Mercurial > hg > CbC > CbC_gcc
diff gcc/postreload.c @ 0:a06113de4d67
first commit
author | kent <kent@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Jul 2009 14:47:48 +0900 |
parents | |
children | 77e2b8dfacca |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gcc/postreload.c Fri Jul 17 14:47:48 2009 +0900 @@ -0,0 +1,1613 @@ +/* Perform simple optimizations to clean up the result of reload. + Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, + 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 + Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" + +#include "machmode.h" +#include "hard-reg-set.h" +#include "rtl.h" +#include "tm_p.h" +#include "obstack.h" +#include "insn-config.h" +#include "flags.h" +#include "function.h" +#include "expr.h" +#include "optabs.h" +#include "regs.h" +#include "basic-block.h" +#include "reload.h" +#include "recog.h" +#include "output.h" +#include "cselib.h" +#include "real.h" +#include "toplev.h" +#include "except.h" +#include "tree.h" +#include "timevar.h" +#include "tree-pass.h" +#include "df.h" +#include "dbgcnt.h" + +static int reload_cse_noop_set_p (rtx); +static void reload_cse_simplify (rtx, rtx); +static void reload_cse_regs_1 (rtx); +static int reload_cse_simplify_set (rtx, rtx); +static int reload_cse_simplify_operands (rtx, rtx); + +static void reload_combine (void); +static void reload_combine_note_use (rtx *, rtx); +static void reload_combine_note_store (rtx, const_rtx, void *); + +static void reload_cse_move2add (rtx); +static void move2add_note_store (rtx, const_rtx, void *); + +/* Call cse / combine like post-reload optimization phases. + FIRST is the first instruction. */ +void +reload_cse_regs (rtx first ATTRIBUTE_UNUSED) +{ + reload_cse_regs_1 (first); + reload_combine (); + reload_cse_move2add (first); + if (flag_expensive_optimizations) + reload_cse_regs_1 (first); +} + +/* See whether a single set SET is a noop. */ +static int +reload_cse_noop_set_p (rtx set) +{ + if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set))) + return 0; + + return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set)); +} + +/* Try to simplify INSN. */ +static void +reload_cse_simplify (rtx insn, rtx testreg) +{ + rtx body = PATTERN (insn); + + if (GET_CODE (body) == SET) + { + int count = 0; + + /* Simplify even if we may think it is a no-op. + We may think a memory load of a value smaller than WORD_SIZE + is redundant because we haven't taken into account possible + implicit extension. reload_cse_simplify_set() will bring + this out, so it's safer to simplify before we delete. */ + count += reload_cse_simplify_set (body, insn); + + if (!count && reload_cse_noop_set_p (body)) + { + rtx value = SET_DEST (body); + if (REG_P (value) + && ! REG_FUNCTION_VALUE_P (value)) + value = 0; + delete_insn_and_edges (insn); + return; + } + + if (count > 0) + apply_change_group (); + else + reload_cse_simplify_operands (insn, testreg); + } + else if (GET_CODE (body) == PARALLEL) + { + int i; + int count = 0; + rtx value = NULL_RTX; + + /* Registers mentioned in the clobber list for an asm cannot be reused + within the body of the asm. Invalidate those registers now so that + we don't try to substitute values for them. */ + if (asm_noperands (body) >= 0) + { + for (i = XVECLEN (body, 0) - 1; i >= 0; --i) + { + rtx part = XVECEXP (body, 0, i); + if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0))) + cselib_invalidate_rtx (XEXP (part, 0)); + } + } + + /* If every action in a PARALLEL is a noop, we can delete + the entire PARALLEL. */ + for (i = XVECLEN (body, 0) - 1; i >= 0; --i) + { + rtx part = XVECEXP (body, 0, i); + if (GET_CODE (part) == SET) + { + if (! reload_cse_noop_set_p (part)) + break; + if (REG_P (SET_DEST (part)) + && REG_FUNCTION_VALUE_P (SET_DEST (part))) + { + if (value) + break; + value = SET_DEST (part); + } + } + else if (GET_CODE (part) != CLOBBER) + break; + } + + if (i < 0) + { + delete_insn_and_edges (insn); + /* We're done with this insn. */ + return; + } + + /* It's not a no-op, but we can try to simplify it. */ + for (i = XVECLEN (body, 0) - 1; i >= 0; --i) + if (GET_CODE (XVECEXP (body, 0, i)) == SET) + count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn); + + if (count > 0) + apply_change_group (); + else + reload_cse_simplify_operands (insn, testreg); + } +} + +/* Do a very simple CSE pass over the hard registers. + + This function detects no-op moves where we happened to assign two + different pseudo-registers to the same hard register, and then + copied one to the other. Reload will generate a useless + instruction copying a register to itself. + + This function also detects cases where we load a value from memory + into two different registers, and (if memory is more expensive than + registers) changes it to simply copy the first register into the + second register. + + Another optimization is performed that scans the operands of each + instruction to see whether the value is already available in a + hard register. It then replaces the operand with the hard register + if possible, much like an optional reload would. */ + +static void +reload_cse_regs_1 (rtx first) +{ + rtx insn; + rtx testreg = gen_rtx_REG (VOIDmode, -1); + + cselib_init (true); + init_alias_analysis (); + + for (insn = first; insn; insn = NEXT_INSN (insn)) + { + if (INSN_P (insn)) + reload_cse_simplify (insn, testreg); + + cselib_process_insn (insn); + } + + /* Clean up. */ + end_alias_analysis (); + cselib_finish (); +} + +/* Try to simplify a single SET instruction. SET is the set pattern. + INSN is the instruction it came from. + This function only handles one case: if we set a register to a value + which is not a register, we try to find that value in some other register + and change the set into a register copy. */ + +static int +reload_cse_simplify_set (rtx set, rtx insn) +{ + int did_change = 0; + int dreg; + rtx src; + enum reg_class dclass; + int old_cost; + cselib_val *val; + struct elt_loc_list *l; +#ifdef LOAD_EXTEND_OP + enum rtx_code extend_op = UNKNOWN; +#endif + bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)); + + dreg = true_regnum (SET_DEST (set)); + if (dreg < 0) + return 0; + + src = SET_SRC (set); + if (side_effects_p (src) || true_regnum (src) >= 0) + return 0; + + dclass = REGNO_REG_CLASS (dreg); + +#ifdef LOAD_EXTEND_OP + /* When replacing a memory with a register, we need to honor assumptions + that combine made wrt the contents of sign bits. We'll do this by + generating an extend instruction instead of a reg->reg copy. Thus + the destination must be a register that we can widen. */ + if (MEM_P (src) + && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD + && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN + && !REG_P (SET_DEST (set))) + return 0; +#endif + + val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0); + if (! val) + return 0; + + /* If memory loads are cheaper than register copies, don't change them. */ + if (MEM_P (src)) + old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1); + else if (REG_P (src)) + old_cost = REGISTER_MOVE_COST (GET_MODE (src), + REGNO_REG_CLASS (REGNO (src)), dclass); + else + old_cost = rtx_cost (src, SET, speed); + + for (l = val->locs; l; l = l->next) + { + rtx this_rtx = l->loc; + int this_cost; + + if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0)) + { +#ifdef LOAD_EXTEND_OP + if (extend_op != UNKNOWN) + { + HOST_WIDE_INT this_val; + + /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other + constants, such as SYMBOL_REF, cannot be extended. */ + if (GET_CODE (this_rtx) != CONST_INT) + continue; + + this_val = INTVAL (this_rtx); + switch (extend_op) + { + case ZERO_EXTEND: + this_val &= GET_MODE_MASK (GET_MODE (src)); + break; + case SIGN_EXTEND: + /* ??? In theory we're already extended. */ + if (this_val == trunc_int_for_mode (this_val, GET_MODE (src))) + break; + default: + gcc_unreachable (); + } + this_rtx = GEN_INT (this_val); + } +#endif + this_cost = rtx_cost (this_rtx, SET, speed); + } + else if (REG_P (this_rtx)) + { +#ifdef LOAD_EXTEND_OP + if (extend_op != UNKNOWN) + { + this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx); + this_cost = rtx_cost (this_rtx, SET, speed); + } + else +#endif + this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx), + REGNO_REG_CLASS (REGNO (this_rtx)), + dclass); + } + else + continue; + + /* If equal costs, prefer registers over anything else. That + tends to lead to smaller instructions on some machines. */ + if (this_cost < old_cost + || (this_cost == old_cost + && REG_P (this_rtx) + && !REG_P (SET_SRC (set)))) + { +#ifdef LOAD_EXTEND_OP + if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD + && extend_op != UNKNOWN +#ifdef CANNOT_CHANGE_MODE_CLASS + && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)), + word_mode, + REGNO_REG_CLASS (REGNO (SET_DEST (set)))) +#endif + ) + { + rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set))); + ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set)); + validate_change (insn, &SET_DEST (set), wide_dest, 1); + } +#endif + + validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1); + old_cost = this_cost, did_change = 1; + } + } + + return did_change; +} + +/* Try to replace operands in INSN with equivalent values that are already + in registers. This can be viewed as optional reloading. + + For each non-register operand in the insn, see if any hard regs are + known to be equivalent to that operand. Record the alternatives which + can accept these hard registers. Among all alternatives, select the + ones which are better or equal to the one currently matching, where + "better" is in terms of '?' and '!' constraints. Among the remaining + alternatives, select the one which replaces most operands with + hard registers. */ + +static int +reload_cse_simplify_operands (rtx insn, rtx testreg) +{ + int i, j; + + /* For each operand, all registers that are equivalent to it. */ + HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS]; + + const char *constraints[MAX_RECOG_OPERANDS]; + + /* Vector recording how bad an alternative is. */ + int *alternative_reject; + /* Vector recording how many registers can be introduced by choosing + this alternative. */ + int *alternative_nregs; + /* Array of vectors recording, for each operand and each alternative, + which hard register to substitute, or -1 if the operand should be + left as it is. */ + int *op_alt_regno[MAX_RECOG_OPERANDS]; + /* Array of alternatives, sorted in order of decreasing desirability. */ + int *alternative_order; + + extract_insn (insn); + + if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0) + return 0; + + /* Figure out which alternative currently matches. */ + if (! constrain_operands (1)) + fatal_insn_not_found (insn); + + alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives); + alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives); + alternative_order = XALLOCAVEC (int, recog_data.n_alternatives); + memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int)); + memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int)); + + /* For each operand, find out which regs are equivalent. */ + for (i = 0; i < recog_data.n_operands; i++) + { + cselib_val *v; + struct elt_loc_list *l; + rtx op; + enum machine_mode mode; + + CLEAR_HARD_REG_SET (equiv_regs[i]); + + /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem + right, so avoid the problem here. Likewise if we have a constant + and the insn pattern doesn't tell us the mode we need. */ + if (LABEL_P (recog_data.operand[i]) + || (CONSTANT_P (recog_data.operand[i]) + && recog_data.operand_mode[i] == VOIDmode)) + continue; + + op = recog_data.operand[i]; + mode = GET_MODE (op); +#ifdef LOAD_EXTEND_OP + if (MEM_P (op) + && GET_MODE_BITSIZE (mode) < BITS_PER_WORD + && LOAD_EXTEND_OP (mode) != UNKNOWN) + { + rtx set = single_set (insn); + + /* We might have multiple sets, some of which do implicit + extension. Punt on this for now. */ + if (! set) + continue; + /* If the destination is also a MEM or a STRICT_LOW_PART, no + extension applies. + Also, if there is an explicit extension, we don't have to + worry about an implicit one. */ + else if (MEM_P (SET_DEST (set)) + || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART + || GET_CODE (SET_SRC (set)) == ZERO_EXTEND + || GET_CODE (SET_SRC (set)) == SIGN_EXTEND) + ; /* Continue ordinary processing. */ +#ifdef CANNOT_CHANGE_MODE_CLASS + /* If the register cannot change mode to word_mode, it follows that + it cannot have been used in word_mode. */ + else if (REG_P (SET_DEST (set)) + && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)), + word_mode, + REGNO_REG_CLASS (REGNO (SET_DEST (set))))) + ; /* Continue ordinary processing. */ +#endif + /* If this is a straight load, make the extension explicit. */ + else if (REG_P (SET_DEST (set)) + && recog_data.n_operands == 2 + && SET_SRC (set) == op + && SET_DEST (set) == recog_data.operand[1-i]) + { + validate_change (insn, recog_data.operand_loc[i], + gen_rtx_fmt_e (LOAD_EXTEND_OP (mode), + word_mode, op), + 1); + validate_change (insn, recog_data.operand_loc[1-i], + gen_rtx_REG (word_mode, REGNO (SET_DEST (set))), + 1); + if (! apply_change_group ()) + return 0; + return reload_cse_simplify_operands (insn, testreg); + } + else + /* ??? There might be arithmetic operations with memory that are + safe to optimize, but is it worth the trouble? */ + continue; + } +#endif /* LOAD_EXTEND_OP */ + v = cselib_lookup (op, recog_data.operand_mode[i], 0); + if (! v) + continue; + + for (l = v->locs; l; l = l->next) + if (REG_P (l->loc)) + SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc)); + } + + for (i = 0; i < recog_data.n_operands; i++) + { + enum machine_mode mode; + int regno; + const char *p; + + op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives); + for (j = 0; j < recog_data.n_alternatives; j++) + op_alt_regno[i][j] = -1; + + p = constraints[i] = recog_data.constraints[i]; + mode = recog_data.operand_mode[i]; + + /* Add the reject values for each alternative given by the constraints + for this operand. */ + j = 0; + while (*p != '\0') + { + char c = *p++; + if (c == ',') + j++; + else if (c == '?') + alternative_reject[j] += 3; + else if (c == '!') + alternative_reject[j] += 300; + } + + /* We won't change operands which are already registers. We + also don't want to modify output operands. */ + regno = true_regnum (recog_data.operand[i]); + if (regno >= 0 + || constraints[i][0] == '=' + || constraints[i][0] == '+') + continue; + + for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) + { + int rclass = (int) NO_REGS; + + if (! TEST_HARD_REG_BIT (equiv_regs[i], regno)) + continue; + + SET_REGNO (testreg, regno); + PUT_MODE (testreg, mode); + + /* We found a register equal to this operand. Now look for all + alternatives that can accept this register and have not been + assigned a register they can use yet. */ + j = 0; + p = constraints[i]; + for (;;) + { + char c = *p; + + switch (c) + { + case '=': case '+': case '?': + case '#': case '&': case '!': + case '*': case '%': + case '0': case '1': case '2': case '3': case '4': + case '5': case '6': case '7': case '8': case '9': + case '<': case '>': case 'V': case 'o': + case 'E': case 'F': case 'G': case 'H': + case 's': case 'i': case 'n': + case 'I': case 'J': case 'K': case 'L': + case 'M': case 'N': case 'O': case 'P': + case 'p': case 'X': case TARGET_MEM_CONSTRAINT: + /* These don't say anything we care about. */ + break; + + case 'g': case 'r': + rclass = reg_class_subunion[(int) rclass][(int) GENERAL_REGS]; + break; + + default: + rclass + = (reg_class_subunion + [(int) rclass] + [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]); + break; + + case ',': case '\0': + /* See if REGNO fits this alternative, and set it up as the + replacement register if we don't have one for this + alternative yet and the operand being replaced is not + a cheap CONST_INT. */ + if (op_alt_regno[i][j] == -1 + && reg_fits_class_p (testreg, rclass, 0, mode) + && (GET_CODE (recog_data.operand[i]) != CONST_INT + || (rtx_cost (recog_data.operand[i], SET, + optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn))) + > rtx_cost (testreg, SET, + optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))))) + { + alternative_nregs[j]++; + op_alt_regno[i][j] = regno; + } + j++; + rclass = (int) NO_REGS; + break; + } + p += CONSTRAINT_LEN (c, p); + + if (c == '\0') + break; + } + } + } + + /* Record all alternatives which are better or equal to the currently + matching one in the alternative_order array. */ + for (i = j = 0; i < recog_data.n_alternatives; i++) + if (alternative_reject[i] <= alternative_reject[which_alternative]) + alternative_order[j++] = i; + recog_data.n_alternatives = j; + + /* Sort it. Given a small number of alternatives, a dumb algorithm + won't hurt too much. */ + for (i = 0; i < recog_data.n_alternatives - 1; i++) + { + int best = i; + int best_reject = alternative_reject[alternative_order[i]]; + int best_nregs = alternative_nregs[alternative_order[i]]; + int tmp; + + for (j = i + 1; j < recog_data.n_alternatives; j++) + { + int this_reject = alternative_reject[alternative_order[j]]; + int this_nregs = alternative_nregs[alternative_order[j]]; + + if (this_reject < best_reject + || (this_reject == best_reject && this_nregs > best_nregs)) + { + best = j; + best_reject = this_reject; + best_nregs = this_nregs; + } + } + + tmp = alternative_order[best]; + alternative_order[best] = alternative_order[i]; + alternative_order[i] = tmp; + } + + /* Substitute the operands as determined by op_alt_regno for the best + alternative. */ + j = alternative_order[0]; + + for (i = 0; i < recog_data.n_operands; i++) + { + enum machine_mode mode = recog_data.operand_mode[i]; + if (op_alt_regno[i][j] == -1) + continue; + + validate_change (insn, recog_data.operand_loc[i], + gen_rtx_REG (mode, op_alt_regno[i][j]), 1); + } + + for (i = recog_data.n_dups - 1; i >= 0; i--) + { + int op = recog_data.dup_num[i]; + enum machine_mode mode = recog_data.operand_mode[op]; + + if (op_alt_regno[op][j] == -1) + continue; + + validate_change (insn, recog_data.dup_loc[i], + gen_rtx_REG (mode, op_alt_regno[op][j]), 1); + } + + return apply_change_group (); +} + +/* If reload couldn't use reg+reg+offset addressing, try to use reg+reg + addressing now. + This code might also be useful when reload gave up on reg+reg addressing + because of clashes between the return register and INDEX_REG_CLASS. */ + +/* The maximum number of uses of a register we can keep track of to + replace them with reg+reg addressing. */ +#define RELOAD_COMBINE_MAX_USES 6 + +/* INSN is the insn where a register has been used, and USEP points to the + location of the register within the rtl. */ +struct reg_use { rtx insn, *usep; }; + +/* If the register is used in some unknown fashion, USE_INDEX is negative. + If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID + indicates where it becomes live again. + Otherwise, USE_INDEX is the index of the last encountered use of the + register (which is first among these we have seen since we scan backwards), + OFFSET contains the constant offset that is added to the register in + all encountered uses, and USE_RUID indicates the first encountered, i.e. + last, of these uses. + STORE_RUID is always meaningful if we only want to use a value in a + register in a different place: it denotes the next insn in the insn + stream (i.e. the last encountered) that sets or clobbers the register. */ +static struct + { + struct reg_use reg_use[RELOAD_COMBINE_MAX_USES]; + int use_index; + rtx offset; + int store_ruid; + int use_ruid; + } reg_state[FIRST_PSEUDO_REGISTER]; + +/* Reverse linear uid. This is increased in reload_combine while scanning + the instructions from last to first. It is used to set last_label_ruid + and the store_ruid / use_ruid fields in reg_state. */ +static int reload_combine_ruid; + +#define LABEL_LIVE(LABEL) \ + (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno]) + +static void +reload_combine (void) +{ + rtx insn, set; + int first_index_reg = -1; + int last_index_reg = 0; + int i; + basic_block bb; + unsigned int r; + int last_label_ruid; + int min_labelno, n_labels; + HARD_REG_SET ever_live_at_start, *label_live; + + /* If reg+reg can be used in offsetable memory addresses, the main chunk of + reload has already used it where appropriate, so there is no use in + trying to generate it now. */ + if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS) + return; + + /* To avoid wasting too much time later searching for an index register, + determine the minimum and maximum index register numbers. */ + for (r = 0; r < FIRST_PSEUDO_REGISTER; r++) + if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r)) + { + if (first_index_reg == -1) + first_index_reg = r; + + last_index_reg = r; + } + + /* If no index register is available, we can quit now. */ + if (first_index_reg == -1) + return; + + /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime + information is a bit fuzzy immediately after reload, but it's + still good enough to determine which registers are live at a jump + destination. */ + min_labelno = get_first_label_num (); + n_labels = max_label_num () - min_labelno; + label_live = XNEWVEC (HARD_REG_SET, n_labels); + CLEAR_HARD_REG_SET (ever_live_at_start); + + FOR_EACH_BB_REVERSE (bb) + { + insn = BB_HEAD (bb); + if (LABEL_P (insn)) + { + HARD_REG_SET live; + bitmap live_in = df_get_live_in (bb); + + REG_SET_TO_HARD_REG_SET (live, live_in); + compute_use_by_pseudos (&live, live_in); + COPY_HARD_REG_SET (LABEL_LIVE (insn), live); + IOR_HARD_REG_SET (ever_live_at_start, live); + } + } + + /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */ + last_label_ruid = reload_combine_ruid = 0; + for (r = 0; r < FIRST_PSEUDO_REGISTER; r++) + { + reg_state[r].store_ruid = reload_combine_ruid; + if (fixed_regs[r]) + reg_state[r].use_index = -1; + else + reg_state[r].use_index = RELOAD_COMBINE_MAX_USES; + } + + for (insn = get_last_insn (); insn; insn = PREV_INSN (insn)) + { + rtx note; + + /* We cannot do our optimization across labels. Invalidating all the use + information we have would be costly, so we just note where the label + is and then later disable any optimization that would cross it. */ + if (LABEL_P (insn)) + last_label_ruid = reload_combine_ruid; + else if (BARRIER_P (insn)) + for (r = 0; r < FIRST_PSEUDO_REGISTER; r++) + if (! fixed_regs[r]) + reg_state[r].use_index = RELOAD_COMBINE_MAX_USES; + + if (! INSN_P (insn)) + continue; + + reload_combine_ruid++; + + /* Look for (set (REGX) (CONST_INT)) + (set (REGX) (PLUS (REGX) (REGY))) + ... + ... (MEM (REGX)) ... + and convert it to + (set (REGZ) (CONST_INT)) + ... + ... (MEM (PLUS (REGZ) (REGY)))... . + + First, check that we have (set (REGX) (PLUS (REGX) (REGY))) + and that we know all uses of REGX before it dies. + Also, explicitly check that REGX != REGY; our life information + does not yet show whether REGY changes in this insn. */ + set = single_set (insn); + if (set != NULL_RTX + && REG_P (SET_DEST (set)) + && (hard_regno_nregs[REGNO (SET_DEST (set))] + [GET_MODE (SET_DEST (set))] + == 1) + && GET_CODE (SET_SRC (set)) == PLUS + && REG_P (XEXP (SET_SRC (set), 1)) + && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set)) + && !rtx_equal_p (XEXP (SET_SRC (set), 1), SET_DEST (set)) + && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid) + { + rtx reg = SET_DEST (set); + rtx plus = SET_SRC (set); + rtx base = XEXP (plus, 1); + rtx prev = prev_nonnote_insn (insn); + rtx prev_set = prev ? single_set (prev) : NULL_RTX; + unsigned int regno = REGNO (reg); + rtx const_reg = NULL_RTX; + rtx reg_sum = NULL_RTX; + + /* Now, we need an index register. + We'll set index_reg to this index register, const_reg to the + register that is to be loaded with the constant + (denoted as REGZ in the substitution illustration above), + and reg_sum to the register-register that we want to use to + substitute uses of REG (typically in MEMs) with. + First check REG and BASE for being index registers; + we can use them even if they are not dead. */ + if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno) + || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], + REGNO (base))) + { + const_reg = reg; + reg_sum = plus; + } + else + { + /* Otherwise, look for a free index register. Since we have + checked above that neither REG nor BASE are index registers, + if we find anything at all, it will be different from these + two registers. */ + for (i = first_index_reg; i <= last_index_reg; i++) + { + if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], + i) + && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES + && reg_state[i].store_ruid <= reg_state[regno].use_ruid + && hard_regno_nregs[i][GET_MODE (reg)] == 1) + { + rtx index_reg = gen_rtx_REG (GET_MODE (reg), i); + + const_reg = index_reg; + reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base); + break; + } + } + } + + /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that + (REGY), i.e. BASE, is not clobbered before the last use we'll + create. */ + if (prev_set != 0 + && GET_CODE (SET_SRC (prev_set)) == CONST_INT + && rtx_equal_p (SET_DEST (prev_set), reg) + && reg_state[regno].use_index >= 0 + && (reg_state[REGNO (base)].store_ruid + <= reg_state[regno].use_ruid) + && reg_sum != 0) + { + int i; + + /* Change destination register and, if necessary, the + constant value in PREV, the constant loading instruction. */ + validate_change (prev, &SET_DEST (prev_set), const_reg, 1); + if (reg_state[regno].offset != const0_rtx) + validate_change (prev, + &SET_SRC (prev_set), + GEN_INT (INTVAL (SET_SRC (prev_set)) + + INTVAL (reg_state[regno].offset)), + 1); + + /* Now for every use of REG that we have recorded, replace REG + with REG_SUM. */ + for (i = reg_state[regno].use_index; + i < RELOAD_COMBINE_MAX_USES; i++) + validate_unshare_change (reg_state[regno].reg_use[i].insn, + reg_state[regno].reg_use[i].usep, + /* Each change must have its own + replacement. */ + reg_sum, 1); + + if (apply_change_group ()) + { + /* Delete the reg-reg addition. */ + delete_insn (insn); + + if (reg_state[regno].offset != const0_rtx) + /* Previous REG_EQUIV / REG_EQUAL notes for PREV + are now invalid. */ + remove_reg_equal_equiv_notes (prev); + + reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES; + reg_state[REGNO (const_reg)].store_ruid + = reload_combine_ruid; + continue; + } + } + } + + note_stores (PATTERN (insn), reload_combine_note_store, NULL); + + if (CALL_P (insn)) + { + rtx link; + + for (r = 0; r < FIRST_PSEUDO_REGISTER; r++) + if (call_used_regs[r]) + { + reg_state[r].use_index = RELOAD_COMBINE_MAX_USES; + reg_state[r].store_ruid = reload_combine_ruid; + } + + for (link = CALL_INSN_FUNCTION_USAGE (insn); link; + link = XEXP (link, 1)) + { + rtx usage_rtx = XEXP (XEXP (link, 0), 0); + if (REG_P (usage_rtx)) + { + unsigned int i; + unsigned int start_reg = REGNO (usage_rtx); + unsigned int num_regs = + hard_regno_nregs[start_reg][GET_MODE (usage_rtx)]; + unsigned int end_reg = start_reg + num_regs - 1; + for (i = start_reg; i <= end_reg; i++) + if (GET_CODE (XEXP (link, 0)) == CLOBBER) + { + reg_state[i].use_index = RELOAD_COMBINE_MAX_USES; + reg_state[i].store_ruid = reload_combine_ruid; + } + else + reg_state[i].use_index = -1; + } + } + + } + else if (JUMP_P (insn) + && GET_CODE (PATTERN (insn)) != RETURN) + { + /* Non-spill registers might be used at the call destination in + some unknown fashion, so we have to mark the unknown use. */ + HARD_REG_SET *live; + + if ((condjump_p (insn) || condjump_in_parallel_p (insn)) + && JUMP_LABEL (insn)) + live = &LABEL_LIVE (JUMP_LABEL (insn)); + else + live = &ever_live_at_start; + + for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i) + if (TEST_HARD_REG_BIT (*live, i)) + reg_state[i].use_index = -1; + } + + reload_combine_note_use (&PATTERN (insn), insn); + for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) + { + if (REG_NOTE_KIND (note) == REG_INC + && REG_P (XEXP (note, 0))) + { + int regno = REGNO (XEXP (note, 0)); + + reg_state[regno].store_ruid = reload_combine_ruid; + reg_state[regno].use_index = -1; + } + } + } + + free (label_live); +} + +/* Check if DST is a register or a subreg of a register; if it is, + update reg_state[regno].store_ruid and reg_state[regno].use_index + accordingly. Called via note_stores from reload_combine. */ + +static void +reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED) +{ + int regno = 0; + int i; + enum machine_mode mode = GET_MODE (dst); + + if (GET_CODE (dst) == SUBREG) + { + regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)), + GET_MODE (SUBREG_REG (dst)), + SUBREG_BYTE (dst), + GET_MODE (dst)); + dst = SUBREG_REG (dst); + } + if (!REG_P (dst)) + return; + regno += REGNO (dst); + + /* note_stores might have stripped a STRICT_LOW_PART, so we have to be + careful with registers / register parts that are not full words. + Similarly for ZERO_EXTRACT. */ + if (GET_CODE (set) != SET + || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT + || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART) + { + for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--) + { + reg_state[i].use_index = -1; + reg_state[i].store_ruid = reload_combine_ruid; + } + } + else + { + for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--) + { + reg_state[i].store_ruid = reload_combine_ruid; + reg_state[i].use_index = RELOAD_COMBINE_MAX_USES; + } + } +} + +/* XP points to a piece of rtl that has to be checked for any uses of + registers. + *XP is the pattern of INSN, or a part of it. + Called from reload_combine, and recursively by itself. */ +static void +reload_combine_note_use (rtx *xp, rtx insn) +{ + rtx x = *xp; + enum rtx_code code = x->code; + const char *fmt; + int i, j; + rtx offset = const0_rtx; /* For the REG case below. */ + + switch (code) + { + case SET: + if (REG_P (SET_DEST (x))) + { + reload_combine_note_use (&SET_SRC (x), insn); + return; + } + break; + + case USE: + /* If this is the USE of a return value, we can't change it. */ + if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0))) + { + /* Mark the return register as used in an unknown fashion. */ + rtx reg = XEXP (x, 0); + int regno = REGNO (reg); + int nregs = hard_regno_nregs[regno][GET_MODE (reg)]; + + while (--nregs >= 0) + reg_state[regno + nregs].use_index = -1; + return; + } + break; + + case CLOBBER: + if (REG_P (SET_DEST (x))) + { + /* No spurious CLOBBERs of pseudo registers may remain. */ + gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER); + return; + } + break; + + case PLUS: + /* We are interested in (plus (reg) (const_int)) . */ + if (!REG_P (XEXP (x, 0)) + || GET_CODE (XEXP (x, 1)) != CONST_INT) + break; + offset = XEXP (x, 1); + x = XEXP (x, 0); + /* Fall through. */ + case REG: + { + int regno = REGNO (x); + int use_index; + int nregs; + + /* No spurious USEs of pseudo registers may remain. */ + gcc_assert (regno < FIRST_PSEUDO_REGISTER); + + nregs = hard_regno_nregs[regno][GET_MODE (x)]; + + /* We can't substitute into multi-hard-reg uses. */ + if (nregs > 1) + { + while (--nregs >= 0) + reg_state[regno + nregs].use_index = -1; + return; + } + + /* If this register is already used in some unknown fashion, we + can't do anything. + If we decrement the index from zero to -1, we can't store more + uses, so this register becomes used in an unknown fashion. */ + use_index = --reg_state[regno].use_index; + if (use_index < 0) + return; + + if (use_index != RELOAD_COMBINE_MAX_USES - 1) + { + /* We have found another use for a register that is already + used later. Check if the offsets match; if not, mark the + register as used in an unknown fashion. */ + if (! rtx_equal_p (offset, reg_state[regno].offset)) + { + reg_state[regno].use_index = -1; + return; + } + } + else + { + /* This is the first use of this register we have seen since we + marked it as dead. */ + reg_state[regno].offset = offset; + reg_state[regno].use_ruid = reload_combine_ruid; + } + reg_state[regno].reg_use[use_index].insn = insn; + reg_state[regno].reg_use[use_index].usep = xp; + return; + } + + default: + break; + } + + /* Recursively process the components of X. */ + fmt = GET_RTX_FORMAT (code); + for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) + { + if (fmt[i] == 'e') + reload_combine_note_use (&XEXP (x, i), insn); + else if (fmt[i] == 'E') + { + for (j = XVECLEN (x, i) - 1; j >= 0; j--) + reload_combine_note_use (&XVECEXP (x, i, j), insn); + } + } +} + +/* See if we can reduce the cost of a constant by replacing a move + with an add. We track situations in which a register is set to a + constant or to a register plus a constant. */ +/* We cannot do our optimization across labels. Invalidating all the + information about register contents we have would be costly, so we + use move2add_last_label_luid to note where the label is and then + later disable any optimization that would cross it. + reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if + reg_set_luid[n] is greater than move2add_last_label_luid. */ +static int reg_set_luid[FIRST_PSEUDO_REGISTER]; + +/* If reg_base_reg[n] is negative, register n has been set to + reg_offset[n] in mode reg_mode[n] . + If reg_base_reg[n] is non-negative, register n has been set to the + sum of reg_offset[n] and the value of register reg_base_reg[n] + before reg_set_luid[n], calculated in mode reg_mode[n] . */ +static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER]; +static int reg_base_reg[FIRST_PSEUDO_REGISTER]; +static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER]; + +/* move2add_luid is linearly increased while scanning the instructions + from first to last. It is used to set reg_set_luid in + reload_cse_move2add and move2add_note_store. */ +static int move2add_luid; + +/* move2add_last_label_luid is set whenever a label is found. Labels + invalidate all previously collected reg_offset data. */ +static int move2add_last_label_luid; + +/* ??? We don't know how zero / sign extension is handled, hence we + can't go from a narrower to a wider mode. */ +#define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \ + (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \ + || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \ + && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \ + GET_MODE_BITSIZE (INMODE)))) + +static void +reload_cse_move2add (rtx first) +{ + int i; + rtx insn; + + for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--) + reg_set_luid[i] = 0; + + move2add_last_label_luid = 0; + move2add_luid = 2; + for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++) + { + rtx pat, note; + + if (LABEL_P (insn)) + { + move2add_last_label_luid = move2add_luid; + /* We're going to increment move2add_luid twice after a + label, so that we can use move2add_last_label_luid + 1 as + the luid for constants. */ + move2add_luid++; + continue; + } + if (! INSN_P (insn)) + continue; + pat = PATTERN (insn); + /* For simplicity, we only perform this optimization on + straightforward SETs. */ + if (GET_CODE (pat) == SET + && REG_P (SET_DEST (pat))) + { + rtx reg = SET_DEST (pat); + int regno = REGNO (reg); + rtx src = SET_SRC (pat); + + /* Check if we have valid information on the contents of this + register in the mode of REG. */ + if (reg_set_luid[regno] > move2add_last_label_luid + && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]) + && dbg_cnt (cse2_move2add)) + { + /* Try to transform (set (REGX) (CONST_INT A)) + ... + (set (REGX) (CONST_INT B)) + to + (set (REGX) (CONST_INT A)) + ... + (set (REGX) (plus (REGX) (CONST_INT B-A))) + or + (set (REGX) (CONST_INT A)) + ... + (set (STRICT_LOW_PART (REGX)) (CONST_INT B)) + */ + + if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0) + { + rtx new_src = gen_int_mode (INTVAL (src) - reg_offset[regno], + GET_MODE (reg)); + bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)); + + /* (set (reg) (plus (reg) (const_int 0))) is not canonical; + use (set (reg) (reg)) instead. + We don't delete this insn, nor do we convert it into a + note, to avoid losing register notes or the return + value flag. jump2 already knows how to get rid of + no-op moves. */ + if (new_src == const0_rtx) + { + /* If the constants are different, this is a + truncation, that, if turned into (set (reg) + (reg)), would be discarded. Maybe we should + try a truncMN pattern? */ + if (INTVAL (src) == reg_offset [regno]) + validate_change (insn, &SET_SRC (pat), reg, 0); + } + else if (rtx_cost (new_src, PLUS, speed) < rtx_cost (src, SET, speed) + && have_add2_insn (reg, new_src)) + { + rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src); + validate_change (insn, &SET_SRC (pat), tem, 0); + } + else if (GET_MODE (reg) != BImode) + { + enum machine_mode narrow_mode; + for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); + narrow_mode != VOIDmode + && narrow_mode != GET_MODE (reg); + narrow_mode = GET_MODE_WIDER_MODE (narrow_mode)) + { + if (have_insn_for (STRICT_LOW_PART, narrow_mode) + && ((reg_offset[regno] + & ~GET_MODE_MASK (narrow_mode)) + == (INTVAL (src) + & ~GET_MODE_MASK (narrow_mode)))) + { + rtx narrow_reg = gen_rtx_REG (narrow_mode, + REGNO (reg)); + rtx narrow_src = gen_int_mode (INTVAL (src), + narrow_mode); + rtx new_set = + gen_rtx_SET (VOIDmode, + gen_rtx_STRICT_LOW_PART (VOIDmode, + narrow_reg), + narrow_src); + if (validate_change (insn, &PATTERN (insn), + new_set, 0)) + break; + } + } + } + reg_set_luid[regno] = move2add_luid; + reg_mode[regno] = GET_MODE (reg); + reg_offset[regno] = INTVAL (src); + continue; + } + + /* Try to transform (set (REGX) (REGY)) + (set (REGX) (PLUS (REGX) (CONST_INT A))) + ... + (set (REGX) (REGY)) + (set (REGX) (PLUS (REGX) (CONST_INT B))) + to + (set (REGX) (REGY)) + (set (REGX) (PLUS (REGX) (CONST_INT A))) + ... + (set (REGX) (plus (REGX) (CONST_INT B-A))) */ + else if (REG_P (src) + && reg_set_luid[regno] == reg_set_luid[REGNO (src)] + && reg_base_reg[regno] == reg_base_reg[REGNO (src)] + && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), + reg_mode[REGNO (src)])) + { + rtx next = next_nonnote_insn (insn); + rtx set = NULL_RTX; + if (next) + set = single_set (next); + if (set + && SET_DEST (set) == reg + && GET_CODE (SET_SRC (set)) == PLUS + && XEXP (SET_SRC (set), 0) == reg + && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT) + { + rtx src3 = XEXP (SET_SRC (set), 1); + HOST_WIDE_INT added_offset = INTVAL (src3); + HOST_WIDE_INT base_offset = reg_offset[REGNO (src)]; + HOST_WIDE_INT regno_offset = reg_offset[regno]; + rtx new_src = + gen_int_mode (added_offset + + base_offset + - regno_offset, + GET_MODE (reg)); + bool success = false; + bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)); + + if (new_src == const0_rtx) + /* See above why we create (set (reg) (reg)) here. */ + success + = validate_change (next, &SET_SRC (set), reg, 0); + else if ((rtx_cost (new_src, PLUS, speed) + < COSTS_N_INSNS (1) + rtx_cost (src3, SET, speed)) + && have_add2_insn (reg, new_src)) + { + rtx newpat = gen_rtx_SET (VOIDmode, + reg, + gen_rtx_PLUS (GET_MODE (reg), + reg, + new_src)); + success + = validate_change (next, &PATTERN (next), + newpat, 0); + } + if (success) + delete_insn (insn); + insn = next; + reg_mode[regno] = GET_MODE (reg); + reg_offset[regno] = + trunc_int_for_mode (added_offset + base_offset, + GET_MODE (reg)); + continue; + } + } + } + } + + for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) + { + if (REG_NOTE_KIND (note) == REG_INC + && REG_P (XEXP (note, 0))) + { + /* Reset the information about this register. */ + int regno = REGNO (XEXP (note, 0)); + if (regno < FIRST_PSEUDO_REGISTER) + reg_set_luid[regno] = 0; + } + } + note_stores (PATTERN (insn), move2add_note_store, NULL); + + /* If INSN is a conditional branch, we try to extract an + implicit set out of it. */ + if (any_condjump_p (insn)) + { + rtx cnd = fis_get_condition (insn); + + if (cnd != NULL_RTX + && GET_CODE (cnd) == NE + && REG_P (XEXP (cnd, 0)) + && !reg_set_p (XEXP (cnd, 0), insn) + /* The following two checks, which are also in + move2add_note_store, are intended to reduce the + number of calls to gen_rtx_SET to avoid memory + allocation if possible. */ + && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0))) + && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1 + && GET_CODE (XEXP (cnd, 1)) == CONST_INT) + { + rtx implicit_set = + gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1)); + move2add_note_store (SET_DEST (implicit_set), implicit_set, 0); + } + } + + /* If this is a CALL_INSN, all call used registers are stored with + unknown values. */ + if (CALL_P (insn)) + { + for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--) + { + if (call_used_regs[i]) + /* Reset the information about this register. */ + reg_set_luid[i] = 0; + } + } + } +} + +/* SET is a SET or CLOBBER that sets DST. + Update reg_set_luid, reg_offset and reg_base_reg accordingly. + Called from reload_cse_move2add via note_stores. */ + +static void +move2add_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED) +{ + unsigned int regno = 0; + unsigned int nregs = 0; + unsigned int i; + enum machine_mode mode = GET_MODE (dst); + + if (GET_CODE (dst) == SUBREG) + { + regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)), + GET_MODE (SUBREG_REG (dst)), + SUBREG_BYTE (dst), + GET_MODE (dst)); + nregs = subreg_nregs (dst); + dst = SUBREG_REG (dst); + } + + /* Some targets do argument pushes without adding REG_INC notes. */ + + if (MEM_P (dst)) + { + dst = XEXP (dst, 0); + if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC + || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC) + reg_set_luid[REGNO (XEXP (dst, 0))] = 0; + return; + } + if (!REG_P (dst)) + return; + + regno += REGNO (dst); + if (!nregs) + nregs = hard_regno_nregs[regno][mode]; + + if (SCALAR_INT_MODE_P (GET_MODE (dst)) + && nregs == 1 && GET_CODE (set) == SET + && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT + && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART) + { + rtx src = SET_SRC (set); + rtx base_reg; + HOST_WIDE_INT offset; + int base_regno; + /* This may be different from mode, if SET_DEST (set) is a + SUBREG. */ + enum machine_mode dst_mode = GET_MODE (dst); + + switch (GET_CODE (src)) + { + case PLUS: + if (REG_P (XEXP (src, 0))) + { + base_reg = XEXP (src, 0); + + if (GET_CODE (XEXP (src, 1)) == CONST_INT) + offset = INTVAL (XEXP (src, 1)); + else if (REG_P (XEXP (src, 1)) + && (reg_set_luid[REGNO (XEXP (src, 1))] + > move2add_last_label_luid) + && (MODES_OK_FOR_MOVE2ADD + (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))) + { + if (reg_base_reg[REGNO (XEXP (src, 1))] < 0) + offset = reg_offset[REGNO (XEXP (src, 1))]; + /* Maybe the first register is known to be a + constant. */ + else if (reg_set_luid[REGNO (base_reg)] + > move2add_last_label_luid + && (MODES_OK_FOR_MOVE2ADD + (dst_mode, reg_mode[REGNO (XEXP (src, 1))])) + && reg_base_reg[REGNO (base_reg)] < 0) + { + offset = reg_offset[REGNO (base_reg)]; + base_reg = XEXP (src, 1); + } + else + goto invalidate; + } + else + goto invalidate; + + break; + } + + goto invalidate; + + case REG: + base_reg = src; + offset = 0; + break; + + case CONST_INT: + /* Start tracking the register as a constant. */ + reg_base_reg[regno] = -1; + reg_offset[regno] = INTVAL (SET_SRC (set)); + /* We assign the same luid to all registers set to constants. */ + reg_set_luid[regno] = move2add_last_label_luid + 1; + reg_mode[regno] = mode; + return; + + default: + invalidate: + /* Invalidate the contents of the register. */ + reg_set_luid[regno] = 0; + return; + } + + base_regno = REGNO (base_reg); + /* If information about the base register is not valid, set it + up as a new base register, pretending its value is known + starting from the current insn. */ + if (reg_set_luid[base_regno] <= move2add_last_label_luid) + { + reg_base_reg[base_regno] = base_regno; + reg_offset[base_regno] = 0; + reg_set_luid[base_regno] = move2add_luid; + reg_mode[base_regno] = mode; + } + else if (! MODES_OK_FOR_MOVE2ADD (dst_mode, + reg_mode[base_regno])) + goto invalidate; + + reg_mode[regno] = mode; + + /* Copy base information from our base register. */ + reg_set_luid[regno] = reg_set_luid[base_regno]; + reg_base_reg[regno] = reg_base_reg[base_regno]; + + /* Compute the sum of the offsets or constants. */ + reg_offset[regno] = trunc_int_for_mode (offset + + reg_offset[base_regno], + dst_mode); + } + else + { + unsigned int endregno = regno + nregs; + + for (i = regno; i < endregno; i++) + /* Reset the information about this register. */ + reg_set_luid[i] = 0; + } +} + +static bool +gate_handle_postreload (void) +{ + return (optimize > 0 && reload_completed); +} + + +static unsigned int +rest_of_handle_postreload (void) +{ + if (!dbg_cnt (postreload_cse)) + return 0; + + /* Do a very simple CSE pass over just the hard registers. */ + reload_cse_regs (get_insns ()); + /* Reload_cse_regs can eliminate potentially-trapping MEMs. + Remove any EH edges associated with them. */ + if (flag_non_call_exceptions) + purge_all_dead_edges (); + + return 0; +} + +struct rtl_opt_pass pass_postreload_cse = +{ + { + RTL_PASS, + "postreload", /* name */ + gate_handle_postreload, /* gate */ + rest_of_handle_postreload, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + TV_RELOAD_CSE_REGS, /* tv_id */ + 0, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_df_finish | TODO_verify_rtl_sharing | + TODO_dump_func /* todo_flags_finish */ + } +}; +