Mercurial > hg > CbC > CbC_gcc
diff gcc/tree-tailcall.c @ 0:a06113de4d67
first commit
author | kent <kent@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Jul 2009 14:47:48 +0900 |
parents | |
children | 58ad6c70ea60 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gcc/tree-tailcall.c Fri Jul 17 14:47:48 2009 +0900 @@ -0,0 +1,1032 @@ +/* Tail call optimization on trees. + Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 + Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "tree.h" +#include "rtl.h" +#include "tm_p.h" +#include "hard-reg-set.h" +#include "basic-block.h" +#include "function.h" +#include "tree-flow.h" +#include "tree-dump.h" +#include "diagnostic.h" +#include "except.h" +#include "tree-pass.h" +#include "flags.h" +#include "langhooks.h" +#include "dbgcnt.h" + +/* The file implements the tail recursion elimination. It is also used to + analyze the tail calls in general, passing the results to the rtl level + where they are used for sibcall optimization. + + In addition to the standard tail recursion elimination, we handle the most + trivial cases of making the call tail recursive by creating accumulators. + For example the following function + + int sum (int n) + { + if (n > 0) + return n + sum (n - 1); + else + return 0; + } + + is transformed into + + int sum (int n) + { + int acc = 0; + + while (n > 0) + acc += n--; + + return acc; + } + + To do this, we maintain two accumulators (a_acc and m_acc) that indicate + when we reach the return x statement, we should return a_acc + x * m_acc + instead. They are initially initialized to 0 and 1, respectively, + so the semantics of the function is obviously preserved. If we are + guaranteed that the value of the accumulator never change, we + omit the accumulator. + + There are three cases how the function may exit. The first one is + handled in adjust_return_value, the other two in adjust_accumulator_values + (the second case is actually a special case of the third one and we + present it separately just for clarity): + + 1) Just return x, where x is not in any of the remaining special shapes. + We rewrite this to a gimple equivalent of return m_acc * x + a_acc. + + 2) return f (...), where f is the current function, is rewritten in a + classical tail-recursion elimination way, into assignment of arguments + and jump to the start of the function. Values of the accumulators + are unchanged. + + 3) return a + m * f(...), where a and m do not depend on call to f. + To preserve the semantics described before we want this to be rewritten + in such a way that we finally return + + a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...). + + I.e. we increase a_acc by a * m_acc, multiply m_acc by m and + eliminate the tail call to f. Special cases when the value is just + added or just multiplied are obtained by setting a = 0 or m = 1. + + TODO -- it is possible to do similar tricks for other operations. */ + +/* A structure that describes the tailcall. */ + +struct tailcall +{ + /* The iterator pointing to the call statement. */ + gimple_stmt_iterator call_gsi; + + /* True if it is a call to the current function. */ + bool tail_recursion; + + /* The return value of the caller is mult * f + add, where f is the return + value of the call. */ + tree mult, add; + + /* Next tailcall in the chain. */ + struct tailcall *next; +}; + +/* The variables holding the value of multiplicative and additive + accumulator. */ +static tree m_acc, a_acc; + +static bool suitable_for_tail_opt_p (void); +static bool optimize_tail_call (struct tailcall *, bool); +static void eliminate_tail_call (struct tailcall *); +static void find_tail_calls (basic_block, struct tailcall **); + +/* Returns false when the function is not suitable for tail call optimization + from some reason (e.g. if it takes variable number of arguments). */ + +static bool +suitable_for_tail_opt_p (void) +{ + referenced_var_iterator rvi; + tree var; + + if (cfun->stdarg) + return false; + + /* No local variable nor structure field should be call-used. We + ignore any kind of memory tag, as these are not real variables. */ + + FOR_EACH_REFERENCED_VAR (var, rvi) + { + if (!is_global_var (var) + && !MTAG_P (var) + && (gimple_aliases_computed_p (cfun)? is_call_used (var) + : TREE_ADDRESSABLE (var))) + return false; + } + + return true; +} +/* Returns false when the function is not suitable for tail call optimization + from some reason (e.g. if it takes variable number of arguments). + This test must pass in addition to suitable_for_tail_opt_p in order to make + tail call discovery happen. */ + +static bool +suitable_for_tail_call_opt_p (void) +{ + tree param; + + /* alloca (until we have stack slot life analysis) inhibits + sibling call optimizations, but not tail recursion. */ + if (cfun->calls_alloca) + return false; + + /* If we are using sjlj exceptions, we may need to add a call to + _Unwind_SjLj_Unregister at exit of the function. Which means + that we cannot do any sibcall transformations. */ + if (USING_SJLJ_EXCEPTIONS && current_function_has_exception_handlers ()) + return false; + + /* Any function that calls setjmp might have longjmp called from + any called function. ??? We really should represent this + properly in the CFG so that this needn't be special cased. */ + if (cfun->calls_setjmp) + return false; + + /* ??? It is OK if the argument of a function is taken in some cases, + but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */ + for (param = DECL_ARGUMENTS (current_function_decl); + param; + param = TREE_CHAIN (param)) + if (TREE_ADDRESSABLE (param)) + return false; + + return true; +} + +/* Checks whether the expression EXPR in stmt AT is independent of the + statement pointed to by GSI (in a sense that we already know EXPR's value + at GSI). We use the fact that we are only called from the chain of + basic blocks that have only single successor. Returns the expression + containing the value of EXPR at GSI. */ + +static tree +independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi) +{ + basic_block bb, call_bb, at_bb; + edge e; + edge_iterator ei; + + if (is_gimple_min_invariant (expr)) + return expr; + + if (TREE_CODE (expr) != SSA_NAME) + return NULL_TREE; + + /* Mark the blocks in the chain leading to the end. */ + at_bb = gimple_bb (at); + call_bb = gimple_bb (gsi_stmt (gsi)); + for (bb = call_bb; bb != at_bb; bb = single_succ (bb)) + bb->aux = &bb->aux; + bb->aux = &bb->aux; + + while (1) + { + at = SSA_NAME_DEF_STMT (expr); + bb = gimple_bb (at); + + /* The default definition or defined before the chain. */ + if (!bb || !bb->aux) + break; + + if (bb == call_bb) + { + for (; !gsi_end_p (gsi); gsi_next (&gsi)) + if (gsi_stmt (gsi) == at) + break; + + if (!gsi_end_p (gsi)) + expr = NULL_TREE; + break; + } + + if (gimple_code (at) != GIMPLE_PHI) + { + expr = NULL_TREE; + break; + } + + FOR_EACH_EDGE (e, ei, bb->preds) + if (e->src->aux) + break; + gcc_assert (e); + + expr = PHI_ARG_DEF_FROM_EDGE (at, e); + if (TREE_CODE (expr) != SSA_NAME) + { + /* The value is a constant. */ + break; + } + } + + /* Unmark the blocks. */ + for (bb = call_bb; bb != at_bb; bb = single_succ (bb)) + bb->aux = NULL; + bb->aux = NULL; + + return expr; +} + +/* Simulates the effect of an assignment STMT on the return value of the tail + recursive CALL passed in ASS_VAR. M and A are the multiplicative and the + additive factor for the real return value. */ + +static bool +process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m, + tree *a, tree *ass_var) +{ + tree op0, op1, non_ass_var; + tree dest = gimple_assign_lhs (stmt); + enum tree_code code = gimple_assign_rhs_code (stmt); + enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code); + tree src_var = gimple_assign_rhs1 (stmt); + + /* See if this is a simple copy operation of an SSA name to the function + result. In that case we may have a simple tail call. Ignore type + conversions that can never produce extra code between the function + call and the function return. */ + if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt)) + && (TREE_CODE (src_var) == SSA_NAME)) + { + /* Reject a tailcall if the type conversion might need + additional code. */ + if (gimple_assign_cast_p (stmt) + && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var))) + return false; + + if (src_var != *ass_var) + return false; + + *ass_var = dest; + return true; + } + + if (rhs_class != GIMPLE_BINARY_RHS) + return false; + + /* Accumulator optimizations will reverse the order of operations. + We can only do that for floating-point types if we're assuming + that addition and multiplication are associative. */ + if (!flag_associative_math) + if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl)))) + return false; + + /* We only handle the code like + + x = call (); + y = m * x; + z = y + a; + return z; + + TODO -- Extend it for cases where the linear transformation of the output + is expressed in a more complicated way. */ + + op0 = gimple_assign_rhs1 (stmt); + op1 = gimple_assign_rhs2 (stmt); + + if (op0 == *ass_var + && (non_ass_var = independent_of_stmt_p (op1, stmt, call))) + ; + else if (op1 == *ass_var + && (non_ass_var = independent_of_stmt_p (op0, stmt, call))) + ; + else + return false; + + switch (code) + { + case PLUS_EXPR: + /* There should be no previous addition. TODO -- it should be fairly + straightforward to lift this restriction -- just allow storing + more complicated expressions in *A, and gimplify it in + adjust_accumulator_values. */ + if (*a) + return false; + *a = non_ass_var; + *ass_var = dest; + return true; + + case MULT_EXPR: + /* Similar remark applies here. Handling multiplication after addition + is just slightly more complicated -- we need to multiply both *A and + *M. */ + if (*a || *m) + return false; + *m = non_ass_var; + *ass_var = dest; + return true; + + /* TODO -- Handle other codes (NEGATE_EXPR, MINUS_EXPR, + POINTER_PLUS_EXPR). */ + + default: + return false; + } +} + +/* Propagate VAR through phis on edge E. */ + +static tree +propagate_through_phis (tree var, edge e) +{ + basic_block dest = e->dest; + gimple_stmt_iterator gsi; + + for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple phi = gsi_stmt (gsi); + if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var) + return PHI_RESULT (phi); + } + return var; +} + +/* Finds tailcalls falling into basic block BB. The list of found tailcalls is + added to the start of RET. */ + +static void +find_tail_calls (basic_block bb, struct tailcall **ret) +{ + tree ass_var = NULL_TREE, ret_var, func, param; + gimple stmt, call = NULL; + gimple_stmt_iterator gsi, agsi; + bool tail_recursion; + struct tailcall *nw; + edge e; + tree m, a; + basic_block abb; + size_t idx; + + if (!single_succ_p (bb)) + return; + + for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) + { + stmt = gsi_stmt (gsi); + + /* Ignore labels. */ + if (gimple_code (stmt) == GIMPLE_LABEL) + continue; + + /* Check for a call. */ + if (is_gimple_call (stmt)) + { + call = stmt; + ass_var = gimple_call_lhs (stmt); + break; + } + + /* If the statement has virtual or volatile operands, fail. */ + if (!ZERO_SSA_OPERANDS (stmt, (SSA_OP_VUSE | SSA_OP_VIRTUAL_DEFS)) + || gimple_has_volatile_ops (stmt) + || (!gimple_aliases_computed_p (cfun) + && gimple_references_memory_p (stmt))) + return; + } + + if (gsi_end_p (gsi)) + { + edge_iterator ei; + /* Recurse to the predecessors. */ + FOR_EACH_EDGE (e, ei, bb->preds) + find_tail_calls (e->src, ret); + + return; + } + + /* If the LHS of our call is not just a simple register, we can't + transform this into a tail or sibling call. This situation happens, + in (e.g.) "*p = foo()" where foo returns a struct. In this case + we won't have a temporary here, but we need to carry out the side + effect anyway, so tailcall is impossible. + + ??? In some situations (when the struct is returned in memory via + invisible argument) we could deal with this, e.g. by passing 'p' + itself as that argument to foo, but it's too early to do this here, + and expand_call() will not handle it anyway. If it ever can, then + we need to revisit this here, to allow that situation. */ + if (ass_var && !is_gimple_reg (ass_var)) + return; + + /* We found the call, check whether it is suitable. */ + tail_recursion = false; + func = gimple_call_fndecl (call); + if (func == current_function_decl) + { + tree arg; + for (param = DECL_ARGUMENTS (func), idx = 0; + param && idx < gimple_call_num_args (call); + param = TREE_CHAIN (param), idx ++) + { + arg = gimple_call_arg (call, idx); + if (param != arg) + { + /* Make sure there are no problems with copying. The parameter + have a copyable type and the two arguments must have reasonably + equivalent types. The latter requirement could be relaxed if + we emitted a suitable type conversion statement. */ + if (!is_gimple_reg_type (TREE_TYPE (param)) + || !useless_type_conversion_p (TREE_TYPE (param), + TREE_TYPE (arg))) + break; + + /* The parameter should be a real operand, so that phi node + created for it at the start of the function has the meaning + of copying the value. This test implies is_gimple_reg_type + from the previous condition, however this one could be + relaxed by being more careful with copying the new value + of the parameter (emitting appropriate GIMPLE_ASSIGN and + updating the virtual operands). */ + if (!is_gimple_reg (param)) + break; + } + } + if (idx == gimple_call_num_args (call) && !param) + tail_recursion = true; + } + + /* Now check the statements after the call. None of them has virtual + operands, so they may only depend on the call through its return + value. The return value should also be dependent on each of them, + since we are running after dce. */ + m = NULL_TREE; + a = NULL_TREE; + + abb = bb; + agsi = gsi; + while (1) + { + gsi_next (&agsi); + + while (gsi_end_p (agsi)) + { + ass_var = propagate_through_phis (ass_var, single_succ_edge (abb)); + abb = single_succ (abb); + agsi = gsi_start_bb (abb); + } + + stmt = gsi_stmt (agsi); + + if (gimple_code (stmt) == GIMPLE_LABEL) + continue; + + if (gimple_code (stmt) == GIMPLE_RETURN) + break; + + if (gimple_code (stmt) != GIMPLE_ASSIGN) + return; + + /* This is a gimple assign. */ + if (! process_assignment (stmt, gsi, &m, &a, &ass_var)) + return; + } + + /* See if this is a tail call we can handle. */ + ret_var = gimple_return_retval (stmt); + + /* We may proceed if there either is no return value, or the return value + is identical to the call's return. */ + if (ret_var + && (ret_var != ass_var)) + return; + + /* If this is not a tail recursive call, we cannot handle addends or + multiplicands. */ + if (!tail_recursion && (m || a)) + return; + + nw = XNEW (struct tailcall); + + nw->call_gsi = gsi; + + nw->tail_recursion = tail_recursion; + + nw->mult = m; + nw->add = a; + + nw->next = *ret; + *ret = nw; +} + +/* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */ + +static void +add_successor_phi_arg (edge e, tree var, tree phi_arg) +{ + gimple_stmt_iterator gsi; + + for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi)) + if (PHI_RESULT (gsi_stmt (gsi)) == var) + break; + + gcc_assert (!gsi_end_p (gsi)); + add_phi_arg (gsi_stmt (gsi), phi_arg, e); +} + +/* Creates a GIMPLE statement which computes the operation specified by + CODE, OP0 and OP1 to a new variable with name LABEL and inserts the + statement in the position specified by GSI and UPDATE. Returns the + tree node of the statement's result. */ + +static tree +adjust_return_value_with_ops (enum tree_code code, const char *label, + tree op0, tree op1, gimple_stmt_iterator gsi, + enum gsi_iterator_update update) +{ + + tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl)); + tree tmp = create_tmp_var (ret_type, label); + gimple stmt = gimple_build_assign_with_ops (code, tmp, op0, op1); + tree result; + + add_referenced_var (tmp); + result = make_ssa_name (tmp, stmt); + gimple_assign_set_lhs (stmt, result); + update_stmt (stmt); + gsi_insert_before (&gsi, stmt, update); + return result; +} + +/* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by + the computation specified by CODE and OP1 and insert the statement + at the position specified by GSI as a new statement. Returns new SSA name + of updated accumulator. */ + +static tree +update_accumulator_with_ops (enum tree_code code, tree acc, tree op1, + gimple_stmt_iterator gsi) +{ + gimple stmt = gimple_build_assign_with_ops (code, SSA_NAME_VAR (acc), acc, + op1); + tree var = make_ssa_name (SSA_NAME_VAR (acc), stmt); + gimple_assign_set_lhs (stmt, var); + update_stmt (stmt); + gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); + return var; +} + +/* Adjust the accumulator values according to A and M after GSI, and update + the phi nodes on edge BACK. */ + +static void +adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back) +{ + tree var, a_acc_arg = a_acc, m_acc_arg = m_acc; + + if (a) + { + if (m_acc) + { + if (integer_onep (a)) + var = m_acc; + else + var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc, + a, gsi, GSI_NEW_STMT); + } + else + var = a; + + a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi); + } + + if (m) + m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi); + + if (a_acc) + add_successor_phi_arg (back, a_acc, a_acc_arg); + + if (m_acc) + add_successor_phi_arg (back, m_acc, m_acc_arg); +} + +/* Adjust value of the return at the end of BB according to M and A + accumulators. */ + +static void +adjust_return_value (basic_block bb, tree m, tree a) +{ + tree retval; + gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb)); + gimple_stmt_iterator gsi = gsi_last_bb (bb); + + gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN); + + retval = gimple_return_retval (ret_stmt); + if (!retval || retval == error_mark_node) + return; + + if (m) + retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval, + gsi, GSI_SAME_STMT); + if (a) + retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval, + gsi, GSI_SAME_STMT); + gimple_return_set_retval (ret_stmt, retval); + update_stmt (ret_stmt); +} + +/* Subtract COUNT and FREQUENCY from the basic block and it's + outgoing edge. */ +static void +decrease_profile (basic_block bb, gcov_type count, int frequency) +{ + edge e; + bb->count -= count; + if (bb->count < 0) + bb->count = 0; + bb->frequency -= frequency; + if (bb->frequency < 0) + bb->frequency = 0; + if (!single_succ_p (bb)) + { + gcc_assert (!EDGE_COUNT (bb->succs)); + return; + } + e = single_succ_edge (bb); + e->count -= count; + if (e->count < 0) + e->count = 0; +} + +/* Returns true if argument PARAM of the tail recursive call needs to be copied + when the call is eliminated. */ + +static bool +arg_needs_copy_p (tree param) +{ + tree def; + + if (!is_gimple_reg (param) || !var_ann (param)) + return false; + + /* Parameters that are only defined but never used need not be copied. */ + def = gimple_default_def (cfun, param); + if (!def) + return false; + + return true; +} + +/* Eliminates tail call described by T. TMP_VARS is a list of + temporary variables used to copy the function arguments. */ + +static void +eliminate_tail_call (struct tailcall *t) +{ + tree param, rslt; + gimple stmt, call; + tree arg; + size_t idx; + basic_block bb, first; + edge e; + gimple phi; + gimple_stmt_iterator gsi; + gimple orig_stmt; + + stmt = orig_stmt = gsi_stmt (t->call_gsi); + bb = gsi_bb (t->call_gsi); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Eliminated tail recursion in bb %d : ", + bb->index); + print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); + fprintf (dump_file, "\n"); + } + + gcc_assert (is_gimple_call (stmt)); + + first = single_succ (ENTRY_BLOCK_PTR); + + /* Remove the code after call_gsi that will become unreachable. The + possibly unreachable code in other blocks is removed later in + cfg cleanup. */ + gsi = t->call_gsi; + gsi_next (&gsi); + while (!gsi_end_p (gsi)) + { + gimple t = gsi_stmt (gsi); + /* Do not remove the return statement, so that redirect_edge_and_branch + sees how the block ends. */ + if (gimple_code (t) == GIMPLE_RETURN) + break; + + gsi_remove (&gsi, true); + release_defs (t); + } + + /* Number of executions of function has reduced by the tailcall. */ + e = single_succ_edge (gsi_bb (t->call_gsi)); + decrease_profile (EXIT_BLOCK_PTR, e->count, EDGE_FREQUENCY (e)); + decrease_profile (ENTRY_BLOCK_PTR, e->count, EDGE_FREQUENCY (e)); + if (e->dest != EXIT_BLOCK_PTR) + decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e)); + + /* Replace the call by a jump to the start of function. */ + e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)), + first); + gcc_assert (e); + PENDING_STMT (e) = NULL; + + /* Add phi node entries for arguments. The ordering of the phi nodes should + be the same as the ordering of the arguments. */ + for (param = DECL_ARGUMENTS (current_function_decl), + idx = 0, gsi = gsi_start_phis (first); + param; + param = TREE_CHAIN (param), idx++) + { + if (!arg_needs_copy_p (param)) + continue; + + arg = gimple_call_arg (stmt, idx); + phi = gsi_stmt (gsi); + gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi))); + + add_phi_arg (phi, arg, e); + gsi_next (&gsi); + } + + /* Update the values of accumulators. */ + adjust_accumulator_values (t->call_gsi, t->mult, t->add, e); + + call = gsi_stmt (t->call_gsi); + rslt = gimple_call_lhs (call); + if (rslt != NULL_TREE) + { + /* Result of the call will no longer be defined. So adjust the + SSA_NAME_DEF_STMT accordingly. */ + SSA_NAME_DEF_STMT (rslt) = gimple_build_nop (); + } + + gsi_remove (&t->call_gsi, true); + release_defs (call); +} + +/* Add phi nodes for the virtual operands defined in the function to the + header of the loop created by tail recursion elimination. + + Originally, we used to add phi nodes only for call clobbered variables, + as the value of the non-call clobbered ones obviously cannot be used + or changed within the recursive call. However, the local variables + from multiple calls now share the same location, so the virtual ssa form + requires us to say that the location dies on further iterations of the loop, + which requires adding phi nodes. +*/ +static void +add_virtual_phis (void) +{ + referenced_var_iterator rvi; + tree var; + + /* The problematic part is that there is no way how to know what + to put into phi nodes (there in fact does not have to be such + ssa name available). A solution would be to have an artificial + use/kill for all virtual operands in EXIT node. Unless we have + this, we cannot do much better than to rebuild the ssa form for + possibly affected virtual ssa names from scratch. */ + + FOR_EACH_REFERENCED_VAR (var, rvi) + { + if (!is_gimple_reg (var) && gimple_default_def (cfun, var) != NULL_TREE) + mark_sym_for_renaming (var); + } +} + +/* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also + mark the tailcalls for the sibcall optimization. */ + +static bool +optimize_tail_call (struct tailcall *t, bool opt_tailcalls) +{ + if (t->tail_recursion) + { + eliminate_tail_call (t); + return true; + } + + if (opt_tailcalls) + { + gimple stmt = gsi_stmt (t->call_gsi); + + gimple_call_set_tail (stmt, true); + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Found tail call "); + print_gimple_stmt (dump_file, stmt, 0, dump_flags); + fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index); + } + } + + return false; +} + +/* Creates a tail-call accumulator of the same type as the return type of the + current function. LABEL is the name used to creating the temporary + variable for the accumulator. The accumulator will be inserted in the + phis of a basic block BB with single predecessor with an initial value + INIT converted to the current function return type. */ + +static tree +create_tailcall_accumulator (const char *label, basic_block bb, tree init) +{ + tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl)); + tree tmp = create_tmp_var (ret_type, label); + gimple phi; + + add_referenced_var (tmp); + phi = create_phi_node (tmp, bb); + /* RET_TYPE can be a float when -ffast-maths is enabled. */ + add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb)); + return PHI_RESULT (phi); +} + +/* Optimizes tail calls in the function, turning the tail recursion + into iteration. */ + +static unsigned int +tree_optimize_tail_calls_1 (bool opt_tailcalls) +{ + edge e; + bool phis_constructed = false; + struct tailcall *tailcalls = NULL, *act, *next; + bool changed = false; + basic_block first = single_succ (ENTRY_BLOCK_PTR); + tree param; + gimple stmt; + edge_iterator ei; + + if (!suitable_for_tail_opt_p ()) + return 0; + if (opt_tailcalls) + opt_tailcalls = suitable_for_tail_call_opt_p (); + + FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) + { + /* Only traverse the normal exits, i.e. those that end with return + statement. */ + stmt = last_stmt (e->src); + + if (stmt + && gimple_code (stmt) == GIMPLE_RETURN) + find_tail_calls (e->src, &tailcalls); + } + + /* Construct the phi nodes and accumulators if necessary. */ + a_acc = m_acc = NULL_TREE; + for (act = tailcalls; act; act = act->next) + { + if (!act->tail_recursion) + continue; + + if (!phis_constructed) + { + /* Ensure that there is only one predecessor of the block. */ + if (!single_pred_p (first)) + first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR)); + + /* Copy the args if needed. */ + for (param = DECL_ARGUMENTS (current_function_decl); + param; + param = TREE_CHAIN (param)) + if (arg_needs_copy_p (param)) + { + tree name = gimple_default_def (cfun, param); + tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name)); + gimple phi; + + set_default_def (param, new_name); + phi = create_phi_node (name, first); + SSA_NAME_DEF_STMT (name) = phi; + add_phi_arg (phi, new_name, single_pred_edge (first)); + } + phis_constructed = true; + } + + if (act->add && !a_acc) + a_acc = create_tailcall_accumulator ("add_acc", first, + integer_zero_node); + + if (act->mult && !m_acc) + m_acc = create_tailcall_accumulator ("mult_acc", first, + integer_one_node); + } + + for (; tailcalls; tailcalls = next) + { + next = tailcalls->next; + changed |= optimize_tail_call (tailcalls, opt_tailcalls); + free (tailcalls); + } + + if (a_acc || m_acc) + { + /* Modify the remaining return statements. */ + FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) + { + stmt = last_stmt (e->src); + + if (stmt + && gimple_code (stmt) == GIMPLE_RETURN) + adjust_return_value (e->src, m_acc, a_acc); + } + } + + if (changed) + free_dominance_info (CDI_DOMINATORS); + + if (phis_constructed) + add_virtual_phis (); + if (changed) + return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals; + return 0; +} + +static unsigned int +execute_tail_recursion (void) +{ + return tree_optimize_tail_calls_1 (false); +} + +static bool +gate_tail_calls (void) +{ + return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call); +} + +static unsigned int +execute_tail_calls (void) +{ + return tree_optimize_tail_calls_1 (true); +} + +struct gimple_opt_pass pass_tail_recursion = +{ + { + GIMPLE_PASS, + "tailr", /* name */ + gate_tail_calls, /* gate */ + execute_tail_recursion, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + 0, /* tv_id */ + PROP_cfg | PROP_ssa, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */ + } +}; + +struct gimple_opt_pass pass_tail_calls = +{ + { + GIMPLE_PASS, + "tailc", /* name */ + gate_tail_calls, /* gate */ + execute_tail_calls, /* execute */ + NULL, /* sub */ + NULL, /* next */ + 0, /* static_pass_number */ + 0, /* tv_id */ + PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */ + } +};