Mercurial > hg > CbC > CbC_gcc
diff gcc/gimple.c @ 0:a06113de4d67
first commit
author | kent <kent@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Jul 2009 14:47:48 +0900 |
parents | |
children | a4c410aa4714 77e2b8dfacca |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gcc/gimple.c Fri Jul 17 14:47:48 2009 +0900 @@ -0,0 +1,3194 @@ +/* Gimple IR support functions. + + Copyright 2007, 2008 Free Software Foundation, Inc. + Contributed by Aldy Hernandez <aldyh@redhat.com> + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "tree.h" +#include "ggc.h" +#include "errors.h" +#include "hard-reg-set.h" +#include "basic-block.h" +#include "gimple.h" +#include "diagnostic.h" +#include "tree-flow.h" +#include "value-prof.h" +#include "flags.h" + +#define DEFGSCODE(SYM, NAME, STRUCT) NAME, +const char *const gimple_code_name[] = { +#include "gimple.def" +}; +#undef DEFGSCODE + +/* All the tuples have their operand vector at the very bottom + of the structure. Therefore, the offset required to find the + operands vector the size of the structure minus the size of the 1 + element tree array at the end (see gimple_ops). */ +#define DEFGSCODE(SYM, NAME, STRUCT) (sizeof (STRUCT) - sizeof (tree)), +const size_t gimple_ops_offset_[] = { +#include "gimple.def" +}; +#undef DEFGSCODE + +#ifdef GATHER_STATISTICS +/* Gimple stats. */ + +int gimple_alloc_counts[(int) gimple_alloc_kind_all]; +int gimple_alloc_sizes[(int) gimple_alloc_kind_all]; + +/* Keep in sync with gimple.h:enum gimple_alloc_kind. */ +static const char * const gimple_alloc_kind_names[] = { + "assignments", + "phi nodes", + "conditionals", + "sequences", + "everything else" +}; + +#endif /* GATHER_STATISTICS */ + +/* A cache of gimple_seq objects. Sequences are created and destroyed + fairly often during gimplification. */ +static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache; + +/* Private API manipulation functions shared only with some + other files. */ +extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *); +extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *); + +/* Gimple tuple constructors. + Note: Any constructor taking a ``gimple_seq'' as a parameter, can + be passed a NULL to start with an empty sequence. */ + +/* Set the code for statement G to CODE. */ + +static inline void +gimple_set_code (gimple g, enum gimple_code code) +{ + g->gsbase.code = code; +} + + +/* Return the GSS_* identifier for the given GIMPLE statement CODE. */ + +static enum gimple_statement_structure_enum +gss_for_code (enum gimple_code code) +{ + switch (code) + { + case GIMPLE_ASSIGN: + case GIMPLE_CALL: + case GIMPLE_RETURN: return GSS_WITH_MEM_OPS; + case GIMPLE_COND: + case GIMPLE_GOTO: + case GIMPLE_LABEL: + case GIMPLE_CHANGE_DYNAMIC_TYPE: + case GIMPLE_SWITCH: return GSS_WITH_OPS; + case GIMPLE_ASM: return GSS_ASM; + case GIMPLE_BIND: return GSS_BIND; + case GIMPLE_CATCH: return GSS_CATCH; + case GIMPLE_EH_FILTER: return GSS_EH_FILTER; + case GIMPLE_NOP: return GSS_BASE; + case GIMPLE_PHI: return GSS_PHI; + case GIMPLE_RESX: return GSS_RESX; + case GIMPLE_TRY: return GSS_TRY; + case GIMPLE_WITH_CLEANUP_EXPR: return GSS_WCE; + case GIMPLE_OMP_CRITICAL: return GSS_OMP_CRITICAL; + case GIMPLE_OMP_FOR: return GSS_OMP_FOR; + case GIMPLE_OMP_MASTER: + case GIMPLE_OMP_ORDERED: + case GIMPLE_OMP_SECTION: return GSS_OMP; + case GIMPLE_OMP_RETURN: + case GIMPLE_OMP_SECTIONS_SWITCH: return GSS_BASE; + case GIMPLE_OMP_CONTINUE: return GSS_OMP_CONTINUE; + case GIMPLE_OMP_PARALLEL: return GSS_OMP_PARALLEL; + case GIMPLE_OMP_TASK: return GSS_OMP_TASK; + case GIMPLE_OMP_SECTIONS: return GSS_OMP_SECTIONS; + case GIMPLE_OMP_SINGLE: return GSS_OMP_SINGLE; + case GIMPLE_OMP_ATOMIC_LOAD: return GSS_OMP_ATOMIC_LOAD; + case GIMPLE_OMP_ATOMIC_STORE: return GSS_OMP_ATOMIC_STORE; + case GIMPLE_PREDICT: return GSS_BASE; + default: gcc_unreachable (); + } +} + + +/* Return the number of bytes needed to hold a GIMPLE statement with + code CODE. */ + +static size_t +gimple_size (enum gimple_code code) +{ + enum gimple_statement_structure_enum gss = gss_for_code (code); + + if (gss == GSS_WITH_OPS) + return sizeof (struct gimple_statement_with_ops); + else if (gss == GSS_WITH_MEM_OPS) + return sizeof (struct gimple_statement_with_memory_ops); + + switch (code) + { + case GIMPLE_ASM: + return sizeof (struct gimple_statement_asm); + case GIMPLE_NOP: + return sizeof (struct gimple_statement_base); + case GIMPLE_BIND: + return sizeof (struct gimple_statement_bind); + case GIMPLE_CATCH: + return sizeof (struct gimple_statement_catch); + case GIMPLE_EH_FILTER: + return sizeof (struct gimple_statement_eh_filter); + case GIMPLE_TRY: + return sizeof (struct gimple_statement_try); + case GIMPLE_RESX: + return sizeof (struct gimple_statement_resx); + case GIMPLE_OMP_CRITICAL: + return sizeof (struct gimple_statement_omp_critical); + case GIMPLE_OMP_FOR: + return sizeof (struct gimple_statement_omp_for); + case GIMPLE_OMP_PARALLEL: + return sizeof (struct gimple_statement_omp_parallel); + case GIMPLE_OMP_TASK: + return sizeof (struct gimple_statement_omp_task); + case GIMPLE_OMP_SECTION: + case GIMPLE_OMP_MASTER: + case GIMPLE_OMP_ORDERED: + return sizeof (struct gimple_statement_omp); + case GIMPLE_OMP_RETURN: + return sizeof (struct gimple_statement_base); + case GIMPLE_OMP_CONTINUE: + return sizeof (struct gimple_statement_omp_continue); + case GIMPLE_OMP_SECTIONS: + return sizeof (struct gimple_statement_omp_sections); + case GIMPLE_OMP_SECTIONS_SWITCH: + return sizeof (struct gimple_statement_base); + case GIMPLE_OMP_SINGLE: + return sizeof (struct gimple_statement_omp_single); + case GIMPLE_OMP_ATOMIC_LOAD: + return sizeof (struct gimple_statement_omp_atomic_load); + case GIMPLE_OMP_ATOMIC_STORE: + return sizeof (struct gimple_statement_omp_atomic_store); + case GIMPLE_WITH_CLEANUP_EXPR: + return sizeof (struct gimple_statement_wce); + case GIMPLE_CHANGE_DYNAMIC_TYPE: + return sizeof (struct gimple_statement_with_ops); + case GIMPLE_PREDICT: + return sizeof (struct gimple_statement_base); + default: + break; + } + + gcc_unreachable (); +} + + +/* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS + operands. */ + +#define gimple_alloc(c, n) gimple_alloc_stat (c, n MEM_STAT_INFO) +static gimple +gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL) +{ + size_t size; + gimple stmt; + + size = gimple_size (code); + if (num_ops > 0) + size += sizeof (tree) * (num_ops - 1); + +#ifdef GATHER_STATISTICS + { + enum gimple_alloc_kind kind = gimple_alloc_kind (code); + gimple_alloc_counts[(int) kind]++; + gimple_alloc_sizes[(int) kind] += size; + } +#endif + + stmt = (gimple) ggc_alloc_cleared_stat (size PASS_MEM_STAT); + gimple_set_code (stmt, code); + gimple_set_num_ops (stmt, num_ops); + + /* Do not call gimple_set_modified here as it has other side + effects and this tuple is still not completely built. */ + stmt->gsbase.modified = 1; + + return stmt; +} + +/* Set SUBCODE to be the code of the expression computed by statement G. */ + +static inline void +gimple_set_subcode (gimple g, unsigned subcode) +{ + /* We only have 16 bits for the RHS code. Assert that we are not + overflowing it. */ + gcc_assert (subcode < (1 << 16)); + g->gsbase.subcode = subcode; +} + + + +/* Build a tuple with operands. CODE is the statement to build (which + must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code + for the new tuple. NUM_OPS is the number of operands to allocate. */ + +#define gimple_build_with_ops(c, s, n) \ + gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO) + +static gimple +gimple_build_with_ops_stat (enum gimple_code code, enum tree_code subcode, + unsigned num_ops MEM_STAT_DECL) +{ + gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT); + gimple_set_subcode (s, subcode); + + return s; +} + + +/* Build a GIMPLE_RETURN statement returning RETVAL. */ + +gimple +gimple_build_return (tree retval) +{ + gimple s = gimple_build_with_ops (GIMPLE_RETURN, 0, 1); + if (retval) + gimple_return_set_retval (s, retval); + return s; +} + +/* Helper for gimple_build_call, gimple_build_call_vec and + gimple_build_call_from_tree. Build the basic components of a + GIMPLE_CALL statement to function FN with NARGS arguments. */ + +static inline gimple +gimple_build_call_1 (tree fn, unsigned nargs) +{ + gimple s = gimple_build_with_ops (GIMPLE_CALL, 0, nargs + 3); + if (TREE_CODE (fn) == FUNCTION_DECL) + fn = build_fold_addr_expr (fn); + gimple_set_op (s, 1, fn); + return s; +} + + +/* Build a GIMPLE_CALL statement to function FN with the arguments + specified in vector ARGS. */ + +gimple +gimple_build_call_vec (tree fn, VEC(tree, heap) *args) +{ + unsigned i; + unsigned nargs = VEC_length (tree, args); + gimple call = gimple_build_call_1 (fn, nargs); + + for (i = 0; i < nargs; i++) + gimple_call_set_arg (call, i, VEC_index (tree, args, i)); + + return call; +} + + +/* Build a GIMPLE_CALL statement to function FN. NARGS is the number of + arguments. The ... are the arguments. */ + +gimple +gimple_build_call (tree fn, unsigned nargs, ...) +{ + va_list ap; + gimple call; + unsigned i; + + gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn)); + + call = gimple_build_call_1 (fn, nargs); + + va_start (ap, nargs); + for (i = 0; i < nargs; i++) + gimple_call_set_arg (call, i, va_arg (ap, tree)); + va_end (ap); + + return call; +} + + +/* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is + assumed to be in GIMPLE form already. Minimal checking is done of + this fact. */ + +gimple +gimple_build_call_from_tree (tree t) +{ + unsigned i, nargs; + gimple call; + tree fndecl = get_callee_fndecl (t); + + gcc_assert (TREE_CODE (t) == CALL_EXPR); + + nargs = call_expr_nargs (t); + call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs); + + for (i = 0; i < nargs; i++) + gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i)); + + gimple_set_block (call, TREE_BLOCK (t)); + + /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */ + gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t)); + gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t)); + gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t)); + gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t)); + gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t)); + gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t)); + + return call; +} + + +/* Extract the operands and code for expression EXPR into *SUBCODE_P, + *OP1_P and *OP2_P respectively. */ + +void +extract_ops_from_tree (tree expr, enum tree_code *subcode_p, tree *op1_p, + tree *op2_p) +{ + enum gimple_rhs_class grhs_class; + + *subcode_p = TREE_CODE (expr); + grhs_class = get_gimple_rhs_class (*subcode_p); + + if (grhs_class == GIMPLE_BINARY_RHS) + { + *op1_p = TREE_OPERAND (expr, 0); + *op2_p = TREE_OPERAND (expr, 1); + } + else if (grhs_class == GIMPLE_UNARY_RHS) + { + *op1_p = TREE_OPERAND (expr, 0); + *op2_p = NULL_TREE; + } + else if (grhs_class == GIMPLE_SINGLE_RHS) + { + *op1_p = expr; + *op2_p = NULL_TREE; + } + else + gcc_unreachable (); +} + + +/* Build a GIMPLE_ASSIGN statement. + + LHS of the assignment. + RHS of the assignment which can be unary or binary. */ + +gimple +gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL) +{ + enum tree_code subcode; + tree op1, op2; + + extract_ops_from_tree (rhs, &subcode, &op1, &op2); + return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2 + PASS_MEM_STAT); +} + + +/* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands + OP1 and OP2. If OP2 is NULL then SUBCODE must be of class + GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */ + +gimple +gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1, + tree op2 MEM_STAT_DECL) +{ + unsigned num_ops; + gimple p; + + /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the + code). */ + num_ops = get_gimple_rhs_num_ops (subcode) + 1; + + p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, subcode, num_ops + PASS_MEM_STAT); + gimple_assign_set_lhs (p, lhs); + gimple_assign_set_rhs1 (p, op1); + if (op2) + { + gcc_assert (num_ops > 2); + gimple_assign_set_rhs2 (p, op2); + } + + return p; +} + + +/* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P. + + DST/SRC are the destination and source respectively. You can pass + ungimplified trees in DST or SRC, in which case they will be + converted to a gimple operand if necessary. + + This function returns the newly created GIMPLE_ASSIGN tuple. */ + +inline gimple +gimplify_assign (tree dst, tree src, gimple_seq *seq_p) +{ + tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src); + gimplify_and_add (t, seq_p); + ggc_free (t); + return gimple_seq_last_stmt (*seq_p); +} + + +/* Build a GIMPLE_COND statement. + + PRED is the condition used to compare LHS and the RHS. + T_LABEL is the label to jump to if the condition is true. + F_LABEL is the label to jump to otherwise. */ + +gimple +gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs, + tree t_label, tree f_label) +{ + gimple p; + + gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison); + p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4); + gimple_cond_set_lhs (p, lhs); + gimple_cond_set_rhs (p, rhs); + gimple_cond_set_true_label (p, t_label); + gimple_cond_set_false_label (p, f_label); + return p; +} + + +/* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */ + +void +gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p, + tree *lhs_p, tree *rhs_p) +{ + gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison + || TREE_CODE (cond) == TRUTH_NOT_EXPR + || is_gimple_min_invariant (cond) + || SSA_VAR_P (cond)); + + extract_ops_from_tree (cond, code_p, lhs_p, rhs_p); + + /* Canonicalize conditionals of the form 'if (!VAL)'. */ + if (*code_p == TRUTH_NOT_EXPR) + { + *code_p = EQ_EXPR; + gcc_assert (*lhs_p && *rhs_p == NULL_TREE); + *rhs_p = fold_convert (TREE_TYPE (*lhs_p), integer_zero_node); + } + /* Canonicalize conditionals of the form 'if (VAL)' */ + else if (TREE_CODE_CLASS (*code_p) != tcc_comparison) + { + *code_p = NE_EXPR; + gcc_assert (*lhs_p && *rhs_p == NULL_TREE); + *rhs_p = fold_convert (TREE_TYPE (*lhs_p), integer_zero_node); + } +} + + +/* Build a GIMPLE_COND statement from the conditional expression tree + COND. T_LABEL and F_LABEL are as in gimple_build_cond. */ + +gimple +gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label) +{ + enum tree_code code; + tree lhs, rhs; + + gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs); + return gimple_build_cond (code, lhs, rhs, t_label, f_label); +} + +/* Set code, lhs, and rhs of a GIMPLE_COND from a suitable + boolean expression tree COND. */ + +void +gimple_cond_set_condition_from_tree (gimple stmt, tree cond) +{ + enum tree_code code; + tree lhs, rhs; + + gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs); + gimple_cond_set_condition (stmt, code, lhs, rhs); +} + +/* Build a GIMPLE_LABEL statement for LABEL. */ + +gimple +gimple_build_label (tree label) +{ + gimple p = gimple_build_with_ops (GIMPLE_LABEL, 0, 1); + gimple_label_set_label (p, label); + return p; +} + +/* Build a GIMPLE_GOTO statement to label DEST. */ + +gimple +gimple_build_goto (tree dest) +{ + gimple p = gimple_build_with_ops (GIMPLE_GOTO, 0, 1); + gimple_goto_set_dest (p, dest); + return p; +} + + +/* Build a GIMPLE_NOP statement. */ + +gimple +gimple_build_nop (void) +{ + return gimple_alloc (GIMPLE_NOP, 0); +} + + +/* Build a GIMPLE_BIND statement. + VARS are the variables in BODY. + BLOCK is the containing block. */ + +gimple +gimple_build_bind (tree vars, gimple_seq body, tree block) +{ + gimple p = gimple_alloc (GIMPLE_BIND, 0); + gimple_bind_set_vars (p, vars); + if (body) + gimple_bind_set_body (p, body); + if (block) + gimple_bind_set_block (p, block); + return p; +} + +/* Helper function to set the simple fields of a asm stmt. + + STRING is a pointer to a string that is the asm blocks assembly code. + NINPUT is the number of register inputs. + NOUTPUT is the number of register outputs. + NCLOBBERS is the number of clobbered registers. + */ + +static inline gimple +gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs, + unsigned nclobbers) +{ + gimple p; + int size = strlen (string); + + p = gimple_build_with_ops (GIMPLE_ASM, 0, ninputs + noutputs + nclobbers); + + p->gimple_asm.ni = ninputs; + p->gimple_asm.no = noutputs; + p->gimple_asm.nc = nclobbers; + p->gimple_asm.string = ggc_alloc_string (string, size); + +#ifdef GATHER_STATISTICS + gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size; +#endif + + return p; +} + +/* Build a GIMPLE_ASM statement. + + STRING is the assembly code. + NINPUT is the number of register inputs. + NOUTPUT is the number of register outputs. + NCLOBBERS is the number of clobbered registers. + INPUTS is a vector of the input register parameters. + OUTPUTS is a vector of the output register parameters. + CLOBBERS is a vector of the clobbered register parameters. */ + +gimple +gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs, + VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers) +{ + gimple p; + unsigned i; + + p = gimple_build_asm_1 (string, + VEC_length (tree, inputs), + VEC_length (tree, outputs), + VEC_length (tree, clobbers)); + + for (i = 0; i < VEC_length (tree, inputs); i++) + gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i)); + + for (i = 0; i < VEC_length (tree, outputs); i++) + gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i)); + + for (i = 0; i < VEC_length (tree, clobbers); i++) + gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i)); + + return p; +} + +/* Build a GIMPLE_ASM statement. + + STRING is the assembly code. + NINPUT is the number of register inputs. + NOUTPUT is the number of register outputs. + NCLOBBERS is the number of clobbered registers. + ... are trees for each input, output and clobbered register. */ + +gimple +gimple_build_asm (const char *string, unsigned ninputs, unsigned noutputs, + unsigned nclobbers, ...) +{ + gimple p; + unsigned i; + va_list ap; + + p = gimple_build_asm_1 (string, ninputs, noutputs, nclobbers); + + va_start (ap, nclobbers); + + for (i = 0; i < ninputs; i++) + gimple_asm_set_input_op (p, i, va_arg (ap, tree)); + + for (i = 0; i < noutputs; i++) + gimple_asm_set_output_op (p, i, va_arg (ap, tree)); + + for (i = 0; i < nclobbers; i++) + gimple_asm_set_clobber_op (p, i, va_arg (ap, tree)); + + va_end (ap); + + return p; +} + +/* Build a GIMPLE_CATCH statement. + + TYPES are the catch types. + HANDLER is the exception handler. */ + +gimple +gimple_build_catch (tree types, gimple_seq handler) +{ + gimple p = gimple_alloc (GIMPLE_CATCH, 0); + gimple_catch_set_types (p, types); + if (handler) + gimple_catch_set_handler (p, handler); + + return p; +} + +/* Build a GIMPLE_EH_FILTER statement. + + TYPES are the filter's types. + FAILURE is the filter's failure action. */ + +gimple +gimple_build_eh_filter (tree types, gimple_seq failure) +{ + gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0); + gimple_eh_filter_set_types (p, types); + if (failure) + gimple_eh_filter_set_failure (p, failure); + + return p; +} + +/* Build a GIMPLE_TRY statement. + + EVAL is the expression to evaluate. + CLEANUP is the cleanup expression. + KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on + whether this is a try/catch or a try/finally respectively. */ + +gimple +gimple_build_try (gimple_seq eval, gimple_seq cleanup, + enum gimple_try_flags kind) +{ + gimple p; + + gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY); + p = gimple_alloc (GIMPLE_TRY, 0); + gimple_set_subcode (p, kind); + if (eval) + gimple_try_set_eval (p, eval); + if (cleanup) + gimple_try_set_cleanup (p, cleanup); + + return p; +} + +/* Construct a GIMPLE_WITH_CLEANUP_EXPR statement. + + CLEANUP is the cleanup expression. */ + +gimple +gimple_build_wce (gimple_seq cleanup) +{ + gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0); + if (cleanup) + gimple_wce_set_cleanup (p, cleanup); + + return p; +} + + +/* Build a GIMPLE_RESX statement. + + REGION is the region number from which this resx causes control flow to + leave. */ + +gimple +gimple_build_resx (int region) +{ + gimple p = gimple_alloc (GIMPLE_RESX, 0); + gimple_resx_set_region (p, region); + return p; +} + + +/* The helper for constructing a gimple switch statement. + INDEX is the switch's index. + NLABELS is the number of labels in the switch excluding the default. + DEFAULT_LABEL is the default label for the switch statement. */ + +static inline gimple +gimple_build_switch_1 (unsigned nlabels, tree index, tree default_label) +{ + /* nlabels + 1 default label + 1 index. */ + gimple p = gimple_build_with_ops (GIMPLE_SWITCH, 0, nlabels + 1 + 1); + gimple_switch_set_index (p, index); + gimple_switch_set_default_label (p, default_label); + return p; +} + + +/* Build a GIMPLE_SWITCH statement. + + INDEX is the switch's index. + NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL. + ... are the labels excluding the default. */ + +gimple +gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...) +{ + va_list al; + unsigned i; + gimple p; + + p = gimple_build_switch_1 (nlabels, index, default_label); + + /* Store the rest of the labels. */ + va_start (al, default_label); + for (i = 1; i <= nlabels; i++) + gimple_switch_set_label (p, i, va_arg (al, tree)); + va_end (al); + + return p; +} + + +/* Build a GIMPLE_SWITCH statement. + + INDEX is the switch's index. + DEFAULT_LABEL is the default label + ARGS is a vector of labels excluding the default. */ + +gimple +gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args) +{ + unsigned i; + unsigned nlabels = VEC_length (tree, args); + gimple p = gimple_build_switch_1 (nlabels, index, default_label); + + /* Put labels in labels[1 - (nlabels + 1)]. + Default label is in labels[0]. */ + for (i = 1; i <= nlabels; i++) + gimple_switch_set_label (p, i, VEC_index (tree, args, i - 1)); + + return p; +} + + +/* Build a GIMPLE_OMP_CRITICAL statement. + + BODY is the sequence of statements for which only one thread can execute. + NAME is optional identifier for this critical block. */ + +gimple +gimple_build_omp_critical (gimple_seq body, tree name) +{ + gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0); + gimple_omp_critical_set_name (p, name); + if (body) + gimple_omp_set_body (p, body); + + return p; +} + +/* Build a GIMPLE_OMP_FOR statement. + + BODY is sequence of statements inside the for loop. + CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate, + lastprivate, reductions, ordered, schedule, and nowait. + COLLAPSE is the collapse count. + PRE_BODY is the sequence of statements that are loop invariant. */ + +gimple +gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse, + gimple_seq pre_body) +{ + gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0); + if (body) + gimple_omp_set_body (p, body); + gimple_omp_for_set_clauses (p, clauses); + p->gimple_omp_for.collapse = collapse; + p->gimple_omp_for.iter = GGC_CNEWVEC (struct gimple_omp_for_iter, collapse); + if (pre_body) + gimple_omp_for_set_pre_body (p, pre_body); + + return p; +} + + +/* Build a GIMPLE_OMP_PARALLEL statement. + + BODY is sequence of statements which are executed in parallel. + CLAUSES, are the OMP parallel construct's clauses. + CHILD_FN is the function created for the parallel threads to execute. + DATA_ARG are the shared data argument(s). */ + +gimple +gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn, + tree data_arg) +{ + gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0); + if (body) + gimple_omp_set_body (p, body); + gimple_omp_parallel_set_clauses (p, clauses); + gimple_omp_parallel_set_child_fn (p, child_fn); + gimple_omp_parallel_set_data_arg (p, data_arg); + + return p; +} + + +/* Build a GIMPLE_OMP_TASK statement. + + BODY is sequence of statements which are executed by the explicit task. + CLAUSES, are the OMP parallel construct's clauses. + CHILD_FN is the function created for the parallel threads to execute. + DATA_ARG are the shared data argument(s). + COPY_FN is the optional function for firstprivate initialization. + ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */ + +gimple +gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn, + tree data_arg, tree copy_fn, tree arg_size, + tree arg_align) +{ + gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0); + if (body) + gimple_omp_set_body (p, body); + gimple_omp_task_set_clauses (p, clauses); + gimple_omp_task_set_child_fn (p, child_fn); + gimple_omp_task_set_data_arg (p, data_arg); + gimple_omp_task_set_copy_fn (p, copy_fn); + gimple_omp_task_set_arg_size (p, arg_size); + gimple_omp_task_set_arg_align (p, arg_align); + + return p; +} + + +/* Build a GIMPLE_OMP_SECTION statement for a sections statement. + + BODY is the sequence of statements in the section. */ + +gimple +gimple_build_omp_section (gimple_seq body) +{ + gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0); + if (body) + gimple_omp_set_body (p, body); + + return p; +} + + +/* Build a GIMPLE_OMP_MASTER statement. + + BODY is the sequence of statements to be executed by just the master. */ + +gimple +gimple_build_omp_master (gimple_seq body) +{ + gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0); + if (body) + gimple_omp_set_body (p, body); + + return p; +} + + +/* Build a GIMPLE_OMP_CONTINUE statement. + + CONTROL_DEF is the definition of the control variable. + CONTROL_USE is the use of the control variable. */ + +gimple +gimple_build_omp_continue (tree control_def, tree control_use) +{ + gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0); + gimple_omp_continue_set_control_def (p, control_def); + gimple_omp_continue_set_control_use (p, control_use); + return p; +} + +/* Build a GIMPLE_OMP_ORDERED statement. + + BODY is the sequence of statements inside a loop that will executed in + sequence. */ + +gimple +gimple_build_omp_ordered (gimple_seq body) +{ + gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0); + if (body) + gimple_omp_set_body (p, body); + + return p; +} + + +/* Build a GIMPLE_OMP_RETURN statement. + WAIT_P is true if this is a non-waiting return. */ + +gimple +gimple_build_omp_return (bool wait_p) +{ + gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0); + if (wait_p) + gimple_omp_return_set_nowait (p); + + return p; +} + + +/* Build a GIMPLE_OMP_SECTIONS statement. + + BODY is a sequence of section statements. + CLAUSES are any of the OMP sections contsruct's clauses: private, + firstprivate, lastprivate, reduction, and nowait. */ + +gimple +gimple_build_omp_sections (gimple_seq body, tree clauses) +{ + gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0); + if (body) + gimple_omp_set_body (p, body); + gimple_omp_sections_set_clauses (p, clauses); + + return p; +} + + +/* Build a GIMPLE_OMP_SECTIONS_SWITCH. */ + +gimple +gimple_build_omp_sections_switch (void) +{ + return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0); +} + + +/* Build a GIMPLE_OMP_SINGLE statement. + + BODY is the sequence of statements that will be executed once. + CLAUSES are any of the OMP single construct's clauses: private, firstprivate, + copyprivate, nowait. */ + +gimple +gimple_build_omp_single (gimple_seq body, tree clauses) +{ + gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0); + if (body) + gimple_omp_set_body (p, body); + gimple_omp_single_set_clauses (p, clauses); + + return p; +} + + +/* Build a GIMPLE_CHANGE_DYNAMIC_TYPE statement. TYPE is the new type + for the location PTR. */ + +gimple +gimple_build_cdt (tree type, tree ptr) +{ + gimple p = gimple_build_with_ops (GIMPLE_CHANGE_DYNAMIC_TYPE, 0, 2); + gimple_cdt_set_new_type (p, type); + gimple_cdt_set_location (p, ptr); + + return p; +} + + +/* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */ + +gimple +gimple_build_omp_atomic_load (tree lhs, tree rhs) +{ + gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0); + gimple_omp_atomic_load_set_lhs (p, lhs); + gimple_omp_atomic_load_set_rhs (p, rhs); + return p; +} + +/* Build a GIMPLE_OMP_ATOMIC_STORE statement. + + VAL is the value we are storing. */ + +gimple +gimple_build_omp_atomic_store (tree val) +{ + gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0); + gimple_omp_atomic_store_set_val (p, val); + return p; +} + +/* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from + predict.def, OUTCOME is NOT_TAKEN or TAKEN. */ + +gimple +gimple_build_predict (enum br_predictor predictor, enum prediction outcome) +{ + gimple p = gimple_alloc (GIMPLE_PREDICT, 0); + /* Ensure all the predictors fit into the lower bits of the subcode. */ + gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN); + gimple_predict_set_predictor (p, predictor); + gimple_predict_set_outcome (p, outcome); + return p; +} + +/* Return which gimple structure is used by T. The enums here are defined + in gsstruct.def. */ + +enum gimple_statement_structure_enum +gimple_statement_structure (gimple gs) +{ + return gss_for_code (gimple_code (gs)); +} + +#if defined ENABLE_GIMPLE_CHECKING +/* Complain of a gimple type mismatch and die. */ + +void +gimple_check_failed (const_gimple gs, const char *file, int line, + const char *function, enum gimple_code code, + enum tree_code subcode) +{ + internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d", + gimple_code_name[code], + tree_code_name[subcode], + gimple_code_name[gimple_code (gs)], + gs->gsbase.subcode > 0 + ? tree_code_name[gs->gsbase.subcode] + : "", + function, trim_filename (file), line); +} +#endif /* ENABLE_GIMPLE_CHECKING */ + + +/* Allocate a new GIMPLE sequence in GC memory and return it. If + there are free sequences in GIMPLE_SEQ_CACHE return one of those + instead. */ + +gimple_seq +gimple_seq_alloc (void) +{ + gimple_seq seq = gimple_seq_cache; + if (seq) + { + gimple_seq_cache = gimple_seq_cache->next_free; + gcc_assert (gimple_seq_cache != seq); + memset (seq, 0, sizeof (*seq)); + } + else + { + seq = (gimple_seq) ggc_alloc_cleared (sizeof (*seq)); +#ifdef GATHER_STATISTICS + gimple_alloc_counts[(int) gimple_alloc_kind_seq]++; + gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq); +#endif + } + + return seq; +} + +/* Return SEQ to the free pool of GIMPLE sequences. */ + +void +gimple_seq_free (gimple_seq seq) +{ + if (seq == NULL) + return; + + gcc_assert (gimple_seq_first (seq) == NULL); + gcc_assert (gimple_seq_last (seq) == NULL); + + /* If this triggers, it's a sign that the same list is being freed + twice. */ + gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL); + + /* Add SEQ to the pool of free sequences. */ + seq->next_free = gimple_seq_cache; + gimple_seq_cache = seq; +} + + +/* Link gimple statement GS to the end of the sequence *SEQ_P. If + *SEQ_P is NULL, a new sequence is allocated. */ + +void +gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs) +{ + gimple_stmt_iterator si; + + if (gs == NULL) + return; + + if (*seq_p == NULL) + *seq_p = gimple_seq_alloc (); + + si = gsi_last (*seq_p); + gsi_insert_after (&si, gs, GSI_NEW_STMT); +} + + +/* Append sequence SRC to the end of sequence *DST_P. If *DST_P is + NULL, a new sequence is allocated. */ + +void +gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src) +{ + gimple_stmt_iterator si; + + if (src == NULL) + return; + + if (*dst_p == NULL) + *dst_p = gimple_seq_alloc (); + + si = gsi_last (*dst_p); + gsi_insert_seq_after (&si, src, GSI_NEW_STMT); +} + + +/* Helper function of empty_body_p. Return true if STMT is an empty + statement. */ + +static bool +empty_stmt_p (gimple stmt) +{ + if (gimple_code (stmt) == GIMPLE_NOP) + return true; + if (gimple_code (stmt) == GIMPLE_BIND) + return empty_body_p (gimple_bind_body (stmt)); + return false; +} + + +/* Return true if BODY contains nothing but empty statements. */ + +bool +empty_body_p (gimple_seq body) +{ + gimple_stmt_iterator i; + + + if (gimple_seq_empty_p (body)) + return true; + for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i)) + if (!empty_stmt_p (gsi_stmt (i))) + return false; + + return true; +} + + +/* Perform a deep copy of sequence SRC and return the result. */ + +gimple_seq +gimple_seq_copy (gimple_seq src) +{ + gimple_stmt_iterator gsi; + gimple_seq new_seq = gimple_seq_alloc (); + gimple stmt; + + for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi)) + { + stmt = gimple_copy (gsi_stmt (gsi)); + gimple_seq_add_stmt (&new_seq, stmt); + } + + return new_seq; +} + + +/* Walk all the statements in the sequence SEQ calling walk_gimple_stmt + on each one. WI is as in walk_gimple_stmt. + + If walk_gimple_stmt returns non-NULL, the walk is stopped, the + value is stored in WI->CALLBACK_RESULT and the statement that + produced the value is returned. + + Otherwise, all the statements are walked and NULL returned. */ + +gimple +walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt, + walk_tree_fn callback_op, struct walk_stmt_info *wi) +{ + gimple_stmt_iterator gsi; + + for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi)) + { + tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi); + if (ret) + { + /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist + to hold it. */ + gcc_assert (wi); + wi->callback_result = ret; + return gsi_stmt (gsi); + } + } + + if (wi) + wi->callback_result = NULL_TREE; + + return NULL; +} + + +/* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */ + +static tree +walk_gimple_asm (gimple stmt, walk_tree_fn callback_op, + struct walk_stmt_info *wi) +{ + tree ret; + unsigned noutputs; + const char **oconstraints; + unsigned i; + const char *constraint; + bool allows_mem, allows_reg, is_inout; + + noutputs = gimple_asm_noutputs (stmt); + oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *)); + + if (wi) + wi->is_lhs = true; + + for (i = 0; i < noutputs; i++) + { + tree op = gimple_asm_output_op (stmt, i); + constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op))); + oconstraints[i] = constraint; + parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg, + &is_inout); + if (wi) + wi->val_only = (allows_reg || !allows_mem); + ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL); + if (ret) + return ret; + } + + for (i = 0; i < gimple_asm_ninputs (stmt); i++) + { + tree op = gimple_asm_input_op (stmt, i); + constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op))); + parse_input_constraint (&constraint, 0, 0, noutputs, 0, + oconstraints, &allows_mem, &allows_reg); + if (wi) + wi->val_only = (allows_reg || !allows_mem); + + /* Although input "m" is not really a LHS, we need a lvalue. */ + if (wi) + wi->is_lhs = !wi->val_only; + ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL); + if (ret) + return ret; + } + + if (wi) + { + wi->is_lhs = false; + wi->val_only = true; + } + + return NULL_TREE; +} + + +/* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in + STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT. + + CALLBACK_OP is called on each operand of STMT via walk_tree. + Additional parameters to walk_tree must be stored in WI. For each operand + OP, walk_tree is called as: + + walk_tree (&OP, CALLBACK_OP, WI, WI->PSET) + + If CALLBACK_OP returns non-NULL for an operand, the remaining + operands are not scanned. + + The return value is that returned by the last call to walk_tree, or + NULL_TREE if no CALLBACK_OP is specified. */ + +inline tree +walk_gimple_op (gimple stmt, walk_tree_fn callback_op, + struct walk_stmt_info *wi) +{ + struct pointer_set_t *pset = (wi) ? wi->pset : NULL; + unsigned i; + tree ret = NULL_TREE; + + switch (gimple_code (stmt)) + { + case GIMPLE_ASSIGN: + /* Walk the RHS operands. A formal temporary LHS may use a + COMPONENT_REF RHS. */ + if (wi) + wi->val_only = !is_gimple_formal_tmp_var (gimple_assign_lhs (stmt)); + + for (i = 1; i < gimple_num_ops (stmt); i++) + { + ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, + pset); + if (ret) + return ret; + } + + /* Walk the LHS. If the RHS is appropriate for a memory, we + may use a COMPONENT_REF on the LHS. */ + if (wi) + { + /* If the RHS has more than 1 operand, it is not appropriate + for the memory. */ + wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt)) + || !gimple_assign_single_p (stmt); + wi->is_lhs = true; + } + + ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset); + if (ret) + return ret; + + if (wi) + { + wi->val_only = true; + wi->is_lhs = false; + } + break; + + case GIMPLE_CALL: + if (wi) + wi->is_lhs = false; + + ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset); + if (ret) + return ret; + + ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset); + if (ret) + return ret; + + for (i = 0; i < gimple_call_num_args (stmt); i++) + { + ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi, + pset); + if (ret) + return ret; + } + + if (wi) + wi->is_lhs = true; + + ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset); + if (ret) + return ret; + + if (wi) + wi->is_lhs = false; + break; + + case GIMPLE_CATCH: + ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + break; + + case GIMPLE_EH_FILTER: + ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + break; + + case GIMPLE_CHANGE_DYNAMIC_TYPE: + ret = walk_tree (gimple_cdt_location_ptr (stmt), callback_op, wi, pset); + if (ret) + return ret; + + ret = walk_tree (gimple_cdt_new_type_ptr (stmt), callback_op, wi, pset); + if (ret) + return ret; + break; + + case GIMPLE_ASM: + ret = walk_gimple_asm (stmt, callback_op, wi); + if (ret) + return ret; + break; + + case GIMPLE_OMP_CONTINUE: + ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt), + callback_op, wi, pset); + if (ret) + return ret; + + ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt), + callback_op, wi, pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_CRITICAL: + ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_FOR: + ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + for (i = 0; i < gimple_omp_for_collapse (stmt); i++) + { + ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op, + wi, pset); + } + if (ret) + return ret; + break; + + case GIMPLE_OMP_PARALLEL: + ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_TASK: + ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_SECTIONS: + ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + + ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + + break; + + case GIMPLE_OMP_SINGLE: + ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_ATOMIC_LOAD: + ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + + ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi, + pset); + if (ret) + return ret; + break; + + case GIMPLE_OMP_ATOMIC_STORE: + ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op, + wi, pset); + if (ret) + return ret; + break; + + /* Tuples that do not have operands. */ + case GIMPLE_NOP: + case GIMPLE_RESX: + case GIMPLE_OMP_RETURN: + case GIMPLE_PREDICT: + break; + + default: + { + enum gimple_statement_structure_enum gss; + gss = gimple_statement_structure (stmt); + if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS) + for (i = 0; i < gimple_num_ops (stmt); i++) + { + ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset); + if (ret) + return ret; + } + } + break; + } + + return NULL_TREE; +} + + +/* Walk the current statement in GSI (optionally using traversal state + stored in WI). If WI is NULL, no state is kept during traversal. + The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates + that it has handled all the operands of the statement, its return + value is returned. Otherwise, the return value from CALLBACK_STMT + is discarded and its operands are scanned. + + If CALLBACK_STMT is NULL or it didn't handle the operands, + CALLBACK_OP is called on each operand of the statement via + walk_gimple_op. If walk_gimple_op returns non-NULL for any + operand, the remaining operands are not scanned. In this case, the + return value from CALLBACK_OP is returned. + + In any other case, NULL_TREE is returned. */ + +tree +walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt, + walk_tree_fn callback_op, struct walk_stmt_info *wi) +{ + gimple ret; + tree tree_ret; + gimple stmt = gsi_stmt (*gsi); + + if (wi) + wi->gsi = *gsi; + + if (wi && wi->want_locations && gimple_has_location (stmt)) + input_location = gimple_location (stmt); + + ret = NULL; + + /* Invoke the statement callback. Return if the callback handled + all of STMT operands by itself. */ + if (callback_stmt) + { + bool handled_ops = false; + tree_ret = callback_stmt (gsi, &handled_ops, wi); + if (handled_ops) + return tree_ret; + + /* If CALLBACK_STMT did not handle operands, it should not have + a value to return. */ + gcc_assert (tree_ret == NULL); + + /* Re-read stmt in case the callback changed it. */ + stmt = gsi_stmt (*gsi); + } + + /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */ + if (callback_op) + { + tree_ret = walk_gimple_op (stmt, callback_op, wi); + if (tree_ret) + return tree_ret; + } + + /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */ + switch (gimple_code (stmt)) + { + case GIMPLE_BIND: + ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_CATCH: + ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_EH_FILTER: + ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_TRY: + ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op, + wi); + if (ret) + return wi->callback_result; + + ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_OMP_FOR: + ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + + /* FALL THROUGH. */ + case GIMPLE_OMP_CRITICAL: + case GIMPLE_OMP_MASTER: + case GIMPLE_OMP_ORDERED: + case GIMPLE_OMP_SECTION: + case GIMPLE_OMP_PARALLEL: + case GIMPLE_OMP_TASK: + case GIMPLE_OMP_SECTIONS: + case GIMPLE_OMP_SINGLE: + ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op, + wi); + if (ret) + return wi->callback_result; + break; + + case GIMPLE_WITH_CLEANUP_EXPR: + ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt, + callback_op, wi); + if (ret) + return wi->callback_result; + break; + + default: + gcc_assert (!gimple_has_substatements (stmt)); + break; + } + + return NULL; +} + + +/* Set sequence SEQ to be the GIMPLE body for function FN. */ + +void +gimple_set_body (tree fndecl, gimple_seq seq) +{ + struct function *fn = DECL_STRUCT_FUNCTION (fndecl); + if (fn == NULL) + { + /* If FNDECL still does not have a function structure associated + with it, then it does not make sense for it to receive a + GIMPLE body. */ + gcc_assert (seq == NULL); + } + else + fn->gimple_body = seq; +} + + +/* Return the body of GIMPLE statements for function FN. */ + +gimple_seq +gimple_body (tree fndecl) +{ + struct function *fn = DECL_STRUCT_FUNCTION (fndecl); + return fn ? fn->gimple_body : NULL; +} + +/* Return true when FNDECL has Gimple body either in unlowered + or CFG form. */ +bool +gimple_has_body_p (tree fndecl) +{ + struct function *fn = DECL_STRUCT_FUNCTION (fndecl); + return (gimple_body (fndecl) || (fn && fn->cfg)); +} + +/* Detect flags from a GIMPLE_CALL. This is just like + call_expr_flags, but for gimple tuples. */ + +int +gimple_call_flags (const_gimple stmt) +{ + int flags; + tree decl = gimple_call_fndecl (stmt); + tree t; + + if (decl) + flags = flags_from_decl_or_type (decl); + else + { + t = TREE_TYPE (gimple_call_fn (stmt)); + if (t && TREE_CODE (t) == POINTER_TYPE) + flags = flags_from_decl_or_type (TREE_TYPE (t)); + else + flags = 0; + } + + return flags; +} + + +/* Return true if GS is a copy assignment. */ + +bool +gimple_assign_copy_p (gimple gs) +{ + return gimple_code (gs) == GIMPLE_ASSIGN + && get_gimple_rhs_class (gimple_assign_rhs_code (gs)) + == GIMPLE_SINGLE_RHS + && is_gimple_val (gimple_op (gs, 1)); +} + + +/* Return true if GS is a SSA_NAME copy assignment. */ + +bool +gimple_assign_ssa_name_copy_p (gimple gs) +{ + return (gimple_code (gs) == GIMPLE_ASSIGN + && (get_gimple_rhs_class (gimple_assign_rhs_code (gs)) + == GIMPLE_SINGLE_RHS) + && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME + && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME); +} + + +/* Return true if GS is an assignment with a singleton RHS, i.e., + there is no operator associated with the assignment itself. + Unlike gimple_assign_copy_p, this predicate returns true for + any RHS operand, including those that perform an operation + and do not have the semantics of a copy, such as COND_EXPR. */ + +bool +gimple_assign_single_p (gimple gs) +{ + return (gimple_code (gs) == GIMPLE_ASSIGN + && get_gimple_rhs_class (gimple_assign_rhs_code (gs)) + == GIMPLE_SINGLE_RHS); +} + +/* Return true if GS is an assignment with a unary RHS, but the + operator has no effect on the assigned value. The logic is adapted + from STRIP_NOPS. This predicate is intended to be used in tuplifying + instances in which STRIP_NOPS was previously applied to the RHS of + an assignment. + + NOTE: In the use cases that led to the creation of this function + and of gimple_assign_single_p, it is typical to test for either + condition and to proceed in the same manner. In each case, the + assigned value is represented by the single RHS operand of the + assignment. I suspect there may be cases where gimple_assign_copy_p, + gimple_assign_single_p, or equivalent logic is used where a similar + treatment of unary NOPs is appropriate. */ + +bool +gimple_assign_unary_nop_p (gimple gs) +{ + return (gimple_code (gs) == GIMPLE_ASSIGN + && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)) + || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR) + && gimple_assign_rhs1 (gs) != error_mark_node + && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs))) + == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs))))); +} + +/* Set BB to be the basic block holding G. */ + +void +gimple_set_bb (gimple stmt, basic_block bb) +{ + stmt->gsbase.bb = bb; + + /* If the statement is a label, add the label to block-to-labels map + so that we can speed up edge creation for GIMPLE_GOTOs. */ + if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL) + { + tree t; + int uid; + + t = gimple_label_label (stmt); + uid = LABEL_DECL_UID (t); + if (uid == -1) + { + unsigned old_len = VEC_length (basic_block, label_to_block_map); + LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++; + if (old_len <= (unsigned) uid) + { + unsigned new_len = 3 * uid / 2; + + VEC_safe_grow_cleared (basic_block, gc, label_to_block_map, + new_len); + } + } + + VEC_replace (basic_block, label_to_block_map, uid, bb); + } +} + + +/* Fold the expression computed by STMT. If the expression can be + folded, return the folded result, otherwise return NULL. STMT is + not modified. */ + +tree +gimple_fold (const_gimple stmt) +{ + switch (gimple_code (stmt)) + { + case GIMPLE_COND: + return fold_binary (gimple_cond_code (stmt), + boolean_type_node, + gimple_cond_lhs (stmt), + gimple_cond_rhs (stmt)); + + case GIMPLE_ASSIGN: + switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))) + { + case GIMPLE_UNARY_RHS: + return fold_unary (gimple_assign_rhs_code (stmt), + TREE_TYPE (gimple_assign_lhs (stmt)), + gimple_assign_rhs1 (stmt)); + case GIMPLE_BINARY_RHS: + return fold_binary (gimple_assign_rhs_code (stmt), + TREE_TYPE (gimple_assign_lhs (stmt)), + gimple_assign_rhs1 (stmt), + gimple_assign_rhs2 (stmt)); + case GIMPLE_SINGLE_RHS: + return fold (gimple_assign_rhs1 (stmt)); + default:; + } + break; + + case GIMPLE_SWITCH: + return gimple_switch_index (stmt); + + case GIMPLE_CALL: + return NULL_TREE; + + default: + break; + } + + gcc_unreachable (); +} + + +/* Modify the RHS of the assignment pointed-to by GSI using the + operands in the expression tree EXPR. + + NOTE: The statement pointed-to by GSI may be reallocated if it + did not have enough operand slots. + + This function is useful to convert an existing tree expression into + the flat representation used for the RHS of a GIMPLE assignment. + It will reallocate memory as needed to expand or shrink the number + of operand slots needed to represent EXPR. + + NOTE: If you find yourself building a tree and then calling this + function, you are most certainly doing it the slow way. It is much + better to build a new assignment or to use the function + gimple_assign_set_rhs_with_ops, which does not require an + expression tree to be built. */ + +void +gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr) +{ + enum tree_code subcode; + tree op1, op2; + + extract_ops_from_tree (expr, &subcode, &op1, &op2); + gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2); +} + + +/* Set the RHS of assignment statement pointed-to by GSI to CODE with + operands OP1 and OP2. + + NOTE: The statement pointed-to by GSI may be reallocated if it + did not have enough operand slots. */ + +void +gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code, + tree op1, tree op2) +{ + unsigned new_rhs_ops = get_gimple_rhs_num_ops (code); + gimple stmt = gsi_stmt (*gsi); + + /* If the new CODE needs more operands, allocate a new statement. */ + if (gimple_num_ops (stmt) < new_rhs_ops + 1) + { + tree lhs = gimple_assign_lhs (stmt); + gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1); + memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt))); + gsi_replace (gsi, new_stmt, true); + stmt = new_stmt; + + /* The LHS needs to be reset as this also changes the SSA name + on the LHS. */ + gimple_assign_set_lhs (stmt, lhs); + } + + gimple_set_num_ops (stmt, new_rhs_ops + 1); + gimple_set_subcode (stmt, code); + gimple_assign_set_rhs1 (stmt, op1); + if (new_rhs_ops > 1) + gimple_assign_set_rhs2 (stmt, op2); +} + + +/* Return the LHS of a statement that performs an assignment, + either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE + for a call to a function that returns no value, or for a + statement other than an assignment or a call. */ + +tree +gimple_get_lhs (const_gimple stmt) +{ + enum gimple_code code = gimple_code (stmt); + + if (code == GIMPLE_ASSIGN) + return gimple_assign_lhs (stmt); + else if (code == GIMPLE_CALL) + return gimple_call_lhs (stmt); + else + return NULL_TREE; +} + + +/* Set the LHS of a statement that performs an assignment, + either a GIMPLE_ASSIGN or a GIMPLE_CALL. */ + +void +gimple_set_lhs (gimple stmt, tree lhs) +{ + enum gimple_code code = gimple_code (stmt); + + if (code == GIMPLE_ASSIGN) + gimple_assign_set_lhs (stmt, lhs); + else if (code == GIMPLE_CALL) + gimple_call_set_lhs (stmt, lhs); + else + gcc_unreachable(); +} + + +/* Return a deep copy of statement STMT. All the operands from STMT + are reallocated and copied using unshare_expr. The DEF, USE, VDEF + and VUSE operand arrays are set to empty in the new copy. */ + +gimple +gimple_copy (gimple stmt) +{ + enum gimple_code code = gimple_code (stmt); + unsigned num_ops = gimple_num_ops (stmt); + gimple copy = gimple_alloc (code, num_ops); + unsigned i; + + /* Shallow copy all the fields from STMT. */ + memcpy (copy, stmt, gimple_size (code)); + + /* If STMT has sub-statements, deep-copy them as well. */ + if (gimple_has_substatements (stmt)) + { + gimple_seq new_seq; + tree t; + + switch (gimple_code (stmt)) + { + case GIMPLE_BIND: + new_seq = gimple_seq_copy (gimple_bind_body (stmt)); + gimple_bind_set_body (copy, new_seq); + gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt))); + gimple_bind_set_block (copy, gimple_bind_block (stmt)); + break; + + case GIMPLE_CATCH: + new_seq = gimple_seq_copy (gimple_catch_handler (stmt)); + gimple_catch_set_handler (copy, new_seq); + t = unshare_expr (gimple_catch_types (stmt)); + gimple_catch_set_types (copy, t); + break; + + case GIMPLE_EH_FILTER: + new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt)); + gimple_eh_filter_set_failure (copy, new_seq); + t = unshare_expr (gimple_eh_filter_types (stmt)); + gimple_eh_filter_set_types (copy, t); + break; + + case GIMPLE_TRY: + new_seq = gimple_seq_copy (gimple_try_eval (stmt)); + gimple_try_set_eval (copy, new_seq); + new_seq = gimple_seq_copy (gimple_try_cleanup (stmt)); + gimple_try_set_cleanup (copy, new_seq); + break; + + case GIMPLE_OMP_FOR: + new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt)); + gimple_omp_for_set_pre_body (copy, new_seq); + t = unshare_expr (gimple_omp_for_clauses (stmt)); + gimple_omp_for_set_clauses (copy, t); + copy->gimple_omp_for.iter + = GGC_NEWVEC (struct gimple_omp_for_iter, + gimple_omp_for_collapse (stmt)); + for (i = 0; i < gimple_omp_for_collapse (stmt); i++) + { + gimple_omp_for_set_cond (copy, i, + gimple_omp_for_cond (stmt, i)); + gimple_omp_for_set_index (copy, i, + gimple_omp_for_index (stmt, i)); + t = unshare_expr (gimple_omp_for_initial (stmt, i)); + gimple_omp_for_set_initial (copy, i, t); + t = unshare_expr (gimple_omp_for_final (stmt, i)); + gimple_omp_for_set_final (copy, i, t); + t = unshare_expr (gimple_omp_for_incr (stmt, i)); + gimple_omp_for_set_incr (copy, i, t); + } + goto copy_omp_body; + + case GIMPLE_OMP_PARALLEL: + t = unshare_expr (gimple_omp_parallel_clauses (stmt)); + gimple_omp_parallel_set_clauses (copy, t); + t = unshare_expr (gimple_omp_parallel_child_fn (stmt)); + gimple_omp_parallel_set_child_fn (copy, t); + t = unshare_expr (gimple_omp_parallel_data_arg (stmt)); + gimple_omp_parallel_set_data_arg (copy, t); + goto copy_omp_body; + + case GIMPLE_OMP_TASK: + t = unshare_expr (gimple_omp_task_clauses (stmt)); + gimple_omp_task_set_clauses (copy, t); + t = unshare_expr (gimple_omp_task_child_fn (stmt)); + gimple_omp_task_set_child_fn (copy, t); + t = unshare_expr (gimple_omp_task_data_arg (stmt)); + gimple_omp_task_set_data_arg (copy, t); + t = unshare_expr (gimple_omp_task_copy_fn (stmt)); + gimple_omp_task_set_copy_fn (copy, t); + t = unshare_expr (gimple_omp_task_arg_size (stmt)); + gimple_omp_task_set_arg_size (copy, t); + t = unshare_expr (gimple_omp_task_arg_align (stmt)); + gimple_omp_task_set_arg_align (copy, t); + goto copy_omp_body; + + case GIMPLE_OMP_CRITICAL: + t = unshare_expr (gimple_omp_critical_name (stmt)); + gimple_omp_critical_set_name (copy, t); + goto copy_omp_body; + + case GIMPLE_OMP_SECTIONS: + t = unshare_expr (gimple_omp_sections_clauses (stmt)); + gimple_omp_sections_set_clauses (copy, t); + t = unshare_expr (gimple_omp_sections_control (stmt)); + gimple_omp_sections_set_control (copy, t); + /* FALLTHRU */ + + case GIMPLE_OMP_SINGLE: + case GIMPLE_OMP_SECTION: + case GIMPLE_OMP_MASTER: + case GIMPLE_OMP_ORDERED: + copy_omp_body: + new_seq = gimple_seq_copy (gimple_omp_body (stmt)); + gimple_omp_set_body (copy, new_seq); + break; + + case GIMPLE_WITH_CLEANUP_EXPR: + new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt)); + gimple_wce_set_cleanup (copy, new_seq); + break; + + default: + gcc_unreachable (); + } + } + + /* Make copy of operands. */ + if (num_ops > 0) + { + for (i = 0; i < num_ops; i++) + gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i))); + + /* Clear out SSA operand vectors on COPY. Note that we cannot + call the API functions for setting addresses_taken, stores + and loads. These functions free the previous values, and we + cannot do that on COPY as it will affect the original + statement. */ + if (gimple_has_ops (stmt)) + { + gimple_set_def_ops (copy, NULL); + gimple_set_use_ops (copy, NULL); + copy->gsops.opbase.addresses_taken = NULL; + } + + if (gimple_has_mem_ops (stmt)) + { + gimple_set_vdef_ops (copy, NULL); + gimple_set_vuse_ops (copy, NULL); + copy->gsmem.membase.stores = NULL; + copy->gsmem.membase.loads = NULL; + } + + update_stmt (copy); + } + + return copy; +} + + +/* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has + a MODIFIED field. */ + +void +gimple_set_modified (gimple s, bool modifiedp) +{ + if (gimple_has_ops (s)) + { + s->gsbase.modified = (unsigned) modifiedp; + + if (modifiedp + && cfun->gimple_df + && is_gimple_call (s) + && gimple_call_noreturn_p (s)) + VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s); + } +} + + +/* Return true if statement S has side-effects. We consider a + statement to have side effects if: + + - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST. + - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */ + +bool +gimple_has_side_effects (const_gimple s) +{ + unsigned i; + + /* We don't have to scan the arguments to check for + volatile arguments, though, at present, we still + do a scan to check for TREE_SIDE_EFFECTS. */ + if (gimple_has_volatile_ops (s)) + return true; + + if (is_gimple_call (s)) + { + unsigned nargs = gimple_call_num_args (s); + + if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE))) + return true; + else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE) + /* An infinite loop is considered a side effect. */ + return true; + + if (gimple_call_lhs (s) + && TREE_SIDE_EFFECTS (gimple_call_lhs (s))) + { + gcc_assert (gimple_has_volatile_ops (s)); + return true; + } + + if (TREE_SIDE_EFFECTS (gimple_call_fn (s))) + return true; + + for (i = 0; i < nargs; i++) + if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))) + { + gcc_assert (gimple_has_volatile_ops (s)); + return true; + } + + return false; + } + else + { + for (i = 0; i < gimple_num_ops (s); i++) + if (TREE_SIDE_EFFECTS (gimple_op (s, i))) + { + gcc_assert (gimple_has_volatile_ops (s)); + return true; + } + } + + return false; +} + +/* Return true if the RHS of statement S has side effects. + We may use it to determine if it is admissable to replace + an assignment or call with a copy of a previously-computed + value. In such cases, side-effects due the the LHS are + preserved. */ + +bool +gimple_rhs_has_side_effects (const_gimple s) +{ + unsigned i; + + if (is_gimple_call (s)) + { + unsigned nargs = gimple_call_num_args (s); + + if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE))) + return true; + + /* We cannot use gimple_has_volatile_ops here, + because we must ignore a volatile LHS. */ + if (TREE_SIDE_EFFECTS (gimple_call_fn (s)) + || TREE_THIS_VOLATILE (gimple_call_fn (s))) + { + gcc_assert (gimple_has_volatile_ops (s)); + return true; + } + + for (i = 0; i < nargs; i++) + if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)) + || TREE_THIS_VOLATILE (gimple_call_arg (s, i))) + return true; + + return false; + } + else if (is_gimple_assign (s)) + { + /* Skip the first operand, the LHS. */ + for (i = 1; i < gimple_num_ops (s); i++) + if (TREE_SIDE_EFFECTS (gimple_op (s, i)) + || TREE_THIS_VOLATILE (gimple_op (s, i))) + { + gcc_assert (gimple_has_volatile_ops (s)); + return true; + } + } + else + { + /* For statements without an LHS, examine all arguments. */ + for (i = 0; i < gimple_num_ops (s); i++) + if (TREE_SIDE_EFFECTS (gimple_op (s, i)) + || TREE_THIS_VOLATILE (gimple_op (s, i))) + { + gcc_assert (gimple_has_volatile_ops (s)); + return true; + } + } + + return false; +} + + +/* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p. + Return true if S can trap. If INCLUDE_LHS is true and S is a + GIMPLE_ASSIGN, the LHS of the assignment is also checked. + Otherwise, only the RHS of the assignment is checked. */ + +static bool +gimple_could_trap_p_1 (gimple s, bool include_lhs) +{ + unsigned i, start; + tree t, div = NULL_TREE; + enum tree_code op; + + start = (is_gimple_assign (s) && !include_lhs) ? 1 : 0; + + for (i = start; i < gimple_num_ops (s); i++) + if (tree_could_trap_p (gimple_op (s, i))) + return true; + + switch (gimple_code (s)) + { + case GIMPLE_ASM: + return gimple_asm_volatile_p (s); + + case GIMPLE_CALL: + t = gimple_call_fndecl (s); + /* Assume that calls to weak functions may trap. */ + if (!t || !DECL_P (t) || DECL_WEAK (t)) + return true; + return false; + + case GIMPLE_ASSIGN: + t = gimple_expr_type (s); + op = gimple_assign_rhs_code (s); + if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS) + div = gimple_assign_rhs2 (s); + return (operation_could_trap_p (op, FLOAT_TYPE_P (t), + (INTEGRAL_TYPE_P (t) + && TYPE_OVERFLOW_TRAPS (t)), + div)); + + default: + break; + } + + return false; + +} + + +/* Return true if statement S can trap. */ + +bool +gimple_could_trap_p (gimple s) +{ + return gimple_could_trap_p_1 (s, true); +} + + +/* Return true if RHS of a GIMPLE_ASSIGN S can trap. */ + +bool +gimple_assign_rhs_could_trap_p (gimple s) +{ + gcc_assert (is_gimple_assign (s)); + return gimple_could_trap_p_1 (s, false); +} + + +/* Print debugging information for gimple stmts generated. */ + +void +dump_gimple_statistics (void) +{ +#ifdef GATHER_STATISTICS + int i, total_tuples = 0, total_bytes = 0; + + fprintf (stderr, "\nGIMPLE statements\n"); + fprintf (stderr, "Kind Stmts Bytes\n"); + fprintf (stderr, "---------------------------------------\n"); + for (i = 0; i < (int) gimple_alloc_kind_all; ++i) + { + fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i], + gimple_alloc_counts[i], gimple_alloc_sizes[i]); + total_tuples += gimple_alloc_counts[i]; + total_bytes += gimple_alloc_sizes[i]; + } + fprintf (stderr, "---------------------------------------\n"); + fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes); + fprintf (stderr, "---------------------------------------\n"); +#else + fprintf (stderr, "No gimple statistics\n"); +#endif +} + + +/* Deep copy SYMS into the set of symbols stored by STMT. If SYMS is + NULL or empty, the storage used is freed up. */ + +void +gimple_set_stored_syms (gimple stmt, bitmap syms, bitmap_obstack *obs) +{ + gcc_assert (gimple_has_mem_ops (stmt)); + + if (syms == NULL || bitmap_empty_p (syms)) + BITMAP_FREE (stmt->gsmem.membase.stores); + else + { + if (stmt->gsmem.membase.stores == NULL) + stmt->gsmem.membase.stores = BITMAP_ALLOC (obs); + + bitmap_copy (stmt->gsmem.membase.stores, syms); + } +} + + +/* Deep copy SYMS into the set of symbols loaded by STMT. If SYMS is + NULL or empty, the storage used is freed up. */ + +void +gimple_set_loaded_syms (gimple stmt, bitmap syms, bitmap_obstack *obs) +{ + gcc_assert (gimple_has_mem_ops (stmt)); + + if (syms == NULL || bitmap_empty_p (syms)) + BITMAP_FREE (stmt->gsmem.membase.loads); + else + { + if (stmt->gsmem.membase.loads == NULL) + stmt->gsmem.membase.loads = BITMAP_ALLOC (obs); + + bitmap_copy (stmt->gsmem.membase.loads, syms); + } +} + + +/* Return the number of operands needed on the RHS of a GIMPLE + assignment for an expression with tree code CODE. */ + +unsigned +get_gimple_rhs_num_ops (enum tree_code code) +{ + enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code); + + if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS) + return 1; + else if (rhs_class == GIMPLE_BINARY_RHS) + return 2; + else + gcc_unreachable (); +} + +#define DEFTREECODE(SYM, STRING, TYPE, NARGS) \ + (unsigned char) \ + ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \ + : ((TYPE) == tcc_binary \ + || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \ + : ((TYPE) == tcc_constant \ + || (TYPE) == tcc_declaration \ + || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \ + : ((SYM) == TRUTH_AND_EXPR \ + || (SYM) == TRUTH_OR_EXPR \ + || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \ + : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \ + : ((SYM) == COND_EXPR \ + || (SYM) == CONSTRUCTOR \ + || (SYM) == OBJ_TYPE_REF \ + || (SYM) == ASSERT_EXPR \ + || (SYM) == ADDR_EXPR \ + || (SYM) == WITH_SIZE_EXPR \ + || (SYM) == EXC_PTR_EXPR \ + || (SYM) == SSA_NAME \ + || (SYM) == FILTER_EXPR \ + || (SYM) == POLYNOMIAL_CHREC \ + || (SYM) == DOT_PROD_EXPR \ + || (SYM) == VEC_COND_EXPR \ + || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \ + : GIMPLE_INVALID_RHS), +#define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS, + +const unsigned char gimple_rhs_class_table[] = { +#include "all-tree.def" +}; + +#undef DEFTREECODE +#undef END_OF_BASE_TREE_CODES + +/* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */ + +/* Validation of GIMPLE expressions. */ + +/* Return true if OP is an acceptable tree node to be used as a GIMPLE + operand. */ + +bool +is_gimple_operand (const_tree op) +{ + return op && get_gimple_rhs_class (TREE_CODE (op)) == GIMPLE_SINGLE_RHS; +} + + +/* Return true if T is a GIMPLE RHS for an assignment to a temporary. */ + +bool +is_gimple_formal_tmp_rhs (tree t) +{ + if (is_gimple_lvalue (t) || is_gimple_val (t)) + return true; + + return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS; +} + +/* Returns true iff T is a valid RHS for an assignment to a renamed + user -- or front-end generated artificial -- variable. */ + +bool +is_gimple_reg_rhs (tree t) +{ + /* If the RHS of the MODIFY_EXPR may throw or make a nonlocal goto + and the LHS is a user variable, then we need to introduce a formal + temporary. This way the optimizers can determine that the user + variable is only modified if evaluation of the RHS does not throw. + + Don't force a temp of a non-renamable type; the copy could be + arbitrarily expensive. Instead we will generate a VDEF for + the assignment. */ + + if (is_gimple_reg_type (TREE_TYPE (t)) && tree_could_throw_p (t)) + return false; + + return is_gimple_formal_tmp_rhs (t); +} + +/* Returns true iff T is a valid RHS for an assignment to an un-renamed + LHS, or for a call argument. */ + +bool +is_gimple_mem_rhs (tree t) +{ + /* If we're dealing with a renamable type, either source or dest must be + a renamed variable. */ + if (is_gimple_reg_type (TREE_TYPE (t))) + return is_gimple_val (t); + else + return is_gimple_formal_tmp_rhs (t); +} + +/* Return true if T is a valid LHS for a GIMPLE assignment expression. */ + +bool +is_gimple_lvalue (tree t) +{ + return (is_gimple_addressable (t) + || TREE_CODE (t) == WITH_SIZE_EXPR + /* These are complex lvalues, but don't have addresses, so they + go here. */ + || TREE_CODE (t) == BIT_FIELD_REF); +} + +/* Return true if T is a GIMPLE condition. */ + +bool +is_gimple_condexpr (tree t) +{ + return (is_gimple_val (t) || (COMPARISON_CLASS_P (t) + && !tree_could_trap_p (t) + && is_gimple_val (TREE_OPERAND (t, 0)) + && is_gimple_val (TREE_OPERAND (t, 1)))); +} + +/* Return true if T is something whose address can be taken. */ + +bool +is_gimple_addressable (tree t) +{ + return (is_gimple_id (t) || handled_component_p (t) || INDIRECT_REF_P (t)); +} + +/* Return true if T is a valid gimple constant. */ + +bool +is_gimple_constant (const_tree t) +{ + switch (TREE_CODE (t)) + { + case INTEGER_CST: + case REAL_CST: + case FIXED_CST: + case STRING_CST: + case COMPLEX_CST: + case VECTOR_CST: + return true; + + /* Vector constant constructors are gimple invariant. */ + case CONSTRUCTOR: + if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE) + return TREE_CONSTANT (t); + else + return false; + + default: + return false; + } +} + +/* Return true if T is a gimple address. */ + +bool +is_gimple_address (const_tree t) +{ + tree op; + + if (TREE_CODE (t) != ADDR_EXPR) + return false; + + op = TREE_OPERAND (t, 0); + while (handled_component_p (op)) + { + if ((TREE_CODE (op) == ARRAY_REF + || TREE_CODE (op) == ARRAY_RANGE_REF) + && !is_gimple_val (TREE_OPERAND (op, 1))) + return false; + + op = TREE_OPERAND (op, 0); + } + + if (CONSTANT_CLASS_P (op) || INDIRECT_REF_P (op)) + return true; + + switch (TREE_CODE (op)) + { + case PARM_DECL: + case RESULT_DECL: + case LABEL_DECL: + case FUNCTION_DECL: + case VAR_DECL: + case CONST_DECL: + return true; + + default: + return false; + } +} + +/* Strip out all handled components that produce invariant + offsets. */ + +static const_tree +strip_invariant_refs (const_tree op) +{ + while (handled_component_p (op)) + { + switch (TREE_CODE (op)) + { + case ARRAY_REF: + case ARRAY_RANGE_REF: + if (!is_gimple_constant (TREE_OPERAND (op, 1)) + || TREE_OPERAND (op, 2) != NULL_TREE + || TREE_OPERAND (op, 3) != NULL_TREE) + return NULL; + break; + + case COMPONENT_REF: + if (TREE_OPERAND (op, 2) != NULL_TREE) + return NULL; + break; + + default:; + } + op = TREE_OPERAND (op, 0); + } + + return op; +} + +/* Return true if T is a gimple invariant address. */ + +bool +is_gimple_invariant_address (const_tree t) +{ + const_tree op; + + if (TREE_CODE (t) != ADDR_EXPR) + return false; + + op = strip_invariant_refs (TREE_OPERAND (t, 0)); + + return op && (CONSTANT_CLASS_P (op) || decl_address_invariant_p (op)); +} + +/* Return true if T is a gimple invariant address at IPA level + (so addresses of variables on stack are not allowed). */ + +bool +is_gimple_ip_invariant_address (const_tree t) +{ + const_tree op; + + if (TREE_CODE (t) != ADDR_EXPR) + return false; + + op = strip_invariant_refs (TREE_OPERAND (t, 0)); + + return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op)); +} + +/* Return true if T is a GIMPLE minimal invariant. It's a restricted + form of function invariant. */ + +bool +is_gimple_min_invariant (const_tree t) +{ + if (TREE_CODE (t) == ADDR_EXPR) + return is_gimple_invariant_address (t); + + return is_gimple_constant (t); +} + +/* Return true if T is a GIMPLE interprocedural invariant. It's a restricted + form of gimple minimal invariant. */ + +bool +is_gimple_ip_invariant (const_tree t) +{ + if (TREE_CODE (t) == ADDR_EXPR) + return is_gimple_ip_invariant_address (t); + + return is_gimple_constant (t); +} + +/* Return true if T looks like a valid GIMPLE statement. */ + +bool +is_gimple_stmt (tree t) +{ + const enum tree_code code = TREE_CODE (t); + + switch (code) + { + case NOP_EXPR: + /* The only valid NOP_EXPR is the empty statement. */ + return IS_EMPTY_STMT (t); + + case BIND_EXPR: + case COND_EXPR: + /* These are only valid if they're void. */ + return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t)); + + case SWITCH_EXPR: + case GOTO_EXPR: + case RETURN_EXPR: + case LABEL_EXPR: + case CASE_LABEL_EXPR: + case TRY_CATCH_EXPR: + case TRY_FINALLY_EXPR: + case EH_FILTER_EXPR: + case CATCH_EXPR: + case CHANGE_DYNAMIC_TYPE_EXPR: + case ASM_EXPR: + case RESX_EXPR: + case STATEMENT_LIST: + case OMP_PARALLEL: + case OMP_FOR: + case OMP_SECTIONS: + case OMP_SECTION: + case OMP_SINGLE: + case OMP_MASTER: + case OMP_ORDERED: + case OMP_CRITICAL: + case OMP_TASK: + /* These are always void. */ + return true; + + case CALL_EXPR: + case MODIFY_EXPR: + case PREDICT_EXPR: + /* These are valid regardless of their type. */ + return true; + + default: + return false; + } +} + +/* Return true if T is a variable. */ + +bool +is_gimple_variable (tree t) +{ + return (TREE_CODE (t) == VAR_DECL + || TREE_CODE (t) == PARM_DECL + || TREE_CODE (t) == RESULT_DECL + || TREE_CODE (t) == SSA_NAME); +} + +/* Return true if T is a GIMPLE identifier (something with an address). */ + +bool +is_gimple_id (tree t) +{ + return (is_gimple_variable (t) + || TREE_CODE (t) == FUNCTION_DECL + || TREE_CODE (t) == LABEL_DECL + || TREE_CODE (t) == CONST_DECL + /* Allow string constants, since they are addressable. */ + || TREE_CODE (t) == STRING_CST); +} + +/* Return true if TYPE is a suitable type for a scalar register variable. */ + +bool +is_gimple_reg_type (tree type) +{ + /* In addition to aggregate types, we also exclude complex types if not + optimizing because they can be subject to partial stores in GNU C by + means of the __real__ and __imag__ operators and we cannot promote + them to total stores (see gimplify_modify_expr_complex_part). */ + return !(AGGREGATE_TYPE_P (type) + || (TREE_CODE (type) == COMPLEX_TYPE && !optimize)); + +} + +/* Return true if T is a non-aggregate register variable. */ + +bool +is_gimple_reg (tree t) +{ + if (TREE_CODE (t) == SSA_NAME) + t = SSA_NAME_VAR (t); + + if (MTAG_P (t)) + return false; + + if (!is_gimple_variable (t)) + return false; + + if (!is_gimple_reg_type (TREE_TYPE (t))) + return false; + + /* A volatile decl is not acceptable because we can't reuse it as + needed. We need to copy it into a temp first. */ + if (TREE_THIS_VOLATILE (t)) + return false; + + /* We define "registers" as things that can be renamed as needed, + which with our infrastructure does not apply to memory. */ + if (needs_to_live_in_memory (t)) + return false; + + /* Hard register variables are an interesting case. For those that + are call-clobbered, we don't know where all the calls are, since + we don't (want to) take into account which operations will turn + into libcalls at the rtl level. For those that are call-saved, + we don't currently model the fact that calls may in fact change + global hard registers, nor do we examine ASM_CLOBBERS at the tree + level, and so miss variable changes that might imply. All around, + it seems safest to not do too much optimization with these at the + tree level at all. We'll have to rely on the rtl optimizers to + clean this up, as there we've got all the appropriate bits exposed. */ + if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t)) + return false; + + /* Complex and vector values must have been put into SSA-like form. + That is, no assignments to the individual components. */ + if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE + || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE) + return DECL_GIMPLE_REG_P (t); + + return true; +} + + +/* Returns true if T is a GIMPLE formal temporary variable. */ + +bool +is_gimple_formal_tmp_var (tree t) +{ + if (TREE_CODE (t) == SSA_NAME) + return true; + + return TREE_CODE (t) == VAR_DECL && DECL_GIMPLE_FORMAL_TEMP_P (t); +} + +/* Returns true if T is a GIMPLE formal temporary register variable. */ + +bool +is_gimple_formal_tmp_reg (tree t) +{ + /* The intent of this is to get hold of a value that won't change. + An SSA_NAME qualifies no matter if its of a user variable or not. */ + if (TREE_CODE (t) == SSA_NAME) + return true; + + /* We don't know the lifetime characteristics of user variables. */ + if (!is_gimple_formal_tmp_var (t)) + return false; + + /* Finally, it must be capable of being placed in a register. */ + return is_gimple_reg (t); +} + +/* Return true if T is a GIMPLE variable whose address is not needed. */ + +bool +is_gimple_non_addressable (tree t) +{ + if (TREE_CODE (t) == SSA_NAME) + t = SSA_NAME_VAR (t); + + return (is_gimple_variable (t) && ! needs_to_live_in_memory (t)); +} + +/* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */ + +bool +is_gimple_val (tree t) +{ + /* Make loads from volatiles and memory vars explicit. */ + if (is_gimple_variable (t) + && is_gimple_reg_type (TREE_TYPE (t)) + && !is_gimple_reg (t)) + return false; + + /* FIXME make these decls. That can happen only when we expose the + entire landing-pad construct at the tree level. */ + if (TREE_CODE (t) == EXC_PTR_EXPR || TREE_CODE (t) == FILTER_EXPR) + return true; + + return (is_gimple_variable (t) || is_gimple_min_invariant (t)); +} + +/* Similarly, but accept hard registers as inputs to asm statements. */ + +bool +is_gimple_asm_val (tree t) +{ + if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t)) + return true; + + return is_gimple_val (t); +} + +/* Return true if T is a GIMPLE minimal lvalue. */ + +bool +is_gimple_min_lval (tree t) +{ + return (is_gimple_id (t) || TREE_CODE (t) == INDIRECT_REF); +} + +/* Return true if T is a typecast operation. */ + +bool +is_gimple_cast (tree t) +{ + return (CONVERT_EXPR_P (t) + || TREE_CODE (t) == FIX_TRUNC_EXPR); +} + +/* Return true if T is a valid function operand of a CALL_EXPR. */ + +bool +is_gimple_call_addr (tree t) +{ + return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t)); +} + +/* If T makes a function call, return the corresponding CALL_EXPR operand. + Otherwise, return NULL_TREE. */ + +tree +get_call_expr_in (tree t) +{ + if (TREE_CODE (t) == MODIFY_EXPR) + t = TREE_OPERAND (t, 1); + if (TREE_CODE (t) == WITH_SIZE_EXPR) + t = TREE_OPERAND (t, 0); + if (TREE_CODE (t) == CALL_EXPR) + return t; + return NULL_TREE; +} + + +/* Given a memory reference expression T, return its base address. + The base address of a memory reference expression is the main + object being referenced. For instance, the base address for + 'array[i].fld[j]' is 'array'. You can think of this as stripping + away the offset part from a memory address. + + This function calls handled_component_p to strip away all the inner + parts of the memory reference until it reaches the base object. */ + +tree +get_base_address (tree t) +{ + while (handled_component_p (t)) + t = TREE_OPERAND (t, 0); + + if (SSA_VAR_P (t) + || TREE_CODE (t) == STRING_CST + || TREE_CODE (t) == CONSTRUCTOR + || INDIRECT_REF_P (t)) + return t; + else + return NULL_TREE; +} + +void +recalculate_side_effects (tree t) +{ + enum tree_code code = TREE_CODE (t); + int len = TREE_OPERAND_LENGTH (t); + int i; + + switch (TREE_CODE_CLASS (code)) + { + case tcc_expression: + switch (code) + { + case INIT_EXPR: + case MODIFY_EXPR: + case VA_ARG_EXPR: + case PREDECREMENT_EXPR: + case PREINCREMENT_EXPR: + case POSTDECREMENT_EXPR: + case POSTINCREMENT_EXPR: + /* All of these have side-effects, no matter what their + operands are. */ + return; + + default: + break; + } + /* Fall through. */ + + case tcc_comparison: /* a comparison expression */ + case tcc_unary: /* a unary arithmetic expression */ + case tcc_binary: /* a binary arithmetic expression */ + case tcc_reference: /* a reference */ + case tcc_vl_exp: /* a function call */ + TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t); + for (i = 0; i < len; ++i) + { + tree op = TREE_OPERAND (t, i); + if (op && TREE_SIDE_EFFECTS (op)) + TREE_SIDE_EFFECTS (t) = 1; + } + break; + + case tcc_constant: + /* No side-effects. */ + return; + + default: + gcc_unreachable (); + } +} + +/* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns + a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if + we failed to create one. */ + +tree +canonicalize_cond_expr_cond (tree t) +{ + /* For (bool)x use x != 0. */ + if (TREE_CODE (t) == NOP_EXPR + && TREE_TYPE (t) == boolean_type_node) + { + tree top0 = TREE_OPERAND (t, 0); + t = build2 (NE_EXPR, TREE_TYPE (t), + top0, build_int_cst (TREE_TYPE (top0), 0)); + } + /* For !x use x == 0. */ + else if (TREE_CODE (t) == TRUTH_NOT_EXPR) + { + tree top0 = TREE_OPERAND (t, 0); + t = build2 (EQ_EXPR, TREE_TYPE (t), + top0, build_int_cst (TREE_TYPE (top0), 0)); + } + /* For cmp ? 1 : 0 use cmp. */ + else if (TREE_CODE (t) == COND_EXPR + && COMPARISON_CLASS_P (TREE_OPERAND (t, 0)) + && integer_onep (TREE_OPERAND (t, 1)) + && integer_zerop (TREE_OPERAND (t, 2))) + { + tree top0 = TREE_OPERAND (t, 0); + t = build2 (TREE_CODE (top0), TREE_TYPE (t), + TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1)); + } + + if (is_gimple_condexpr (t)) + return t; + + return NULL_TREE; +} + +/* Build a GIMPLE_CALL identical to STMT but skipping the arguments in + the positions marked by the set ARGS_TO_SKIP. */ + +gimple +gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip) +{ + int i; + tree fn = gimple_call_fn (stmt); + int nargs = gimple_call_num_args (stmt); + VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs); + gimple new_stmt; + + for (i = 0; i < nargs; i++) + if (!bitmap_bit_p (args_to_skip, i)) + VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i)); + + new_stmt = gimple_build_call_vec (fn, vargs); + VEC_free (tree, heap, vargs); + if (gimple_call_lhs (stmt)) + gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt)); + + gimple_set_block (new_stmt, gimple_block (stmt)); + if (gimple_has_location (stmt)) + gimple_set_location (new_stmt, gimple_location (stmt)); + + /* Carry all the flags to the new GIMPLE_CALL. */ + gimple_call_set_chain (new_stmt, gimple_call_chain (stmt)); + gimple_call_set_tail (new_stmt, gimple_call_tail_p (stmt)); + gimple_call_set_cannot_inline (new_stmt, gimple_call_cannot_inline_p (stmt)); + gimple_call_set_return_slot_opt (new_stmt, gimple_call_return_slot_opt_p (stmt)); + gimple_call_set_from_thunk (new_stmt, gimple_call_from_thunk_p (stmt)); + gimple_call_set_va_arg_pack (new_stmt, gimple_call_va_arg_pack_p (stmt)); + return new_stmt; +} + +#include "gt-gimple.h"