl->return_rtx = real_decl_rtl;
+	}
+    }
+}
+
+/* A subroutine of gimplify_parameters, invoked via walk_tree.
+   For all seen types, gimplify their sizes.  */
+
+static tree
+gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
+{
+  tree t = *tp;
+
+  *walk_subtrees = 0;
+  if (TYPE_P (t))
+    {
+      if (POINTER_TYPE_P (t))
+	*walk_subtrees = 1;
+      else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
+	       && !TYPE_SIZES_GIMPLIFIED (t))
+	{
+	  gimplify_type_sizes (t, (gimple_seq *) data);
+	  *walk_subtrees = 1;
+	}
+    }
+
+  return NULL;
+}
+
+/* Gimplify the parameter list for current_function_decl.  This involves
+   evaluating SAVE_EXPRs of variable sized parameters and generating code
+   to implement callee-copies reference parameters.  Returns a sequence of
+   statements to add to the beginning of the function.  */
+
+gimple_seq
+gimplify_parameters (void)
+{
+  struct assign_parm_data_all all;
+  tree fnargs, parm;
+  gimple_seq stmts = NULL;
+
+  assign_parms_initialize_all (&all);
+  fnargs = assign_parms_augmented_arg_list (&all);
+
+  for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
+    {
+      struct assign_parm_data_one data;
+
+      /* Extract the type of PARM; adjust it according to ABI.  */
+      assign_parm_find_data_types (&all, parm, &data);
+
+      /* Early out for errors and void parameters.  */
+      if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
+	continue;
+
+      /* Update info on where next arg arrives in registers.  */
+      FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
+			    data.passed_type, data.named_arg);
+
+      /* ??? Once upon a time variable_size stuffed parameter list
+	 SAVE_EXPRs (amongst others) onto a pending sizes list.  This
+	 turned out to be less than manageable in the gimple world.
+	 Now we have to hunt them down ourselves.  */
+      walk_tree_without_duplicates (&data.passed_type,
+				    gimplify_parm_type, &stmts);
+
+      if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
+	{
+	  gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
+	  gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
+	}
+
+      if (data.passed_pointer)
+	{
+          tree type = TREE_TYPE (data.passed_type);
+	  if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
+				       type, data.named_arg))
+	    {
+	      tree local, t;
+
+	      /* For constant-sized objects, this is trivial; for
+		 variable-sized objects, we have to play games.  */
+	      if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
+		  && !(flag_stack_check == GENERIC_STACK_CHECK
+		       && compare_tree_int (DECL_SIZE_UNIT (parm),
+					    STACK_CHECK_MAX_VAR_SIZE) > 0))
+		{
+		  local = create_tmp_var (type, get_name (parm));
+		  DECL_IGNORED_P (local) = 0;
+		  /* If PARM was addressable, move that flag over
+		     to the local copy, as its address will be taken,
+		     not the PARMs.  */
+		  if (TREE_ADDRESSABLE (parm))
+		    {
+		      TREE_ADDRESSABLE (parm) = 0;
+		      TREE_ADDRESSABLE (local) = 1;
+		    }
+		}
+	      else
+		{
+		  tree ptr_type, addr;
+
+		  ptr_type = build_pointer_type (type);
+		  addr = create_tmp_var (ptr_type, get_name (parm));
+		  DECL_IGNORED_P (addr) = 0;
+		  local = build_fold_indirect_ref (addr);
+
+		  t = built_in_decls[BUILT_IN_ALLOCA];
+		  t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
+		  t = fold_convert (ptr_type, t);
+		  t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
+		  gimplify_and_add (t, &stmts);
+		}
+
+	      gimplify_assign (local, parm, &stmts);
+
+	      SET_DECL_VALUE_EXPR (parm, local);
+	      DECL_HAS_VALUE_EXPR_P (parm) = 1;
+	    }
+	}
+    }
+
+  return stmts;
+}
+
+/* Compute the size and offset from the start of the stacked arguments for a
+   parm passed in mode PASSED_MODE and with type TYPE.
+
+   INITIAL_OFFSET_PTR points to the current offset into the stacked
+   arguments.
+
+   The starting offset and size for this parm are returned in
+   LOCATE->OFFSET and LOCATE->SIZE, respectively.  When IN_REGS is
+   nonzero, the offset is that of stack slot, which is returned in
+   LOCATE->SLOT_OFFSET.  LOCATE->ALIGNMENT_PAD is the amount of
+   padding required from the initial offset ptr to the stack slot.
+
+   IN_REGS is nonzero if the argument will be passed in registers.  It will
+   never be set if REG_PARM_STACK_SPACE is not defined.
+
+   FNDECL is the function in which the argument was defined.
+
+   There are two types of rounding that are done.  The first, controlled by
+   FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
+   list to be aligned to the specific boundary (in bits).  This rounding
+   affects the initial and starting offsets, but not the argument size.
+
+   The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
+   optionally rounds the size of the parm to PARM_BOUNDARY.  The
+   initial offset is not affected by this rounding, while the size always
+   is and the starting offset may be.  */
+
+/*  LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
+    INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
+    callers pass in the total size of args so far as
+    INITIAL_OFFSET_PTR.  LOCATE->SIZE is always positive.  */
+
+void
+locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
+		     int partial, tree fndecl ATTRIBUTE_UNUSED,
+		     struct args_size *initial_offset_ptr,
+		     struct locate_and_pad_arg_data *locate)
+{
+  tree sizetree;
+  enum direction where_pad;
+  unsigned int boundary;
+  int reg_parm_stack_space = 0;
+  int part_size_in_regs;
+
+#ifdef REG_PARM_STACK_SPACE
+  reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
+
+  /* If we have found a stack parm before we reach the end of the
+     area reserved for registers, skip that area.  */
+  if (! in_regs)
+    {
+      if (reg_parm_stack_space > 0)
+	{
+	  if (initial_offset_ptr->var)
+	    {
+	      initial_offset_ptr->var
+		= size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
+			      ssize_int (reg_parm_stack_space));
+	      initial_offset_ptr->constant = 0;
+	    }
+	  else if (initial_offset_ptr->constant < reg_parm_stack_space)
+	    initial_offset_ptr->constant = reg_parm_stack_space;
+	}
+    }
+#endif /* REG_PARM_STACK_SPACE */
+
+  part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
+
+  sizetree
+    = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
+  where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
+  boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
+  locate->where_pad = where_pad;
+
+  /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT.  */
+  if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
+    boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
+
+  locate->boundary = boundary;
+
+  if (SUPPORTS_STACK_ALIGNMENT)
+    {
+      /* stack_alignment_estimated can't change after stack has been
+	 realigned.  */
+      if (crtl->stack_alignment_estimated < boundary)
+        {
+          if (!crtl->stack_realign_processed)
+	    crtl->stack_alignment_estimated = boundary;
+	  else
+	    {
+	      /* If stack is realigned and stack alignment value
+		 hasn't been finalized, it is OK not to increase
+		 stack_alignment_estimated.  The bigger alignment
+		 requirement is recorded in stack_alignment_needed
+		 below.  */
+	      gcc_assert (!crtl->stack_realign_finalized
+			  && crtl->stack_realign_needed);
+	    }
+	}
+    }
+
+  /* Remember if the outgoing parameter requires extra alignment on the
+     calling function side.  */
+  if (crtl->stack_alignment_needed < boundary)
+    crtl->stack_alignment_needed = boundary;
+  if (crtl->max_used_stack_slot_alignment < crtl->stack_alignment_needed)
+    crtl->max_used_stack_slot_alignment = crtl->stack_alignment_needed;
+  if (crtl->preferred_stack_boundary < boundary)
+    crtl->preferred_stack_boundary = boundary;
+
+#ifdef ARGS_GROW_DOWNWARD
+  locate->slot_offset.constant = -initial_offset_ptr->constant;
+  if (initial_offset_ptr->var)
+    locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
+					  initial_offset_ptr->var);
+
+  {
+    tree s2 = sizetree;
+    if (where_pad != none
+	&& (!host_integerp (sizetree, 1)
+	    || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
+      s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
+    SUB_PARM_SIZE (locate->slot_offset, s2);
+  }
+
+  locate->slot_offset.constant += part_size_in_regs;
+
+  if (!in_regs
+#ifdef REG_PARM_STACK_SPACE
+      || REG_PARM_STACK_SPACE (fndecl) > 0
+#endif
+     )
+    pad_to_arg_alignment (&locate->slot_offset, boundary,
+			  &locate->alignment_pad);
+
+  locate->size.constant = (-initial_offset_ptr->constant
+			   - locate->slot_offset.constant);
+  if (initial_offset_ptr->var)
+    locate->size.var = size_binop (MINUS_EXPR,
+				   size_binop (MINUS_EXPR,
+					       ssize_int (0),
+					       initial_offset_ptr->var),
+				   locate->slot_offset.var);
+
+  /* Pad_below needs the pre-rounded size to know how much to pad
+     below.  */
+  locate->offset = locate->slot_offset;
+  if (where_pad == downward)
+    pad_below (&locate->offset, passed_mode, sizetree);
+
+#else /* !ARGS_GROW_DOWNWARD */
+  if (!in_regs
+#ifdef REG_PARM_STACK_SPACE
+      || REG_PARM_STACK_SPACE (fndecl) > 0
+#endif
+      )
+    pad_to_arg_alignment (initial_offset_ptr, boundary,
+			  &locate->alignment_pad);
+  locate->slot_offset = *initial_offset_ptr;
+
+#ifdef PUSH_ROUNDING
+  if (passed_mode != BLKmode)
+    sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
+#endif
+
+  /* Pad_below needs the pre-rounded size to know how much to pad below
+     so this must be done before rounding up.  */
+  locate->offset = locate->slot_offset;
+  if (where_pad == downward)
+    pad_below (&locate->offset, passed_mode, sizetree);
+
+  if (where_pad != none
+      && (!host_integerp (sizetree, 1)
+	  || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
+    sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
+
+  ADD_PARM_SIZE (locate->size, sizetree);
+
+  locate->size.constant -= part_size_in_regs;
+#endif /* ARGS_GROW_DOWNWARD */
+
+#ifdef FUNCTION_ARG_OFFSET
+  locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
+#endif
+}
+
+/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
+   BOUNDARY is measured in bits, but must be a multiple of a storage unit.  */
+
+static void
+pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
+		      struct args_size *alignment_pad)
+{
+  tree save_var = NULL_TREE;
+  HOST_WIDE_INT save_constant = 0;
+  int boundary_in_bytes = boundary / BITS_PER_UNIT;
+  HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
+
+#ifdef SPARC_STACK_BOUNDARY_HACK
+  /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
+     the real alignment of %sp.  However, when it does this, the
+     alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY.  */
+  if (SPARC_STACK_BOUNDARY_HACK)
+    sp_offset = 0;
+#endif
+
+  if (boundary > PARM_BOUNDARY)
+    {
+      save_var = offset_ptr->var;
+      save_constant = offset_ptr->constant;
+    }
+
+  alignment_pad->var = NULL_TREE;
+  alignment_pad->constant = 0;
+
+  if (boundary > BITS_PER_UNIT)
+    {
+      if (offset_ptr->var)
+	{
+	  tree sp_offset_tree = ssize_int (sp_offset);
+	  tree offset = size_binop (PLUS_EXPR,
+				    ARGS_SIZE_TREE (*offset_ptr),
+				    sp_offset_tree);
+#ifdef ARGS_GROW_DOWNWARD
+	  tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
+#else
+	  tree rounded = round_up   (offset, boundary / BITS_PER_UNIT);
+#endif
+
+	  offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
+	  /* ARGS_SIZE_TREE includes constant term.  */
+	  offset_ptr->constant = 0;
+	  if (boundary > PARM_BOUNDARY)
+	    alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
+					     save_var);
+	}
+      else
+	{
+	  offset_ptr->constant = -sp_offset +
+#ifdef ARGS_GROW_DOWNWARD
+	    FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
+#else
+	    CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
+#endif
+	    if (boundary > PARM_BOUNDARY)
+	      alignment_pad->constant = offset_ptr->constant - save_constant;
+	}
+    }
+}
+
+static void
+pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
+{
+  if (passed_mode != BLKmode)
+    {
+      if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
+	offset_ptr->constant
+	  += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
+	       / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
+	      - GET_MODE_SIZE (passed_mode));
+    }
+  else
+    {
+      if (TREE_CODE (sizetree) != INTEGER_CST
+	  || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
+	{
+	  /* Round the size up to multiple of PARM_BOUNDARY bits.  */
+	  tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
+	  /* Add it in.  */
+	  ADD_PARM_SIZE (*offset_ptr, s2);
+	  SUB_PARM_SIZE (*offset_ptr, sizetree);
+	}
+    }
+}
+
+
+/* True if register REGNO was alive at a place where `setjmp' was
+   called and was set more than once or is an argument.  Such regs may
+   be clobbered by `longjmp'.  */
+
+static bool
+regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
+{
+  /* There appear to be cases where some local vars never reach the
+     backend but have bogus regnos.  */
+  if (regno >= max_reg_num ())
+    return false;
+
+  return ((REG_N_SETS (regno) > 1
+	   || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
+	  && REGNO_REG_SET_P (setjmp_crosses, regno));
+}
+
+/* Walk the tree of blocks describing the binding levels within a
+   function and warn about variables the might be killed by setjmp or
+   vfork.  This is done after calling flow_analysis before register
+   allocation since that will clobber the pseudo-regs to hard
+   regs.  */
+
+static void
+setjmp_vars_warning (bitmap setjmp_crosses, tree block)
+{
+  tree decl, sub;
+
+  for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
+    {
+      if (TREE_CODE (decl) == VAR_DECL
+	  && DECL_RTL_SET_P (decl)
+	  && REG_P (DECL_RTL (decl))
+	  && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
+	warning (OPT_Wclobbered, "variable %q+D might be clobbered by" 
+                 " %<longjmp%> or %<vfork%>", decl);
+    }
+
+  for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
+    setjmp_vars_warning (setjmp_crosses, sub);
+}
+
+/* Do the appropriate part of setjmp_vars_warning
+   but for arguments instead of local variables.  */
+
+static void
+setjmp_args_warning (bitmap setjmp_crosses)
+{
+  tree decl;
+  for (decl = DECL_ARGUMENTS (current_function_decl);
+       decl; decl = TREE_CHAIN (decl))
+    if (DECL_RTL (decl) != 0
+	&& REG_P (DECL_RTL (decl))
+	&& regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
+      warning (OPT_Wclobbered, 
+               "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
+	       decl);
+}
+
+/* Generate warning messages for variables live across setjmp.  */
+
+void 
+generate_setjmp_warnings (void)
+{
+  bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
+
+  if (n_basic_blocks == NUM_FIXED_BLOCKS
+      || bitmap_empty_p (setjmp_crosses))
+    return;
+
+  setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
+  setjmp_args_warning (setjmp_crosses);
+}
+
+
+/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
+   and create duplicate blocks.  */
+/* ??? Need an option to either create block fragments or to create
+   abstract origin duplicates of a source block.  It really depends
+   on what optimization has been performed.  */
+
+void
+reorder_blocks (void)
+{
+  tree block = DECL_INITIAL (current_function_decl);
+  VEC(tree,heap) *block_stack;
+
+  if (block == NULL_TREE)
+    return;
+
+  block_stack = VEC_alloc (tree, heap, 10);
+
+  /* Reset the TREE_ASM_WRITTEN bit for all blocks.  */
+  clear_block_marks (block);
+
+  /* Prune the old trees away, so that they don't get in the way.  */
+  BLOCK_SUBBLOCKS (block) = NULL_TREE;
+  BLOCK_CHAIN (block) = NULL_TREE;
+
+  /* Recreate the block tree from the note nesting.  */
+  reorder_blocks_1 (get_insns (), block, &block_stack);
+  BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
+
+  VEC_free (tree, heap, block_stack);
+}
+
+/* Helper function for reorder_blocks.  Reset TREE_ASM_WRITTEN.  */
+
+void
+clear_block_marks (tree block)
+{
+  while (block)
+    {
+      TREE_ASM_WRITTEN (block) = 0;
+      clear_block_marks (BLOCK_SUBBLOCKS (block));
+      block = BLOCK_CHAIN (block);
+    }
+}
+
+static void
+reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
+{
+  rtx insn;
+
+  for (insn = insns; insn; insn = NEXT_INSN (insn))
+    {
+      if (NOTE_P (insn))
+	{
+	  if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
+	    {
+	      tree block = NOTE_BLOCK (insn);
+	      tree origin;
+
+	      origin = (BLOCK_FRAGMENT_ORIGIN (block)
+			? BLOCK_FRAGMENT_ORIGIN (block)
+			: block);
+
+	      /* If we have seen this block before, that means it now
+		 spans multiple address regions.  Create a new fragment.  */
+	      if (TREE_ASM_WRITTEN (block))
+		{
+		  tree new_block = copy_node (block);
+
+		  BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
+		  BLOCK_FRAGMENT_CHAIN (new_block)
+		    = BLOCK_FRAGMENT_CHAIN (origin);
+		  BLOCK_FRAGMENT_CHAIN (origin) = new_block;
+
+		  NOTE_BLOCK (insn) = new_block;
+		  block = new_block;
+		}
+
+	      BLOCK_SUBBLOCKS (block) = 0;
+	      TREE_ASM_WRITTEN (block) = 1;
+	      /* When there's only one block for the entire function,
+		 current_block == block and we mustn't do this, it
+		 will cause infinite recursion.  */
+	      if (block != current_block)
+		{
+		  if (block != origin)
+		    gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
+
+		  BLOCK_SUPERCONTEXT (block) = current_block;
+		  BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
+		  BLOCK_SUBBLOCKS (current_block) = block;
+		  current_block = origin;
+		}
+	      VEC_safe_push (tree, heap, *p_block_stack, block);
+	    }
+	  else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
+	    {
+	      NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
+	      BLOCK_SUBBLOCKS (current_block)
+		= blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
+	      current_block = BLOCK_SUPERCONTEXT (current_block);
+	    }
+	}
+    }
+}
+
+/* Reverse the order of elements in the chain T of blocks,
+   and return the new head of the chain (old last element).  */
+
+tree
+blocks_nreverse (tree t)
+{
+  tree prev = 0, decl, next;
+  for (decl = t; decl; decl = next)
+    {
+      next = BLOCK_CHAIN (decl);
+      BLOCK_CHAIN (decl) = prev;
+      prev = decl;
+    }
+  return prev;
+}
+
+/* Count the subblocks of the list starting with BLOCK.  If VECTOR is
+   non-NULL, list them all into VECTOR, in a depth-first preorder
+   traversal of the block tree.  Also clear TREE_ASM_WRITTEN in all
+   blocks.  */
+
+static int
+all_blocks (tree block, tree *vector)
+{
+  int n_blocks = 0;
+
+  while (block)
+    {
+      TREE_ASM_WRITTEN (block) = 0;
+
+      /* Record this block.  */
+      if (vector)
+	vector[n_blocks] = block;
+
+      ++n_blocks;
+
+      /* Record the subblocks, and their subblocks...  */
+      n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
+			      vector ? vector + n_blocks : 0);
+      block = BLOCK_CHAIN (block);
+    }
+
+  return n_blocks;
+}
+
+/* Return a vector containing all the blocks rooted at BLOCK.  The
+   number of elements in the vector is stored in N_BLOCKS_P.  The
+   vector is dynamically allocated; it is the caller's responsibility
+   to call `free' on the pointer returned.  */
+
+static tree *
+get_block_vector (tree block, int *n_blocks_p)
+{
+  tree *block_vector;
+
+  *n_blocks_p = all_blocks (block, NULL);
+  block_vector = XNEWVEC (tree, *n_blocks_p);
+  all_blocks (block, block_vector);
+
+  return block_vector;
+}
+
+static GTY(()) int next_block_index = 2;
+
+/* Set BLOCK_NUMBER for all the blocks in FN.  */
+
+void
+number_blocks (tree fn)
+{
+  int i;
+  int n_blocks;
+  tree *block_vector;
+
+  /* For SDB and XCOFF debugging output, we start numbering the blocks
+     from 1 within each function, rather than keeping a running
+     count.  */
+#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
+  if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
+    next_block_index = 1;
+#endif
+
+  block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
+
+  /* The top-level BLOCK isn't numbered at all.  */
+  for (i = 1; i < n_blocks; ++i)
+    /* We number the blocks from two.  */
+    BLOCK_NUMBER (block_vector[i]) = next_block_index++;
+
+  free (block_vector);
+
+  return;
+}
+
+/* If VAR is present in a subblock of BLOCK, return the subblock.  */
+
+tree
+debug_find_var_in_block_tree (tree var, tree block)
+{
+  tree t;
+
+  for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
+    if (t == var)
+      return block;
+
+  for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
+    {
+      tree ret = debug_find_var_in_block_tree (var, t);
+      if (ret)
+	return ret;
+    }
+
+  return NULL_TREE;
+}
+
+/* Keep track of whether we're in a dummy function context.  If we are,
+   we don't want to invoke the set_current_function hook, because we'll
+   get into trouble if the hook calls target_reinit () recursively or
+   when the initial initialization is not yet complete.  */
+
+static bool in_dummy_function;
+
+/* Invoke the target hook when setting cfun.  Update the optimization options
+   if the function uses different options than the default.  */
+
+static void
+invoke_set_current_function_hook (tree fndecl)
+{
+  if (!in_dummy_function)
+    {
+      tree opts = ((fndecl)
+		   ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
+		   : optimization_default_node);
+
+      if (!opts)
+	opts = optimization_default_node;
+
+      /* Change optimization options if needed.  */
+      if (optimization_current_node != opts)
+	{
+	  optimization_current_node = opts;
+	  cl_optimization_restore (TREE_OPTIMIZATION (opts));
+	}
+
+      targetm.set_current_function (fndecl);
+    }
+}
+
+/* cfun should never be set directly; use this function.  */
+
+void
+set_cfun (struct function *new_cfun)
+{
+  if (cfun != new_cfun)
+    {
+      cfun = new_cfun;
+      invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
+    }
+}
+
+/* Initialized with NOGC, making this poisonous to the garbage collector.  */
+
+static VEC(function_p,heap) *cfun_stack;
+
+/* Push the current cfun onto the stack, and set cfun to new_cfun.  */
+
+void
+push_cfun (struct function *new_cfun)
+{
+  VEC_safe_push (function_p, heap, cfun_stack, cfun);
+  set_cfun (new_cfun);
+}
+
+/* Pop cfun from the stack.  */
+
+void
+pop_cfun (void)
+{
+  struct function *new_cfun = VEC_pop (function_p, cfun_stack);
+  set_cfun (new_cfun);
+}
+
+/* Return value of funcdef and increase it.  */
+int
+get_next_funcdef_no (void) 
+{
+  return funcdef_no++;
+}
+
+/* Allocate a function structure for FNDECL and set its contents
+   to the defaults.  Set cfun to the newly-allocated object.
+   Some of the helper functions invoked during initialization assume
+   that cfun has already been set.  Therefore, assign the new object
+   directly into cfun and invoke the back end hook explicitly at the
+   very end, rather than initializing a temporary and calling set_cfun
+   on it.
+
+   ABSTRACT_P is true if this is a function that will never be seen by
+   the middle-end.  Such functions are front-end concepts (like C++
+   function templates) that do not correspond directly to functions
+   placed in object files.  */
+
+void
+allocate_struct_function (tree fndecl, bool abstract_p)
+{
+  tree result;
+  tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
+
+  cfun = GGC_CNEW (struct function);
+
+  cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
+
+  init_eh_for_function ();
+
+  if (init_machine_status)
+    cfun->machine = (*init_machine_status) ();
+
+#ifdef OVERRIDE_ABI_FORMAT
+  OVERRIDE_ABI_FORMAT (fndecl);
+#endif
+
+  invoke_set_current_function_hook (fndecl);
+
+  if (fndecl != NULL_TREE)
+    {
+      DECL_STRUCT_FUNCTION (fndecl) = cfun;
+      cfun->decl = fndecl;
+      current_function_funcdef_no = get_next_funcdef_no ();
+
+      result = DECL_RESULT (fndecl);
+      if (!abstract_p && aggregate_value_p (result, fndecl))
+	{
+#ifdef PCC_STATIC_STRUCT_RETURN
+	  cfun->returns_pcc_struct = 1;
+#endif
+	  cfun->returns_struct = 1;
+	}
+
+      cfun->stdarg
+	= (fntype
+	   && TYPE_ARG_TYPES (fntype) != 0
+	   && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
+	       != void_type_node));
+      
+      /* Assume all registers in stdarg functions need to be saved.  */
+      cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
+      cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
+    }
+}
+
+/* This is like allocate_struct_function, but pushes a new cfun for FNDECL
+   instead of just setting it.  */
+
+void
+push_struct_function (tree fndecl)
+{
+  VEC_safe_push (function_p, heap, cfun_stack, cfun);
+  allocate_struct_function (fndecl, false);
+}
+
+/* Reset cfun, and other non-struct-function variables to defaults as
+   appropriate for emitting rtl at the start of a function.  */
+
+static void
+prepare_function_start (void)
+{
+  gcc_assert (!crtl->emit.x_last_insn);
+  init_temp_slots ();
+  init_emit ();
+  init_varasm_status ();
+  init_expr ();
+  default_rtl_profile ();
+
+  cse_not_expected = ! optimize;
+
+  /* Caller save not needed yet.  */
+  caller_save_needed = 0;
+
+  /* We haven't done register allocation yet.  */
+  reg_renumber = 0;
+
+  /* Indicate that we have not instantiated virtual registers yet.  */
+  virtuals_instantiated = 0;
+
+  /* Indicate that we want CONCATs now.  */
+  generating_concat_p = 1;
+
+  /* Indicate we have no need of a frame pointer yet.  */
+  frame_pointer_needed = 0;
+}
+
+/* Initialize the rtl expansion mechanism so that we can do simple things
+   like generate sequences.  This is used to provide a context during global
+   initialization of some passes.  You must call expand_dummy_function_end
+   to exit this context.  */
+
+void
+init_dummy_function_start (void)
+{
+  gcc_assert (!in_dummy_function);
+  in_dummy_function = true;
+  push_struct_function (NULL_TREE);
+  prepare_function_start ();
+}
+
+/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
+   and initialize static variables for generating RTL for the statements
+   of the function.  */
+
+void
+init_function_start (tree subr)
+{
+  if (subr && DECL_STRUCT_FUNCTION (subr))
+    set_cfun (DECL_STRUCT_FUNCTION (subr));
+  else
+    allocate_struct_function (subr, false);
+  prepare_function_start ();
+
+  /* Warn if this value is an aggregate type,
+     regardless of which calling convention we are using for it.  */
+  if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
+    warning (OPT_Waggregate_return, "function returns an aggregate");
+}
+
+/* Make sure all values used by the optimization passes have sane
+   defaults.  */
+unsigned int
+init_function_for_compilation (void)
+{
+  reg_renumber = 0;
+
+  /* No prologue/epilogue insns yet.  Make sure that these vectors are
+     empty.  */
+  gcc_assert (VEC_length (int, prologue) == 0);
+  gcc_assert (VEC_length (int, epilogue) == 0);
+  gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
+  return 0;
+}
+
+struct rtl_opt_pass pass_init_function =
+{
+ {
+  RTL_PASS,
+  NULL,                                 /* name */
+  NULL,                                 /* gate */   
+  init_function_for_compilation,        /* execute */       
+  NULL,                                 /* sub */
+  NULL,                                 /* next */
+  0,                                    /* static_pass_number */
+  0,                                    /* tv_id */
+  0,                                    /* properties_required */
+  0,                                    /* properties_provided */
+  0,                                    /* properties_destroyed */
+  0,                                    /* todo_flags_start */
+  0                                     /* todo_flags_finish */
+ }
+};
+
+
+void
+expand_main_function (void)
+{
+#if (defined(INVOKE__main)				\
+     || (!defined(HAS_INIT_SECTION)			\
+	 && !defined(INIT_SECTION_ASM_OP)		\
+	 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
+  emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
+#endif
+}
+
+/* Expand code to initialize the stack_protect_guard.  This is invoked at
+   the beginning of a function to be protected.  */
+
+#ifndef HAVE_stack_protect_set
+# define HAVE_stack_protect_set		0
+# define gen_stack_protect_set(x,y)	(gcc_unreachable (), NULL_RTX)
+#endif
+
+void
+stack_protect_prologue (void)
+{
+  tree guard_decl = targetm.stack_protect_guard ();
+  rtx x, y;
+
+  /* Avoid expand_expr here, because we don't want guard_decl pulled
+     into registers unless absolutely necessary.  And we know that
+     crtl->stack_protect_guard is a local stack slot, so this skips
+     all the fluff.  */
+  x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
+  y = validize_mem (DECL_RTL (guard_decl));
+
+  /* Allow the target to copy from Y to X without leaking Y into a
+     register.  */
+  if (HAVE_stack_protect_set)
+    {
+      rtx insn = gen_stack_protect_set (x, y);
+      if (insn)
+	{
+	  emit_insn (insn);
+	  return;
+	}
+    }
+
+  /* Otherwise do a straight move.  */
+  emit_move_insn (x, y);
+}
+
+/* Expand code to verify the stack_protect_guard.  This is invoked at
+   the end of a function to be protected.  */
+
+#ifndef HAVE_stack_protect_test
+# define HAVE_stack_protect_test		0
+# define gen_stack_protect_test(x, y, z)	(gcc_unreachable (), NULL_RTX)
+#endif
+
+void
+stack_protect_epilogue (void)
+{
+  tree guard_decl = targetm.stack_protect_guard ();
+  rtx label = gen_label_rtx ();
+  rtx x, y, tmp;
+
+  /* Avoid expand_expr here, because we don't want guard_decl pulled
+     into registers unless absolutely necessary.  And we know that
+     crtl->stack_protect_guard is a local stack slot, so this skips
+     all the fluff.  */
+  x = validize_mem (DECL_RTL (crtl->stack_protect_guard));
+  y = validize_mem (DECL_RTL (guard_decl));
+
+  /* Allow the target to compare Y with X without leaking either into
+     a register.  */
+  switch (HAVE_stack_protect_test != 0)
+    {
+    case 1:
+      tmp = gen_stack_protect_test (x, y, label);
+      if (tmp)
+	{
+	  emit_insn (tmp);
+	  break;
+	}
+      /* FALLTHRU */
+
+    default:
+      emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
+      break;
+    }
+
+  /* The noreturn predictor has been moved to the tree level.  The rtl-level
+     predictors estimate this branch about 20%, which isn't enough to get
+     things moved out of line.  Since this is the only extant case of adding
+     a noreturn function at the rtl level, it doesn't seem worth doing ought
+     except adding the prediction by hand.  */
+  tmp = get_last_insn ();
+  if (JUMP_P (tmp))
+    predict_insn_def (tmp, PRED_NORETURN, TAKEN);
+
+  expand_expr_stmt (targetm.stack_protect_fail ());
+  emit_label (label);
+}
+
+/* Start the RTL for a new function, and set variables used for
+   emitting RTL.
+   SUBR is the FUNCTION_DECL node.
+   PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
+   the function's parameters, which must be run at any return statement.  */
+
+void
+expand_function_start (tree subr)
+{
+  /* Make sure volatile mem refs aren't considered
+     valid operands of arithmetic insns.  */
+  init_recog_no_volatile ();
+
+  crtl->profile
+    = (profile_flag
+       && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
+
+  crtl->limit_stack
+    = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
+
+  /* Make the label for return statements to jump to.  Do not special
+     case machines with special return instructions -- they will be
+     handled later during jump, ifcvt, or epilogue creation.  */
+  return_label = gen_label_rtx ();
+
+  /* Initialize rtx used to return the value.  */
+  /* Do this before assign_parms so that we copy the struct value address
+     before any library calls that assign parms might generate.  */
+
+  /* Decide whether to return the value in memory or in a register.  */
+  if (aggregate_value_p (DECL_RESULT (subr), subr))
+    {
+      /* Returning something that won't go in a register.  */
+      rtx value_address = 0;
+
+#ifdef PCC_STATIC_STRUCT_RETURN
+      if (cfun->returns_pcc_struct)
+	{
+	  int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
+	  value_address = assemble_static_space (size);
+	}
+      else
+#endif
+	{
+	  rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
+	  /* Expect to be passed the address of a place to store the value.
+	     If it is passed as an argument, assign_parms will take care of
+	     it.  */
+	  if (sv)
+	    {
+	      value_address = gen_reg_rtx (Pmode);
+	      emit_move_insn (value_address, sv);
+	    }
+	}
+      if (value_address)
+	{
+	  rtx x = value_address;
+	  if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
+	    {
+	      x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
+	      set_mem_attributes (x, DECL_RESULT (subr), 1);
+	    }
+	  SET_DECL_RTL (DECL_RESULT (subr), x);
+	}
+    }
+  else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
+    /* If return mode is void, this decl rtl should not be used.  */
+    SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
+  else
+    {
+      /* Compute the return values into a pseudo reg, which we will copy
+	 into the true return register after the cleanups are done.  */
+      tree return_type = TREE_TYPE (DECL_RESULT (subr));
+      if (TYPE_MODE (return_type) != BLKmode
+	  && targetm.calls.return_in_msb (return_type))
+	/* expand_function_end will insert the appropriate padding in
+	   this case.  Use the return value's natural (unpadded) mode
+	   within the function proper.  */
+	SET_DECL_RTL (DECL_RESULT (subr),
+		      gen_reg_rtx (TYPE_MODE (return_type)));
+      else
+	{
+	  /* In order to figure out what mode to use for the pseudo, we
+	     figure out what the mode of the eventual return register will
+	     actually be, and use that.  */
+	  rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
+
+	  /* Structures that are returned in registers are not
+	     aggregate_value_p, so we may see a PARALLEL or a REG.  */
+	  if (REG_P (hard_reg))
+	    SET_DECL_RTL (DECL_RESULT (subr),
+			  gen_reg_rtx (GET_MODE (hard_reg)));
+	  else
+	    {
+	      gcc_assert (GET_CODE (hard_reg) == PARALLEL);
+	      SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
+	    }
+	}
+
+      /* Set DECL_REGISTER flag so that expand_function_end will copy the
+	 result to the real return register(s).  */
+      DECL_REGISTER (DECL_RESULT (subr)) = 1;
+    }
+
+  /* Initialize rtx for parameters and local variables.
+     In some cases this requires emitting insns.  */
+  assign_parms (subr);
+
+  /* If function gets a static chain arg, store it.  */
+  if (cfun->static_chain_decl)
+    {
+      tree parm = cfun->static_chain_decl;
+      rtx local = gen_reg_rtx (Pmode);
+
+      set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
+      SET_DECL_RTL (parm, local);
+      mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
+
+      emit_move_insn (local, static_chain_incoming_rtx);
+    }
+
+  /* If the function receives a non-local goto, then store the
+     bits we need to restore the frame pointer.  */
+  if (cfun->nonlocal_goto_save_area)
+    {
+      tree t_save;
+      rtx r_save;
+
+      /* ??? We need to do this save early.  Unfortunately here is
+	 before the frame variable gets declared.  Help out...  */
+      tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
+      if (!DECL_RTL_SET_P (var))
+	expand_decl (var);
+
+      t_save = build4 (ARRAY_REF, ptr_type_node,
+		       cfun->nonlocal_goto_save_area,
+		       integer_zero_node, NULL_TREE, NULL_TREE);
+      r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
+      r_save = convert_memory_address (Pmode, r_save);
+
+      emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
+      update_nonlocal_goto_save_area ();
+    }
+
+  /* The following was moved from init_function_start.
+     The move is supposed to make sdb output more accurate.  */
+  /* Indicate the beginning of the function body,
+     as opposed to parm setup.  */
+  emit_note (NOTE_INSN_FUNCTION_BEG);
+
+  gcc_assert (NOTE_P (get_last_insn ()));
+
+  parm_birth_insn = get_last_insn ();
+
+  if (crtl->profile)
+    {
+#ifdef PROFILE_HOOK
+      PROFILE_HOOK (current_function_funcdef_no);
+#endif
+    }
+
+  /* After the display initializations is where the stack checking
+     probe should go.  */
+  if(flag_stack_check)
+    stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
+
+  /* Make sure there is a line number after the function entry setup code.  */
+  force_next_line_note ();
+}
+
+/* Undo the effects of init_dummy_function_start.  */
+void
+expand_dummy_function_end (void)
+{
+  gcc_assert (in_dummy_function);
+
+  /* End any sequences that failed to be closed due to syntax errors.  */
+  while (in_sequence_p ())
+    end_sequence ();
+
+  /* Outside function body, can't compute type's actual size
+     until next function's body starts.  */
+
+  free_after_parsing (cfun);
+  free_after_compilation (cfun);
+  pop_cfun ();
+  in_dummy_function = false;
+}
+
+/* Call DOIT for each hard register used as a return value from
+   the current function.  */
+
+void
+diddle_return_value (void (*doit) (rtx, void *), void *arg)
+{
+  rtx outgoing = crtl->return_rtx;
+
+  if (! outgoing)
+    return;
+
+  if (REG_P (outgoing))
+    (*doit) (outgoing, arg);
+  else if (GET_CODE (outgoing) == PARALLEL)
+    {
+      int i;
+
+      for (i = 0; i < XVECLEN (outgoing, 0); i++)
+	{
+	  rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
+
+	  if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
+	    (*doit) (x, arg);
+	}
+    }
+}
+
+static void
+do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
+{
+  emit_clobber (reg);
+}
+
+void
+clobber_return_register (void)
+{
+  diddle_return_value (do_clobber_return_reg, NULL);
+
+  /* In case we do use pseudo to return value, clobber it too.  */
+  if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
+    {
+      tree decl_result = DECL_RESULT (current_function_decl);
+      rtx decl_rtl = DECL_RTL (decl_result);
+      if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
+	{
+	  do_clobber_return_reg (decl_rtl, NULL);
+	}
+    }
+}
+
+static void
+do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
+{
+  emit_use (reg);
+}
+
+static void
+use_return_register (void)
+{
+  diddle_return_value (do_use_return_reg, NULL);
+}
+
+/* Possibly warn about unused parameters.  */
+void
+do_warn_unused_parameter (tree fn)
+{
+  tree decl;
+
+  for (decl = DECL_ARGUMENTS (fn);
+       decl; decl = TREE_CHAIN (decl))
+    if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
+	&& DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
+	&& !TREE_NO_WARNING (decl))
+      warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
+}
+
+static GTY(()) rtx initial_trampoline;
+
+/* Generate RTL for the end of the current function.  */
+
+void
+expand_function_end (void)
+{
+  rtx clobber_after;
+
+  /* If arg_pointer_save_area was referenced only from a nested
+     function, we will not have initialized it yet.  Do that now.  */
+  if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
+    get_arg_pointer_save_area ();
+
+  /* If we are doing generic stack checking and this function makes calls,
+     do a stack probe at the start of the function to ensure we have enough
+     space for another stack frame.  */
+  if (flag_stack_check == GENERIC_STACK_CHECK)
+    {
+      rtx insn, seq;
+
+      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+	if (CALL_P (insn))
+	  {
+	    start_sequence ();
+	    probe_stack_range (STACK_OLD_CHECK_PROTECT,
+			       GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
+	    seq = get_insns ();
+	    end_sequence ();
+	    emit_insn_before (seq, stack_check_probe_note);
+	    break;
+	  }
+    }
+
+  /* End any sequences that failed to be closed due to syntax errors.  */
+  while (in_sequence_p ())
+    end_sequence ();
+
+  clear_pending_stack_adjust ();
+  do_pending_stack_adjust ();
+
+  /* Output a linenumber for the end of the function.
+     SDB depends on this.  */
+  force_next_line_note ();
+  set_curr_insn_source_location (input_location);
+
+  /* Before the return label (if any), clobber the return
+     registers so that they are not propagated live to the rest of
+     the function.  This can only happen with functions that drop
+     through; if there had been a return statement, there would
+     have either been a return rtx, or a jump to the return label.
+
+     We delay actual code generation after the current_function_value_rtx
+     is computed.  */
+  clobber_after = get_last_insn ();
+
+  /* Output the label for the actual return from the function.  */
+  emit_label (return_label);
+
+  if (USING_SJLJ_EXCEPTIONS)
+    {
+      /* Let except.c know where it should emit the call to unregister
+	 the function context for sjlj exceptions.  */
+      if (flag_exceptions)
+	sjlj_emit_function_exit_after (get_last_insn ());
+    }
+  else
+    {
+      /* We want to ensure that instructions that may trap are not
+	 moved into the epilogue by scheduling, because we don't
+	 always emit unwind information for the epilogue.  */
+      if (flag_non_call_exceptions)
+	emit_insn (gen_blockage ());
+    }
+
+  /* If this is an implementation of throw, do what's necessary to
+     communicate between __builtin_eh_return and the epilogue.  */
+  expand_eh_return ();
+
+  /* If scalar return value was computed in a pseudo-reg, or was a named
+     return value that got dumped to the stack, copy that to the hard
+     return register.  */
+  if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
+    {
+      tree decl_result = DECL_RESULT (current_function_decl);
+      rtx decl_rtl = DECL_RTL (decl_result);
+
+      if (REG_P (decl_rtl)
+	  ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
+	  : DECL_REGISTER (decl_result))
+	{
+	  rtx real_decl_rtl = crtl->return_rtx;
+
+	  /* This should be set in assign_parms.  */
+	  gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
+
+	  /* If this is a BLKmode structure being returned in registers,
+	     then use the mode computed in expand_return.  Note that if
+	     decl_rtl is memory, then its mode may have been changed,
+	     but that crtl->return_rtx has not.  */
+	  if (GET_MODE (real_decl_rtl) == BLKmode)
+	    PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
+
+	  /* If a non-BLKmode return value should be padded at the least
+	     significant end of the register, shift it left by the appropriate
+	     amount.  BLKmode results are handled using the group load/store
+	     machinery.  */
+	  if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
+	      && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
+	    {
+	      emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
+					   REGNO (real_decl_rtl)),
+			      decl_rtl);
+	      shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
+	    }
+	  /* If a named return value dumped decl_return to memory, then
+	     we may need to re-do the PROMOTE_MODE signed/unsigned
+	     extension.  */
+	  else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
+	    {
+	      int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
+
+	      if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
+		promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
+			      &unsignedp, 1);
+
+	      convert_move (real_decl_rtl, decl_rtl, unsignedp);
+	    }
+	  else if (GET_CODE (real_decl_rtl) == PARALLEL)
+	    {
+	      /* If expand_function_start has created a PARALLEL for decl_rtl,
+		 move the result to the real return registers.  Otherwise, do
+		 a group load from decl_rtl for a named return.  */
+	      if (GET_CODE (decl_rtl) == PARALLEL)
+		emit_group_move (real_decl_rtl, decl_rtl);
+	      else
+		emit_group_load (real_decl_rtl, decl_rtl,
+				 TREE_TYPE (decl_result),
+				 int_size_in_bytes (TREE_TYPE (decl_result)));
+	    }
+	  /* In the case of complex integer modes smaller than a word, we'll
+	     need to generate some non-trivial bitfield insertions.  Do that
+	     on a pseudo and not the hard register.  */
+	  else if (GET_CODE (decl_rtl) == CONCAT
+		   && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
+		   && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
+	    {
+	      int old_generating_concat_p;
+	      rtx tmp;
+
+	      old_generating_concat_p = generating_concat_p;
+	      generating_concat_p = 0;
+	      tmp = gen_reg_rtx (GET_MODE (decl_rtl));
+	      generating_concat_p = old_generating_concat_p;
+
+	      emit_move_insn (tmp, decl_rtl);
+	      emit_move_insn (real_decl_rtl, tmp);
+	    }
+	  else
+	    emit_move_insn (real_decl_rtl, decl_rtl);
+	}
+    }
+
+  /* If returning a structure, arrange to return the address of the value
+     in a place where debuggers expect to find it.
+
+     If returning a structure PCC style,
+     the caller also depends on this value.
+     And cfun->returns_pcc_struct is not necessarily set.  */
+  if (cfun->returns_struct
+      || cfun->returns_pcc_struct)
+    {
+      rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
+      tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
+      rtx outgoing;
+
+      if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
+	type = TREE_TYPE (type);
+      else
+	value_address = XEXP (value_address, 0);
+
+      outgoing = targetm.calls.function_value (build_pointer_type (type),
+					       current_function_decl, true);
+
+      /* Mark this as a function return value so integrate will delete the
+	 assignment and USE below when inlining this function.  */
+      REG_FUNCTION_VALUE_P (outgoing) = 1;
+
+      /* The address may be ptr_mode and OUTGOING may be Pmode.  */
+      value_address = convert_memory_address (GET_MODE (outgoing),
+					      value_address);
+
+      emit_move_insn (outgoing, value_address);
+
+      /* Show return register used to hold result (in this case the address
+	 of the result.  */
+      crtl->return_rtx = outgoing;
+    }
+
+  /* Emit the actual code to clobber return register.  */
+  {
+    rtx seq;
+
+    start_sequence ();
+    clobber_return_register ();
+    expand_naked_return ();
+    seq = get_insns ();
+    end_sequence ();
+
+    emit_insn_after (seq, clobber_after);
+  }
+
+  /* Output the label for the naked return from the function.  */
+  emit_label (naked_return_label);
+
+  /* @@@ This is a kludge.  We want to ensure that instructions that
+     may trap are not moved into the epilogue by scheduling, because
+     we don't always emit unwind information for the epilogue.  */
+  if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
+    emit_insn (gen_blockage ());
+
+  /* If stack protection is enabled for this function, check the guard.  */
+  if (crtl->stack_protect_guard)
+    stack_protect_epilogue ();
+
+  /* If we had calls to alloca, and this machine needs
+     an accurate stack pointer to exit the function,
+     insert some code to save and restore the stack pointer.  */
+  if (! EXIT_IGNORE_STACK
+      && cfun->calls_alloca)
+    {
+      rtx tem = 0;
+
+      emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
+      emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
+    }
+
+  /* ??? This should no longer be necessary since stupid is no longer with
+     us, but there are some parts of the compiler (eg reload_combine, and
+     sh mach_dep_reorg) that still try and compute their own lifetime info
+     instead of using the general framework.  */
+  use_return_register ();
+}
+
+rtx
+get_arg_pointer_save_area (void)
+{
+  rtx ret = arg_pointer_save_area;
+
+  if (! ret)
+    {
+      ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
+      arg_pointer_save_area = ret;
+    }
+
+  if (! crtl->arg_pointer_save_area_init)
+    {
+      rtx seq;
+
+      /* Save the arg pointer at the beginning of the function.  The
+	 generated stack slot may not be a valid memory address, so we
+	 have to check it and fix it if necessary.  */
+      start_sequence ();
+      emit_move_insn (validize_mem (ret),
+                      crtl->args.internal_arg_pointer);
+      seq = get_insns ();
+      end_sequence ();
+
+      push_topmost_sequence ();
+      emit_insn_after (seq, entry_of_function ());
+      pop_topmost_sequence ();
+    }
+
+  return ret;
+}
+
+/* Extend a vector that records the INSN_UIDs of INSNS
+   (a list of one or more insns).  */
+
+static void
+record_insns (rtx insns, VEC(int,heap) **vecp)
+{
+  rtx tmp;
+
+  for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
+    VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
+}
+
+/* Set the locator of the insn chain starting at INSN to LOC.  */
+static void
+set_insn_locators (rtx insn, int loc)
+{
+  while (insn != NULL_RTX)
+    {
+      if (INSN_P (insn))
+	INSN_LOCATOR (insn) = loc;
+      insn = NEXT_INSN (insn);
+    }
+}
+
+/* Determine how many INSN_UIDs in VEC are part of INSN.  Because we can
+   be running after reorg, SEQUENCE rtl is possible.  */
+
+static int
+contains (const_rtx insn, VEC(int,heap) **vec)
+{
+  int i, j;
+
+  if (NONJUMP_INSN_P (insn)
+      && GET_CODE (PATTERN (insn)) == SEQUENCE)
+    {
+      int count = 0;
+      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
+	for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
+	  if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
+	      == VEC_index (int, *vec, j))
+	    count++;
+      return count;
+    }
+  else
+    {
+      for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
+	if (INSN_UID (insn) == VEC_index (int, *vec, j))
+	  return 1;
+    }
+  return 0;
+}
+
+int
+prologue_epilogue_contains (const_rtx insn)
+{
+  if (contains (insn, &prologue))
+    return 1;
+  if (contains (insn, &epilogue))
+    return 1;
+  return 0;
+}
+
+int
+sibcall_epilogue_contains (const_rtx insn)
+{
+  if (sibcall_epilogue)
+    return contains (insn, &sibcall_epilogue);
+  return 0;
+}
+
+#ifdef HAVE_return
+/* Insert gen_return at the end of block BB.  This also means updating
+   block_for_insn appropriately.  */
+
+static void
+emit_return_into_block (basic_block bb)
+{
+  emit_jump_insn_after (gen_return (), BB_END (bb));
+}
+#endif /* HAVE_return */
+
+/* Generate the prologue and epilogue RTL if the machine supports it.  Thread
+   this into place with notes indicating where the prologue ends and where
+   the epilogue begins.  Update the basic block information when possible.  */
+
+static void
+thread_prologue_and_epilogue_insns (void)
+{
+  int inserted = 0;
+  edge e;
+#if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
+  rtx seq;
+#endif
+#if defined (HAVE_epilogue) || defined(HAVE_return)
+  rtx epilogue_end = NULL_RTX;
+#endif
+  edge_iterator ei;
+
+  rtl_profile_for_bb (ENTRY_BLOCK_PTR);
+#ifdef HAVE_prologue
+  if (HAVE_prologue)
+    {
+      start_sequence ();
+      seq = gen_prologue ();
+      emit_insn (seq);
+
+      /* Insert an explicit USE for the frame pointer 
+         if the profiling is on and the frame pointer is required.  */
+      if (crtl->profile && frame_pointer_needed)
+	emit_use (hard_frame_pointer_rtx);
+
+      /* Retain a map of the prologue insns.  */
+      record_insns (seq, &prologue);
+      emit_note (NOTE_INSN_PROLOGUE_END);
+ 
+#ifndef PROFILE_BEFORE_PROLOGUE
+      /* Ensure that instructions are not moved into the prologue when
+	 profiling is on.  The call to the profiling routine can be
+	 emitted within the live range of a call-clobbered register.  */
+      if (crtl->profile)
+        emit_insn (gen_blockage ());
+#endif
+
+      seq = get_insns ();
+      end_sequence ();
+      set_insn_locators (seq, prologue_locator);
+
+      /* Can't deal with multiple successors of the entry block
+         at the moment.  Function should always have at least one
+         entry point.  */
+      gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
+
+      insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
+      inserted = 1;
+    }
+#endif
+
+  /* If the exit block has no non-fake predecessors, we don't need
+     an epilogue.  */
+  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
+    if ((e->flags & EDGE_FAKE) == 0)
+      break;
+  if (e == NULL)
+    goto epilogue_done;
+
+  rtl_profile_for_bb (EXIT_BLOCK_PTR);
+#ifdef HAVE_return
+  if (optimize && HAVE_return)
+    {
+      /* If we're allowed to generate a simple return instruction,
+	 then by definition we don't need a full epilogue.  Examine
+	 the block that falls through to EXIT.   If it does not
+	 contain any code, examine its predecessors and try to
+	 emit (conditional) return instructions.  */
+
+      basic_block last;
+      rtx label;
+
+      FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
+	if (e->flags & EDGE_FALLTHRU)
+	  break;
+      if (e == NULL)
+	goto epilogue_done;
+      last = e->src;
+
+      /* Verify that there are no active instructions in the last block.  */
+      label = BB_END (last);
+      while (label && !LABEL_P (label))
+	{
+	  if (active_insn_p (label))
+	    break;
+	  label = PREV_INSN (label);
+	}
+
+      if (BB_HEAD (last) == label && LABEL_P (label))
+	{
+	  edge_iterator ei2;
+
+	  for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
+	    {
+	      basic_block bb = e->src;
+	      rtx jump;
+
+	      if (bb == ENTRY_BLOCK_PTR)
+		{
+		  ei_next (&ei2);
+		  continue;
+		}
+
+	      jump = BB_END (bb);
+	      if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
+		{
+		  ei_next (&ei2);
+		  continue;
+		}
+
+	      /* If we have an unconditional jump, we can replace that
+		 with a simple return instruction.  */
+	      if (simplejump_p (jump))
+		{
+		  emit_return_into_block (bb);
+		  delete_insn (jump);
+		}
+
+	      /* If we have a conditional jump, we can try to replace
+		 that with a conditional return instruction.  */
+	      else if (condjump_p (jump))
+		{
+		  if (! redirect_jump (jump, 0, 0))
+		    {
+		      ei_next (&ei2);
+		      continue;
+		    }
+
+		  /* If this block has only one successor, it both jumps
+		     and falls through to the fallthru block, so we can't
+		     delete the edge.  */
+		  if (single_succ_p (bb))
+		    {
+		      ei_next (&ei2);
+		      continue;
+		    }
+		}
+	      else
+		{
+		  ei_next (&ei2);
+		  continue;
+		}
+
+	      /* Fix up the CFG for the successful change we just made.  */
+	      redirect_edge_succ (e, EXIT_BLOCK_PTR);
+	    }
+
+	  /* Emit a return insn for the exit fallthru block.  Whether
+	     this is still reachable will be determined later.  */
+
+	  emit_barrier_after (BB_END (last));
+	  emit_return_into_block (last);
+	  epilogue_end = BB_END (last);
+	  single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
+	  goto epilogue_done;
+	}
+    }
+#endif
+  /* Find the edge that falls through to EXIT.  Other edges may exist
+     due to RETURN instructions, but those don't need epilogues.
+     There really shouldn't be a mixture -- either all should have
+     been converted or none, however...  */
+
+  FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
+    if (e->flags & EDGE_FALLTHRU)
+      break;
+  if (e == NULL)
+    goto epilogue_done;
+
+#ifdef HAVE_epilogue
+  if (HAVE_epilogue)
+    {
+      start_sequence ();
+      epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
+      seq = gen_epilogue ();
+      emit_jump_insn (seq);
+
+      /* Retain a map of the epilogue insns.  */
+      record_insns (seq, &epilogue);
+      set_insn_locators (seq, epilogue_locator);
+
+      seq = get_insns ();
+      end_sequence ();
+
+      insert_insn_on_edge (seq, e);
+      inserted = 1;
+    }
+  else
+#endif
+    {
+      basic_block cur_bb;
+
+      if (! next_active_insn (BB_END (e->src)))
+	goto epilogue_done;
+      /* We have a fall-through edge to the exit block, the source is not
+         at the end of the function, and there will be an assembler epilogue
+         at the end of the function.
+         We can't use force_nonfallthru here, because that would try to
+         use return.  Inserting a jump 'by hand' is extremely messy, so
+	 we take advantage of cfg_layout_finalize using
+	fixup_fallthru_exit_predecessor.  */
+      cfg_layout_initialize (0);
+      FOR_EACH_BB (cur_bb)
+	if (cur_bb->index >= NUM_FIXED_BLOCKS
+	    && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
+	  cur_bb->aux = cur_bb->next_bb;
+      cfg_layout_finalize ();
+    }
+epilogue_done:
+  default_rtl_profile ();
+
+  if (inserted)
+    {
+      commit_edge_insertions ();
+
+      /* The epilogue insns we inserted may cause the exit edge to no longer
+	 be fallthru.  */
+      FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
+	{
+	  if (((e->flags & EDGE_FALLTHRU) != 0)
+	      && returnjump_p (BB_END (e->src)))
+	    e->flags &= ~EDGE_FALLTHRU;
+	}
+    }
+
+#ifdef HAVE_sibcall_epilogue
+  /* Emit sibling epilogues before any sibling call sites.  */
+  for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
+    {
+      basic_block bb = e->src;
+      rtx insn = BB_END (bb);
+
+      if (!CALL_P (insn)
+	  || ! SIBLING_CALL_P (insn))
+	{
+	  ei_next (&ei);
+	  continue;
+	}
+
+      start_sequence ();
+      emit_insn (gen_sibcall_epilogue ());
+      seq = get_insns ();
+      end_sequence ();
+
+      /* Retain a map of the epilogue insns.  Used in life analysis to
+	 avoid getting rid of sibcall epilogue insns.  Do this before we
+	 actually emit the sequence.  */
+      record_insns (seq, &sibcall_epilogue);
+      set_insn_locators (seq, epilogue_locator);
+
+      emit_insn_before (seq, insn);
+      ei_next (&ei);
+    }
+#endif
+
+#ifdef HAVE_epilogue
+  if (epilogue_end)
+    {
+      rtx insn, next;
+
+      /* Similarly, move any line notes that appear after the epilogue.
+         There is no need, however, to be quite so anal about the existence
+	 of such a note.  Also possibly move
+	 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
+	 info generation.  */
+      for (insn = epilogue_end; insn; insn = next)
+	{
+	  next = NEXT_INSN (insn);
+	  if (NOTE_P (insn) 
+	      && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
+	    reorder_insns (insn, insn, PREV_INSN (epilogue_end));
+	}
+    }
+#endif
+
+  /* Threading the prologue and epilogue changes the artificial refs
+     in the entry and exit blocks.  */
+  epilogue_completed = 1;
+  df_update_entry_exit_and_calls ();
+}
+
+/* Reposition the prologue-end and epilogue-begin notes after instruction
+   scheduling and delayed branch scheduling.  */
+
+void
+reposition_prologue_and_epilogue_notes (void)
+{
+#if defined (HAVE_prologue) || defined (HAVE_epilogue)
+  rtx insn, last, note;
+  int len;
+
+  if ((len = VEC_length (int, prologue)) > 0)
+    {
+      last = 0, note = 0;
+
+      /* Scan from the beginning until we reach the last prologue insn.
+	 We apparently can't depend on basic_block_{head,end} after
+	 reorg has run.  */
+      for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
+	{
+	  if (NOTE_P (insn))
+	    {
+	      if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
+		note = insn;
+	    }
+	  else if (contains (insn, &prologue))
+	    {
+	      last = insn;
+	      if (--len == 0)
+		break;
+	    }
+	}
+
+      if (last)
+	{
+	  /* Find the prologue-end note if we haven't already, and
+	     move it to just after the last prologue insn.  */
+	  if (note == 0)
+	    {
+	      for (note = last; (note = NEXT_INSN (note));)
+		if (NOTE_P (note)
+		    && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
+		  break;
+	    }
+
+	  /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note.  */
+	  if (LABEL_P (last))
+	    last = NEXT_INSN (last);
+	  reorder_insns (note, note, last);
+	}
+    }
+
+  if ((len = VEC_length (int, epilogue)) > 0)
+    {
+      last = 0, note = 0;
+
+      /* Scan from the end until we reach the first epilogue insn.
+	 We apparently can't depend on basic_block_{head,end} after
+	 reorg has run.  */
+      for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
+	{
+	  if (NOTE_P (insn))
+	    {
+	      if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
+		note = insn;
+	    }
+	  else if (contains (insn, &epilogue))
+	    {
+	      last = insn;
+	      if (--len == 0)
+		break;
+	    }
+	}
+
+      if (last)
+	{
+	  /* Find the epilogue-begin note if we haven't already, and
+	     move it to just before the first epilogue insn.  */
+	  if (note == 0)
+	    {
+	      for (note = insn; (note = PREV_INSN (note));)
+		if (NOTE_P (note)
+		    && NOTE_KIND (note) == NOTE_INSN_EPILOGUE_BEG)
+		  break;
+	    }
+
+	  if (PREV_INSN (last) != note)
+	    reorder_insns (note, note, PREV_INSN (last));
+	}
+    }
+#endif /* HAVE_prologue or HAVE_epilogue */
+}
+
+/* Returns the name of the current function.  */
+const char *
+current_function_name (void)
+{
+  return lang_hooks.decl_printable_name (cfun->decl, 2);
+}
+
+/* Returns the raw (mangled) name of the current function.  */
+const char *
+current_function_assembler_name (void)
+{
+  return IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (cfun->decl));
+}
+
+
+static unsigned int
+rest_of_handle_check_leaf_regs (void)
+{
+#ifdef LEAF_REGISTERS
+  current_function_uses_only_leaf_regs
+    = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
+#endif
+  return 0;
+}
+
+/* Insert a TYPE into the used types hash table of CFUN.  */
+static void
+used_types_insert_helper (tree type, struct function *func)
+{
+  if (type != NULL && func != NULL)
+    {
+      void **slot;
+
+      if (func->used_types_hash == NULL)
+	func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
+						 htab_eq_pointer, NULL);
+      slot = htab_find_slot (func->used_types_hash, type, INSERT);
+      if (*slot == NULL)
+	*slot = type;
+    }
+}
+
+/* Given a type, insert it into the used hash table in cfun.  */
+void
+used_types_insert (tree t)
+{
+  while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
+    t = TREE_TYPE (t);
+  t = TYPE_MAIN_VARIANT (t);
+  if (debug_info_level > DINFO_LEVEL_NONE)
+    used_types_insert_helper (t, cfun);
+}
+
+struct rtl_opt_pass pass_leaf_regs =
+{
+ {
+  RTL_PASS,
+  NULL,                                 /* name */
+  NULL,                                 /* gate */
+  rest_of_handle_check_leaf_regs,       /* execute */
+  NULL,                                 /* sub */
+  NULL,                                 /* next */
+  0,                                    /* static_pass_number */
+  0,                                    /* tv_id */
+  0,                                    /* properties_required */
+  0,                                    /* properties_provided */
+  0,                                    /* properties_destroyed */
+  0,                                    /* todo_flags_start */
+  0                                     /* todo_flags_finish */
+ }
+};
+
+static unsigned int
+rest_of_handle_thread_prologue_and_epilogue (void)
+{
+  if (optimize)
+    cleanup_cfg (CLEANUP_EXPENSIVE);
+  /* On some machines, the prologue and epilogue code, or parts thereof,
+     can be represented as RTL.  Doing so lets us schedule insns between
+     it and the rest of the code and also allows delayed branch
+     scheduling to operate in the epilogue.  */
+
+  thread_prologue_and_epilogue_insns ();
+  return 0;
+}
+
+struct rtl_opt_pass pass_thread_prologue_and_epilogue =
+{
+ {
+  RTL_PASS,
+  "pro_and_epilogue",                   /* name */
+  NULL,                                 /* gate */
+  rest_of_handle_thread_prologue_and_epilogue, /* execute */
+  NULL,                                 /* sub */
+  NULL,                                 /* next */
+  0,                                    /* static_pass_number */
+  TV_THREAD_PROLOGUE_AND_EPILOGUE,      /* tv_id */
+  0,                                    /* properties_required */
+  0,                                    /* properties_provided */
+  0,                                    /* properties_destroyed */
+  TODO_verify_flow,                     /* todo_flags_start */
+  TODO_dump_func |
+  TODO_df_verify |
+  TODO_df_finish | TODO_verify_rtl_sharing |
+  TODO_ggc_collect                      /* todo_flags_finish */
+ }
+};
+
+
+/* This mini-pass fixes fall-out from SSA in asm statements that have
+   in-out constraints.  Say you start with 
+
+     orig = inout;
+     asm ("": "+mr" (inout));
+     use (orig);
+
+   which is transformed very early to use explicit output and match operands:
+
+     orig = inout;
+     asm ("": "=mr" (inout) : "0" (inout));
+     use (orig);
+
+   Or, after SSA and copyprop,
+
+     asm ("": "=mr" (inout_2) : "0" (inout_1));
+     use (inout_1);
+
+   Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
+   they represent two separate values, so they will get different pseudo
+   registers during expansion.  Then, since the two operands need to match
+   per the constraints, but use different pseudo registers, reload can
+   only register a reload for these operands.  But reloads can only be
+   satisfied by hardregs, not by memory, so we need a register for this
+   reload, just because we are presented with non-matching operands.
+   So, even though we allow memory for this operand, no memory can be
+   used for it, just because the two operands don't match.  This can
+   cause reload failures on register-starved targets.
+
+   So it's a symptom of reload not being able to use memory for reloads
+   or, alternatively it's also a symptom of both operands not coming into
+   reload as matching (in which case the pseudo could go to memory just
+   fine, as the alternative allows it, and no reload would be necessary).
+   We fix the latter problem here, by transforming
+
+     asm ("": "=mr" (inout_2) : "0" (inout_1));
+
+   back to
+
+     inout_2 = inout_1;
+     asm ("": "=mr" (inout_2) : "0" (inout_2));  */
+
+static void
+match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
+{
+  int i;
+  bool changed = false;
+  rtx op = SET_SRC (p_sets[0]);
+  int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
+  rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
+  bool *output_matched = XALLOCAVEC (bool, noutputs);
+
+  memset (output_matched, 0, noutputs * sizeof (bool));
+  for (i = 0; i < ninputs; i++)
+    {
+      rtx input, output, insns;
+      const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
+      char *end;
+      int match, j;
+
+      if (*constraint == '%')
+	constraint++;
+
+      match = strtoul (constraint, &end, 10);
+      if (end == constraint)
+	continue;
+
+      gcc_assert (match < noutputs);
+      output = SET_DEST (p_sets[match]);
+      input = RTVEC_ELT (inputs, i);
+      /* Only do the transformation for pseudos.  */
+      if (! REG_P (output)
+	  || rtx_equal_p (output, input)
+	  || (GET_MODE (input) != VOIDmode
+	      && GET_MODE (input) != GET_MODE (output)))
+	continue;
+
+      /* We can't do anything if the output is also used as input,
+	 as we're going to overwrite it.  */
+      for (j = 0; j < ninputs; j++)
+        if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
+	  break;
+      if (j != ninputs)
+	continue;
+
+      /* Avoid changing the same input several times.  For
+	 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
+	 only change in once (to out1), rather than changing it
+	 first to out1 and afterwards to out2.  */
+      if (i > 0)
+	{
+	  for (j = 0; j < noutputs; j++)
+	    if (output_matched[j] && input == SET_DEST (p_sets[j]))
+	      break;
+	  if (j != noutputs)
+	    continue;
+	}
+      output_matched[match] = true;
+
+      start_sequence ();
+      emit_move_insn (output, input);
+      insns = get_insns ();
+      end_sequence ();
+      emit_insn_before (insns, insn);
+
+      /* Now replace all mentions of the input with output.  We can't
+	 just replace the occurrence in inputs[i], as the register might
+	 also be used in some other input (or even in an address of an
+	 output), which would mean possibly increasing the number of
+	 inputs by one (namely 'output' in addition), which might pose
+	 a too complicated problem for reload to solve.  E.g. this situation:
+
+	   asm ("" : "=r" (output), "=m" (input) : "0" (input))
+
+	 Here 'input' is used in two occurrences as input (once for the
+	 input operand, once for the address in the second output operand).
+	 If we would replace only the occurrence of the input operand (to
+	 make the matching) we would be left with this:
+
+	   output = input
+	   asm ("" : "=r" (output), "=m" (input) : "0" (output))
+
+	 Now we suddenly have two different input values (containing the same
+	 value, but different pseudos) where we formerly had only one.
+	 With more complicated asms this might lead to reload failures
+	 which wouldn't have happen without this pass.  So, iterate over
+	 all operands and replace all occurrences of the register used.  */
+      for (j = 0; j < noutputs; j++)
+	if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
+	    && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
+	  SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
+					      input, output);
+      for (j = 0; j < ninputs; j++)
+	if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
+	  RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
+					       input, output);
+
+      changed = true;
+    }
+
+  if (changed)
+    df_insn_rescan (insn);
+}
+
+static unsigned
+rest_of_match_asm_constraints (void)
+{
+  basic_block bb;
+  rtx insn, pat, *p_sets;
+  int noutputs;
+
+  if (!crtl->has_asm_statement)
+    return 0;
+
+  df_set_flags (DF_DEFER_INSN_RESCAN);
+  FOR_EACH_BB (bb)
+    {
+      FOR_BB_INSNS (bb, insn)
+	{
+	  if (!INSN_P (insn))
+	    continue;
+
+	  pat = PATTERN (insn);
+	  if (GET_CODE (pat) == PARALLEL)
+	    p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
+	  else if (GET_CODE (pat) == SET)
+	    p_sets = &PATTERN (insn), noutputs = 1;
+	  else
+	    continue;
+
+	  if (GET_CODE (*p_sets) == SET
+	      && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
+	    match_asm_constraints_1 (insn, p_sets, noutputs);
+	 }
+    }
+
+  return TODO_df_finish;
+}
+
+struct rtl_opt_pass pass_match_asm_constraints =
+{
+ {
+  RTL_PASS,
+  "asmcons",				/* name */
+  NULL,					/* gate */
+  rest_of_match_asm_constraints,	/* execute */
+  NULL,                                 /* sub */
+  NULL,                                 /* next */
+  0,                                    /* static_pass_number */
+  0,					/* tv_id */
+  0,                                    /* properties_required */
+  0,                                    /* properties_provided */
+  0,                                    /* properties_destroyed */
+  0,					/* todo_flags_start */
+  TODO_dump_func                       /* todo_flags_finish */
+ }
+};
+
+
+#include "gt-function.h"