Mercurial > hg > CbC > CbC_gcc
view gcc/graphite-ppl.c @ 55:77e2b8dfacca gcc-4.4.5
update it from 4.4.3 to 4.5.0
author | ryoma <e075725@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 12 Feb 2010 23:39:51 +0900 |
parents | |
children | b7f97abdc517 |
line wrap: on
line source
/* Gimple Represented as Polyhedra. Copyright (C) 2009 Free Software Foundation, Inc. Contributed by Sebastian Pop <sebastian.pop@amd.com> and Tobias Grosser <grosser@fim.uni-passau.de> This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "ggc.h" #ifdef HAVE_cloog #include "ppl_c.h" #include "cloog/cloog.h" #include "graphite-ppl.h" /* Translates row ROW of the CloogMatrix MATRIX to a PPL Constraint. */ static ppl_Constraint_t cloog_matrix_to_ppl_constraint (CloogMatrix *matrix, int row) { int j; ppl_Constraint_t cstr; ppl_Coefficient_t coef; ppl_Linear_Expression_t expr; ppl_dimension_type dim = matrix->NbColumns - 2; ppl_new_Coefficient (&coef); ppl_new_Linear_Expression_with_dimension (&expr, dim); for (j = 1; j < matrix->NbColumns - 1; j++) { ppl_assign_Coefficient_from_mpz_t (coef, matrix->p[row][j]); ppl_Linear_Expression_add_to_coefficient (expr, j - 1, coef); } ppl_assign_Coefficient_from_mpz_t (coef, matrix->p[row][matrix->NbColumns - 1]); ppl_Linear_Expression_add_to_inhomogeneous (expr, coef); ppl_delete_Coefficient (coef); if (value_zero_p (matrix->p[row][0])) ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL); else ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL); ppl_delete_Linear_Expression (expr); return cstr; } /* Creates a PPL constraint system from MATRIX. */ static void new_Constraint_System_from_Cloog_Matrix (ppl_Constraint_System_t *pcs, CloogMatrix *matrix) { int i; ppl_new_Constraint_System (pcs); for (i = 0; i < matrix->NbRows; i++) { ppl_Constraint_t c = cloog_matrix_to_ppl_constraint (matrix, i); ppl_Constraint_System_insert_Constraint (*pcs, c); ppl_delete_Constraint (c); } } /* Creates a PPL Polyhedron from MATRIX. */ void new_C_Polyhedron_from_Cloog_Matrix (ppl_Polyhedron_t *ph, CloogMatrix *matrix) { ppl_Constraint_System_t cs; new_Constraint_System_from_Cloog_Matrix (&cs, matrix); ppl_new_C_Polyhedron_recycle_Constraint_System (ph, cs); } /* Counts the number of constraints in PCS. */ static int ppl_Constrain_System_number_of_constraints (ppl_const_Constraint_System_t pcs) { ppl_Constraint_System_const_iterator_t cit, end; int num = 0; ppl_new_Constraint_System_const_iterator (&cit); ppl_new_Constraint_System_const_iterator (&end); for (ppl_Constraint_System_begin (pcs, cit), ppl_Constraint_System_end (pcs, end); !ppl_Constraint_System_const_iterator_equal_test (cit, end); ppl_Constraint_System_const_iterator_increment (cit)) num++; ppl_delete_Constraint_System_const_iterator (cit); ppl_delete_Constraint_System_const_iterator (end); return num; } static void oppose_constraint (CloogMatrix *m, int row) { int k; /* Do not oppose the first column: it is the eq/ineq one. */ for (k = 1; k < m->NbColumns; k++) value_oppose (m->p[row][k], m->p[row][k]); } /* Inserts constraint CSTR at row ROW of matrix M. */ void insert_constraint_into_matrix (CloogMatrix *m, int row, ppl_const_Constraint_t cstr) { ppl_Coefficient_t c; ppl_dimension_type i, dim, nb_cols = m->NbColumns; ppl_Constraint_space_dimension (cstr, &dim); ppl_new_Coefficient (&c); for (i = 0; i < dim; i++) { ppl_Constraint_coefficient (cstr, i, c); ppl_Coefficient_to_mpz_t (c, m->p[row][i + 1]); } for (i = dim; i < nb_cols - 1; i++) value_set_si (m->p[row][i + 1], 0); ppl_Constraint_inhomogeneous_term (cstr, c); ppl_Coefficient_to_mpz_t (c, m->p[row][nb_cols - 1]); value_set_si (m->p[row][0], 1); switch (ppl_Constraint_type (cstr)) { case PPL_CONSTRAINT_TYPE_LESS_THAN: oppose_constraint (m, row); case PPL_CONSTRAINT_TYPE_GREATER_THAN: value_sub_int (m->p[row][nb_cols - 1], m->p[row][nb_cols - 1], 1); break; case PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL: oppose_constraint (m, row); case PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL: break; case PPL_CONSTRAINT_TYPE_EQUAL: value_set_si (m->p[row][0], 0); break; default: /* Not yet implemented. */ gcc_unreachable(); } ppl_delete_Coefficient (c); } /* Creates a CloogMatrix from constraint system PCS. */ static CloogMatrix * new_Cloog_Matrix_from_ppl_Constraint_System (ppl_const_Constraint_System_t pcs) { CloogMatrix *matrix; ppl_Constraint_System_const_iterator_t cit, end; ppl_dimension_type dim; int rows; int row = 0; rows = ppl_Constrain_System_number_of_constraints (pcs); ppl_Constraint_System_space_dimension (pcs, &dim); matrix = cloog_matrix_alloc (rows, dim + 2); ppl_new_Constraint_System_const_iterator (&cit); ppl_new_Constraint_System_const_iterator (&end); for (ppl_Constraint_System_begin (pcs, cit), ppl_Constraint_System_end (pcs, end); !ppl_Constraint_System_const_iterator_equal_test (cit, end); ppl_Constraint_System_const_iterator_increment (cit)) { ppl_const_Constraint_t c; ppl_Constraint_System_const_iterator_dereference (cit, &c); insert_constraint_into_matrix (matrix, row, c); row++; } ppl_delete_Constraint_System_const_iterator (cit); ppl_delete_Constraint_System_const_iterator (end); return matrix; } /* Creates a CloogMatrix from polyhedron PH. */ CloogMatrix * new_Cloog_Matrix_from_ppl_Polyhedron (ppl_const_Polyhedron_t ph) { ppl_const_Constraint_System_t pcs; CloogMatrix *res; ppl_Polyhedron_get_constraints (ph, &pcs); res = new_Cloog_Matrix_from_ppl_Constraint_System (pcs); return res; } /* Creates a CloogDomain from polyhedron PH. */ CloogDomain * new_Cloog_Domain_from_ppl_Polyhedron (ppl_const_Polyhedron_t ph) { CloogMatrix *mat = new_Cloog_Matrix_from_ppl_Polyhedron (ph); CloogDomain *res = cloog_domain_matrix2domain (mat); cloog_matrix_free (mat); return res; } /* Creates a CloogDomain from a pointset powerset PS. */ CloogDomain * new_Cloog_Domain_from_ppl_Pointset_Powerset ( ppl_Pointset_Powerset_C_Polyhedron_t ps) { CloogDomain *res = NULL; ppl_Pointset_Powerset_C_Polyhedron_iterator_t it, end; ppl_new_Pointset_Powerset_C_Polyhedron_iterator (&it); ppl_new_Pointset_Powerset_C_Polyhedron_iterator (&end); for (ppl_Pointset_Powerset_C_Polyhedron_iterator_begin (ps, it), ppl_Pointset_Powerset_C_Polyhedron_iterator_end (ps, end); !ppl_Pointset_Powerset_C_Polyhedron_iterator_equal_test (it, end); ppl_Pointset_Powerset_C_Polyhedron_iterator_increment (it)) { ppl_const_Polyhedron_t ph; CloogDomain *tmp; ppl_Pointset_Powerset_C_Polyhedron_iterator_dereference (it, &ph); tmp = new_Cloog_Domain_from_ppl_Polyhedron (ph); if (res == NULL) res = tmp; else res = cloog_domain_union (res, tmp); } ppl_delete_Pointset_Powerset_C_Polyhedron_iterator (it); ppl_delete_Pointset_Powerset_C_Polyhedron_iterator (end); gcc_assert (res != NULL); return res; } /* Set the inhomogeneous term of E to X. */ void ppl_set_inhomogeneous_gmp (ppl_Linear_Expression_t e, Value x) { Value v0, v1; ppl_Coefficient_t c; value_init (v0); value_init (v1); ppl_new_Coefficient (&c); ppl_Linear_Expression_inhomogeneous_term (e, c); ppl_Coefficient_to_mpz_t (c, v1); value_oppose (v1, v1); value_assign (v0, x); value_addto (v0, v0, v1); ppl_assign_Coefficient_from_mpz_t (c, v0); ppl_Linear_Expression_add_to_inhomogeneous (e, c); value_clear (v0); value_clear (v1); ppl_delete_Coefficient (c); } /* Set E[I] to X. */ void ppl_set_coef_gmp (ppl_Linear_Expression_t e, ppl_dimension_type i, Value x) { Value v0, v1; ppl_Coefficient_t c; value_init (v0); value_init (v1); ppl_new_Coefficient (&c); ppl_Linear_Expression_coefficient (e, i, c); ppl_Coefficient_to_mpz_t (c, v1); value_oppose (v1, v1); value_assign (v0, x); value_addto (v0, v0, v1); ppl_assign_Coefficient_from_mpz_t (c, v0); ppl_Linear_Expression_add_to_coefficient (e, i, c); value_clear (v0); value_clear (v1); ppl_delete_Coefficient (c); } /* Insert after X NB_NEW_DIMS empty dimensions into PH. With x = 3 and nb_new_dims = 4 | d0 d1 d2 d3 d4 is transformed to | d0 d1 d2 x0 x1 x2 x3 d3 d4 | map = {0, 1, 2, 7, 8, 3, 4, 5, 6} */ void ppl_insert_dimensions_pointset (ppl_Pointset_Powerset_C_Polyhedron_t ph, int x, int nb_new_dims) { ppl_dimension_type i, dim; ppl_dimension_type *map; ppl_dimension_type x_ppl, nb_new_dims_ppl; x_ppl = (ppl_dimension_type) x; nb_new_dims_ppl = (ppl_dimension_type) nb_new_dims; ppl_Pointset_Powerset_C_Polyhedron_space_dimension (ph, &dim); ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed (ph, nb_new_dims); map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim + nb_new_dims); for (i = 0; i < x_ppl; i++) map[i] = i; for (i = x_ppl; i < x_ppl + nb_new_dims_ppl; i++) map[dim + i - x_ppl] = i; for (i = x_ppl + nb_new_dims_ppl; i < dim + nb_new_dims_ppl; i++) map[i - nb_new_dims_ppl] = i; ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (ph, map, dim + nb_new_dims); free (map); } /* Insert after X NB_NEW_DIMS empty dimensions into PH. With x = 3 and nb_new_dims = 4 | d0 d1 d2 d3 d4 is transformed to | d0 d1 d2 x0 x1 x2 x3 d3 d4 | map = {0, 1, 2, 7, 8, 3, 4, 5, 6} */ void ppl_insert_dimensions (ppl_Polyhedron_t ph, int x, int nb_new_dims) { ppl_dimension_type i, dim; ppl_dimension_type *map; ppl_dimension_type x_ppl, nb_new_dims_ppl; x_ppl = (ppl_dimension_type) x; nb_new_dims_ppl = (ppl_dimension_type) nb_new_dims; ppl_Polyhedron_space_dimension (ph, &dim); ppl_Polyhedron_add_space_dimensions_and_embed (ph, nb_new_dims); map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim + nb_new_dims); for (i = 0; i < x_ppl; i++) map[i] = i; for (i = x_ppl; i < x_ppl + nb_new_dims_ppl; i++) map[dim + i - x_ppl] = i; for (i = x_ppl + nb_new_dims_ppl; i < dim + nb_new_dims_ppl; i++) map[i - nb_new_dims_ppl] = i; ppl_Polyhedron_map_space_dimensions (ph, map, dim + nb_new_dims); free (map); } /* Based on the original polyhedron PH, returns a new polyhedron with an extra dimension placed at position LOOP + 1 that slices the dimension LOOP into strips of size STRIDE. */ ppl_Polyhedron_t ppl_strip_loop (ppl_Polyhedron_t ph, ppl_dimension_type loop, int stride) { ppl_const_Constraint_System_t pcs; ppl_Constraint_System_const_iterator_t cit, end; ppl_const_Constraint_t cstr; ppl_Linear_Expression_t expr; int v; ppl_dimension_type dim; ppl_Polyhedron_t res; ppl_Coefficient_t c; Value val; value_init (val); ppl_new_Coefficient (&c); ppl_Polyhedron_space_dimension (ph, &dim); ppl_Polyhedron_get_constraints (ph, &pcs); /* Start from a copy of the constraints. */ ppl_new_C_Polyhedron_from_space_dimension (&res, dim + 1, 0); ppl_Polyhedron_add_constraints (res, pcs); /* Add an empty dimension for the strip loop. */ ppl_insert_dimensions (res, loop, 1); /* Identify the constraints that define the lower and upper bounds of the strip-mined loop, and add them to the strip loop. */ { ppl_Polyhedron_t tmp; ppl_new_C_Polyhedron_from_space_dimension (&tmp, dim + 1, 0); ppl_new_Constraint_System_const_iterator (&cit); ppl_new_Constraint_System_const_iterator (&end); for (ppl_Constraint_System_begin (pcs, cit), ppl_Constraint_System_end (pcs, end); !ppl_Constraint_System_const_iterator_equal_test (cit, end); ppl_Constraint_System_const_iterator_increment (cit)) { ppl_Constraint_System_const_iterator_dereference (cit, &cstr); ppl_new_Linear_Expression_from_Constraint (&expr, cstr); ppl_Linear_Expression_coefficient (expr, loop, c); ppl_delete_Linear_Expression (expr); ppl_Coefficient_to_mpz_t (c, val); v = value_get_si (val); if (0 < v || v < 0) ppl_Polyhedron_add_constraint (tmp, cstr); } ppl_delete_Constraint_System_const_iterator (cit); ppl_delete_Constraint_System_const_iterator (end); ppl_insert_dimensions (tmp, loop + 1, 1); ppl_Polyhedron_get_constraints (tmp, &pcs); ppl_Polyhedron_add_constraints (res, pcs); ppl_delete_Polyhedron (tmp); } /* Lower bound of a tile starts at "stride * outer_iv". */ { ppl_Constraint_t new_cstr; ppl_new_Linear_Expression_with_dimension (&expr, dim + 1); ppl_set_coef (expr, loop + 1, 1); ppl_set_coef (expr, loop, -1 * stride); ppl_new_Constraint (&new_cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL); ppl_delete_Linear_Expression (expr); ppl_Polyhedron_add_constraint (res, new_cstr); ppl_delete_Constraint (new_cstr); } /* Upper bound of a tile stops at "stride * outer_iv + stride - 1", or at the old upper bound that is not modified. */ { ppl_Constraint_t new_cstr; ppl_new_Linear_Expression_with_dimension (&expr, dim + 1); ppl_set_coef (expr, loop + 1, -1); ppl_set_coef (expr, loop, stride); ppl_set_inhomogeneous (expr, stride - 1); ppl_new_Constraint (&new_cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL); ppl_delete_Linear_Expression (expr); ppl_Polyhedron_add_constraint (res, new_cstr); ppl_delete_Constraint (new_cstr); } value_clear (val); ppl_delete_Coefficient (c); return res; } /* Lexicographically compares two linear expressions A and B and returns negative when A < B, 0 when A == B and positive when A > B. */ int ppl_lexico_compare_linear_expressions (ppl_Linear_Expression_t a, ppl_Linear_Expression_t b) { ppl_dimension_type min_length, length1, length2; ppl_dimension_type i; ppl_Coefficient_t c; int res; Value va, vb; ppl_Linear_Expression_space_dimension (a, &length1); ppl_Linear_Expression_space_dimension (b, &length2); ppl_new_Coefficient (&c); value_init (va); value_init (vb); if (length1 < length2) min_length = length1; else min_length = length2; for (i = 0; i < min_length; i++) { ppl_Linear_Expression_coefficient (a, i, c); ppl_Coefficient_to_mpz_t (c, va); ppl_Linear_Expression_coefficient (b, i, c); ppl_Coefficient_to_mpz_t (c, vb); res = value_compare (va, vb); if (res == 0) continue; value_clear (va); value_clear (vb); ppl_delete_Coefficient (c); return res; } value_clear (va); value_clear (vb); ppl_delete_Coefficient (c); return length1 - length2; } /* Print to FILE the polyhedron PH under its PolyLib matrix form. */ void ppl_print_polyhedron_matrix (FILE *file, ppl_const_Polyhedron_t ph) { CloogMatrix *mat = new_Cloog_Matrix_from_ppl_Polyhedron (ph); cloog_matrix_print (file, mat); cloog_matrix_free (mat); } /* Print to FILE the linear expression LE. */ void ppl_print_linear_expr (FILE *file, ppl_Linear_Expression_t le) { ppl_Constraint_t c; ppl_Polyhedron_t pol; ppl_dimension_type dim; ppl_Linear_Expression_space_dimension (le, &dim); ppl_new_C_Polyhedron_from_space_dimension (&pol, dim, 0); ppl_new_Constraint (&c, le, PPL_CONSTRAINT_TYPE_EQUAL); ppl_Polyhedron_add_constraint (pol, c); ppl_print_polyhedron_matrix (file, pol); } /* Print to STDERR the linear expression LE. */ void debug_ppl_linear_expr (ppl_Linear_Expression_t le) { ppl_print_linear_expr (stderr, le); } /* Print to FILE the powerset PS in its PolyLib matrix form. */ void ppl_print_powerset_matrix (FILE *file, ppl_Pointset_Powerset_C_Polyhedron_t ps) { ppl_Pointset_Powerset_C_Polyhedron_iterator_t it, end; ppl_new_Pointset_Powerset_C_Polyhedron_iterator (&it); ppl_new_Pointset_Powerset_C_Polyhedron_iterator (&end); for (ppl_Pointset_Powerset_C_Polyhedron_iterator_begin (ps, it), ppl_Pointset_Powerset_C_Polyhedron_iterator_end (ps, end); !ppl_Pointset_Powerset_C_Polyhedron_iterator_equal_test (it, end); ppl_Pointset_Powerset_C_Polyhedron_iterator_increment (it)) { ppl_const_Polyhedron_t ph; ppl_Pointset_Powerset_C_Polyhedron_iterator_dereference (it, &ph); ppl_print_polyhedron_matrix (file, ph); } ppl_delete_Pointset_Powerset_C_Polyhedron_iterator (it); ppl_delete_Pointset_Powerset_C_Polyhedron_iterator (end); } /* Print to STDERR the polyhedron PH under its PolyLib matrix form. */ void debug_ppl_polyhedron_matrix (ppl_Polyhedron_t ph) { ppl_print_polyhedron_matrix (stderr, ph); } /* Print to STDERR the powerset PS in its PolyLib matrix form. */ void debug_ppl_powerset_matrix (ppl_Pointset_Powerset_C_Polyhedron_t ps) { ppl_print_powerset_matrix (stderr, ps); } /* Read from FILE a polyhedron under PolyLib matrix form and return a PPL polyhedron object. */ void ppl_read_polyhedron_matrix (ppl_Polyhedron_t *ph, FILE *file) { CloogMatrix *mat = cloog_matrix_read (file); new_C_Polyhedron_from_Cloog_Matrix (ph, mat); cloog_matrix_free (mat); } /* Return in RES the maximum of the linear expression LE on the pointset powerset of polyhedra PS. */ void ppl_max_for_le_pointset (ppl_Pointset_Powerset_C_Polyhedron_t ps, ppl_Linear_Expression_t le, Value res) { ppl_Coefficient_t num, denom; Value dv, nv; int maximum, err; value_init (nv); value_init (dv); ppl_new_Coefficient (&num); ppl_new_Coefficient (&denom); err = ppl_Pointset_Powerset_C_Polyhedron_maximize (ps, le, num, denom, &maximum); if (err > 0) { ppl_Coefficient_to_mpz_t (num, nv); ppl_Coefficient_to_mpz_t (denom, dv); gcc_assert (value_notzero_p (dv)); value_division (res, nv, dv); } value_clear (nv); value_clear (dv); ppl_delete_Coefficient (num); ppl_delete_Coefficient (denom); } /* Return in RES the maximum of the linear expression LE on the polyhedron POL. */ void ppl_min_for_le_polyhedron (ppl_Polyhedron_t pol, ppl_Linear_Expression_t le, Value res) { ppl_Coefficient_t num, denom; Value dv, nv; int maximum, err; value_init (nv); value_init (dv); ppl_new_Coefficient (&num); ppl_new_Coefficient (&denom); err = ppl_Polyhedron_minimize (pol, le, num, denom, &maximum); if (err > 0) { ppl_Coefficient_to_mpz_t (num, nv); ppl_Coefficient_to_mpz_t (denom, dv); gcc_assert (value_notzero_p (dv)); value_division (res, nv, dv); } value_clear (nv); value_clear (dv); ppl_delete_Coefficient (num); ppl_delete_Coefficient (denom); } #endif