Mercurial > hg > CbC > CbC_gcc
view gcc/graphite-clast-to-gimple.c @ 90:99e7b6776dd1
implemeted __rectype expression. add CbC-exanples/fact-rectype.s
author | Nobuyasu Oshiro <dimolto@cr.ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 25 Dec 2011 04:04:42 +0900 |
parents | f6334be47118 |
children |
line wrap: on
line source
/* Translation of CLAST (CLooG AST) to Gimple. Copyright (C) 2009, 2010 Free Software Foundation, Inc. Contributed by Sebastian Pop <sebastian.pop@amd.com>. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "diagnostic-core.h" #include "tree-flow.h" #include "tree-dump.h" #include "cfgloop.h" #include "tree-chrec.h" #include "tree-data-ref.h" #include "tree-scalar-evolution.h" #include "sese.h" #ifdef HAVE_cloog #include "cloog/cloog.h" #include "ppl_c.h" #include "graphite-cloog-util.h" #include "graphite-ppl.h" #include "graphite-poly.h" #include "graphite-clast-to-gimple.h" #include "graphite-dependences.h" #include "graphite-cloog-compat.h" /* This flag is set when an error occurred during the translation of CLAST to Gimple. */ static bool gloog_error; /* Verifies properties that GRAPHITE should maintain during translation. */ static inline void graphite_verify (void) { #ifdef ENABLE_CHECKING verify_loop_structure (); verify_dominators (CDI_DOMINATORS); verify_loop_closed_ssa (true); #endif } /* Stores the INDEX in a vector for a given clast NAME. */ typedef struct clast_name_index { int index; const char *name; } *clast_name_index_p; /* Returns a pointer to a new element of type clast_name_index_p built from NAME and INDEX. */ static inline clast_name_index_p new_clast_name_index (const char *name, int index) { clast_name_index_p res = XNEW (struct clast_name_index); res->name = name; res->index = index; return res; } /* For a given clast NAME, returns -1 if it does not correspond to any parameter, or otherwise, returns the index in the PARAMS or SCATTERING_DIMENSIONS vector. */ static inline int clast_name_to_index (clast_name_p name, htab_t index_table) { struct clast_name_index tmp; PTR *slot; #ifdef CLOOG_ORG gcc_assert (name->type == clast_expr_name); tmp.name = ((const struct clast_name*) name)->name; #else tmp.name = name; #endif slot = htab_find_slot (index_table, &tmp, NO_INSERT); if (slot && *slot) return ((struct clast_name_index *) *slot)->index; return -1; } /* Records in INDEX_TABLE the INDEX for NAME. */ static inline void save_clast_name_index (htab_t index_table, const char *name, int index) { struct clast_name_index tmp; PTR *slot; tmp.name = name; slot = htab_find_slot (index_table, &tmp, INSERT); if (slot) { if (*slot) free (*slot); *slot = new_clast_name_index (name, index); } } /* Computes a hash function for database element ELT. */ static inline hashval_t clast_name_index_elt_info (const void *elt) { return htab_hash_pointer (((const struct clast_name_index *) elt)->name); } /* Compares database elements E1 and E2. */ static inline int eq_clast_name_indexes (const void *e1, const void *e2) { const struct clast_name_index *elt1 = (const struct clast_name_index *) e1; const struct clast_name_index *elt2 = (const struct clast_name_index *) e2; return (elt1->name == elt2->name); } /* For a given scattering dimension, return the new induction variable associated to it. */ static inline tree newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth) { return VEC_index (tree, newivs, depth); } /* Returns the tree variable from the name NAME that was given in Cloog representation. */ static tree clast_name_to_gcc (clast_name_p name, sese region, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { int index; VEC (tree, heap) *params = SESE_PARAMS (region); if (params && params_index) { index = clast_name_to_index (name, params_index); if (index >= 0) return VEC_index (tree, params, index); } gcc_assert (newivs && newivs_index); index = clast_name_to_index (name, newivs_index); gcc_assert (index >= 0); return newivs_to_depth_to_newiv (newivs, index); } /* Returns the signed maximal precision type for expressions TYPE1 and TYPE2. */ static tree max_signed_precision_type (tree type1, tree type2) { int p1 = TYPE_PRECISION (type1); int p2 = TYPE_PRECISION (type2); int precision; tree type; enum machine_mode mode; if (p1 > p2) precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1; else precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2; if (precision > BITS_PER_WORD) { gloog_error = true; return integer_type_node; } mode = smallest_mode_for_size (precision, MODE_INT); precision = GET_MODE_PRECISION (mode); type = build_nonstandard_integer_type (precision, false); if (!type) { gloog_error = true; return integer_type_node; } return type; } /* Returns the maximal precision type for expressions TYPE1 and TYPE2. */ static tree max_precision_type (tree type1, tree type2) { if (POINTER_TYPE_P (type1)) return type1; if (POINTER_TYPE_P (type2)) return type2; if (!TYPE_UNSIGNED (type1) || !TYPE_UNSIGNED (type2)) return max_signed_precision_type (type1, type2); return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2; } static tree clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *, htab_t, htab_t); /* Converts a Cloog reduction expression R with reduction operation OP to a GCC expression tree of type TYPE. */ static tree clast_to_gcc_expression_red (tree type, enum tree_code op, struct clast_reduction *r, sese region, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { int i; tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs, newivs_index, params_index); tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type; for (i = 1; i < r->n; i++) { tree t = clast_to_gcc_expression (operand_type, r->elts[i], region, newivs, newivs_index, params_index); res = fold_build2 (op, type, res, t); } return res; } /* Converts a Cloog AST expression E back to a GCC expression tree of type TYPE. */ static tree clast_to_gcc_expression (tree type, struct clast_expr *e, sese region, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { switch (e->type) { case clast_expr_term: { struct clast_term *t = (struct clast_term *) e; if (t->var) { if (mpz_cmp_si (t->val, 1) == 0) { tree name = clast_name_to_gcc (t->var, region, newivs, newivs_index, params_index); if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type)) name = fold_convert (sizetype, name); name = fold_convert (type, name); return name; } else if (mpz_cmp_si (t->val, -1) == 0) { tree name = clast_name_to_gcc (t->var, region, newivs, newivs_index, params_index); if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type)) name = fold_convert (sizetype, name); name = fold_convert (type, name); return fold_build1 (NEGATE_EXPR, type, name); } else { tree name = clast_name_to_gcc (t->var, region, newivs, newivs_index, params_index); tree cst = gmp_cst_to_tree (type, t->val); if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type)) name = fold_convert (sizetype, name); name = fold_convert (type, name); if (!POINTER_TYPE_P (type)) return fold_build2 (MULT_EXPR, type, cst, name); gloog_error = true; return cst; } } else return gmp_cst_to_tree (type, t->val); } case clast_expr_red: { struct clast_reduction *r = (struct clast_reduction *) e; switch (r->type) { case clast_red_sum: return clast_to_gcc_expression_red (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR, r, region, newivs, newivs_index, params_index); case clast_red_min: return clast_to_gcc_expression_red (type, MIN_EXPR, r, region, newivs, newivs_index, params_index); case clast_red_max: return clast_to_gcc_expression_red (type, MAX_EXPR, r, region, newivs, newivs_index, params_index); default: gcc_unreachable (); } break; } case clast_expr_bin: { struct clast_binary *b = (struct clast_binary *) e; struct clast_expr *lhs = (struct clast_expr *) b->LHS; tree tl = clast_to_gcc_expression (type, lhs, region, newivs, newivs_index, params_index); tree tr = gmp_cst_to_tree (type, b->RHS); switch (b->type) { case clast_bin_fdiv: return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr); case clast_bin_cdiv: return fold_build2 (CEIL_DIV_EXPR, type, tl, tr); case clast_bin_div: return fold_build2 (EXACT_DIV_EXPR, type, tl, tr); case clast_bin_mod: return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr); default: gcc_unreachable (); } } default: gcc_unreachable (); } return NULL_TREE; } /* Return the precision needed to represent the value VAL. */ static int precision_for_value (mpz_t val) { mpz_t x, y, two; int precision; mpz_init (x); mpz_init (y); mpz_init (two); mpz_set_si (x, 2); mpz_set (y, val); mpz_set_si (two, 2); precision = 1; if (mpz_sgn (y) < 0) mpz_neg (y, y); while (mpz_cmp (y, x) >= 0) { mpz_mul (x, x, two); precision++; } mpz_clear (x); mpz_clear (y); mpz_clear (two); return precision; } /* Return the precision needed to represent the values between LOW and UP. */ static int precision_for_interval (mpz_t low, mpz_t up) { mpz_t diff; int precision; gcc_assert (mpz_cmp (low, up) <= 0); mpz_init (diff); mpz_sub (diff, up, low); precision = precision_for_value (diff); mpz_clear (diff); return precision; } /* Return a type that could represent the integer value VAL. */ static tree gcc_type_for_interval (mpz_t low, mpz_t up) { bool unsigned_p = true; int precision, prec_up, prec_int; tree type; enum machine_mode mode; gcc_assert (mpz_cmp (low, up) <= 0); prec_up = precision_for_value (up); prec_int = precision_for_interval (low, up); precision = MAX (prec_up, prec_int); if (precision > BITS_PER_WORD) { gloog_error = true; return integer_type_node; } if (mpz_sgn (low) <= 0) unsigned_p = false; else if (precision < BITS_PER_WORD) { unsigned_p = false; precision++; } mode = smallest_mode_for_size (precision, MODE_INT); precision = GET_MODE_PRECISION (mode); type = build_nonstandard_integer_type (precision, unsigned_p); if (!type) { gloog_error = true; return integer_type_node; } return type; } /* Return a type that could represent the integer value VAL, or otherwise return NULL_TREE. */ static tree gcc_type_for_value (mpz_t val) { return gcc_type_for_interval (val, val); } /* Return the type for the clast_term T used in STMT. */ static tree gcc_type_for_clast_term (struct clast_term *t, sese region, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { gcc_assert (t->expr.type == clast_expr_term); if (!t->var) return gcc_type_for_value (t->val); return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs, newivs_index, params_index)); } static tree gcc_type_for_clast_expr (struct clast_expr *, sese, VEC (tree, heap) *, htab_t, htab_t); /* Return the type for the clast_reduction R used in STMT. */ static tree gcc_type_for_clast_red (struct clast_reduction *r, sese region, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { int i; tree type = NULL_TREE; if (r->n == 1) return gcc_type_for_clast_expr (r->elts[0], region, newivs, newivs_index, params_index); switch (r->type) { case clast_red_sum: case clast_red_min: case clast_red_max: type = gcc_type_for_clast_expr (r->elts[0], region, newivs, newivs_index, params_index); for (i = 1; i < r->n; i++) type = max_precision_type (type, gcc_type_for_clast_expr (r->elts[i], region, newivs, newivs_index, params_index)); return type; default: break; } gcc_unreachable (); return NULL_TREE; } /* Return the type for the clast_binary B used in STMT. */ static tree gcc_type_for_clast_bin (struct clast_binary *b, sese region, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { tree l = gcc_type_for_clast_expr ((struct clast_expr *) b->LHS, region, newivs, newivs_index, params_index); tree r = gcc_type_for_value (b->RHS); return max_signed_precision_type (l, r); } /* Returns the type for the CLAST expression E when used in statement STMT. */ static tree gcc_type_for_clast_expr (struct clast_expr *e, sese region, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { switch (e->type) { case clast_expr_term: return gcc_type_for_clast_term ((struct clast_term *) e, region, newivs, newivs_index, params_index); case clast_expr_red: return gcc_type_for_clast_red ((struct clast_reduction *) e, region, newivs, newivs_index, params_index); case clast_expr_bin: return gcc_type_for_clast_bin ((struct clast_binary *) e, region, newivs, newivs_index, params_index); default: gcc_unreachable (); } return NULL_TREE; } /* Returns the type for the equation CLEQ. */ static tree gcc_type_for_clast_eq (struct clast_equation *cleq, sese region, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { tree l = gcc_type_for_clast_expr (cleq->LHS, region, newivs, newivs_index, params_index); tree r = gcc_type_for_clast_expr (cleq->RHS, region, newivs, newivs_index, params_index); return max_precision_type (l, r); } /* Translates a clast equation CLEQ to a tree. */ static tree graphite_translate_clast_equation (sese region, struct clast_equation *cleq, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { enum tree_code comp; tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index, params_index); tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs, newivs_index, params_index); tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs, newivs_index, params_index); if (cleq->sign == 0) comp = EQ_EXPR; else if (cleq->sign > 0) comp = GE_EXPR; else comp = LE_EXPR; return fold_build2 (comp, boolean_type_node, lhs, rhs); } /* Creates the test for the condition in STMT. */ static tree graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { tree cond = NULL; int i; for (i = 0; i < stmt->n; i++) { tree eq = graphite_translate_clast_equation (region, &stmt->eq[i], newivs, newivs_index, params_index); if (cond) cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq); else cond = eq; } return cond; } /* Creates a new if region corresponding to Cloog's guard. */ static edge graphite_create_new_guard (sese region, edge entry_edge, struct clast_guard *stmt, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs, newivs_index, params_index); edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr); return exit_edge; } /* Compute the lower bound LOW and upper bound UP for the induction variable at LEVEL for the statement PBB, based on the transformed scattering of PBB: T|I|G|Cst, with T the scattering transform, I the iteration domain, and G the context parameters. */ static void compute_bounds_for_level (poly_bb_p pbb, int level, mpz_t low, mpz_t up) { ppl_Pointset_Powerset_C_Polyhedron_t ps; ppl_Linear_Expression_t le; combine_context_id_scat (&ps, pbb, false); /* Prepare the linear expression corresponding to the level that we want to maximize/minimize. */ { ppl_dimension_type dim = pbb_nb_scattering_transform (pbb) + pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb); ppl_new_Linear_Expression_with_dimension (&le, dim); ppl_set_coef (le, 2 * level + 1, 1); } ppl_max_for_le_pointset (ps, le, up); ppl_min_for_le_pointset (ps, le, low); ppl_delete_Linear_Expression (le); ppl_delete_Pointset_Powerset_C_Polyhedron (ps); } /* Compute the type for the induction variable at LEVEL for the statement PBB, based on the transformed schedule of PBB. */ static tree compute_type_for_level (poly_bb_p pbb, int level) { mpz_t low, up; tree type; mpz_init (low); mpz_init (up); compute_bounds_for_level (pbb, level, low, up); type = gcc_type_for_interval (low, up); mpz_clear (low); mpz_clear (up); return type; } /* Walks a CLAST and returns the first statement in the body of a loop. */ static struct clast_user_stmt * clast_get_body_of_loop (struct clast_stmt *stmt) { if (!stmt || CLAST_STMT_IS_A (stmt, stmt_user)) return (struct clast_user_stmt *) stmt; if (CLAST_STMT_IS_A (stmt, stmt_for)) return clast_get_body_of_loop (((struct clast_for *) stmt)->body); if (CLAST_STMT_IS_A (stmt, stmt_guard)) return clast_get_body_of_loop (((struct clast_guard *) stmt)->then); if (CLAST_STMT_IS_A (stmt, stmt_block)) return clast_get_body_of_loop (((struct clast_block *) stmt)->body); gcc_unreachable (); } /* Returns the type for the induction variable for the loop translated from STMT_FOR. */ static tree gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for, int level, tree lb_type, tree ub_type) { struct clast_stmt *stmt = (struct clast_stmt *) stmt_for; struct clast_user_stmt *body = clast_get_body_of_loop (stmt); CloogStatement *cs = body->statement; poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs); return max_signed_precision_type (lb_type, max_precision_type (ub_type, compute_type_for_level (pbb, level - 1))); } /* Creates a new LOOP corresponding to Cloog's STMT. Inserts an induction variable for the new LOOP. New LOOP is attached to CFG starting at ENTRY_EDGE. LOOP is inserted into the loop tree and becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds CLooG's scattering name to the induction variable created for the loop of STMT. The new induction variable is inserted in the NEWIVS vector. */ static struct loop * graphite_create_new_loop (sese region, edge entry_edge, struct clast_for *stmt, loop_p outer, VEC (tree, heap) **newivs, htab_t newivs_index, htab_t params_index, int level) { tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, *newivs, newivs_index, params_index); tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, *newivs, newivs_index, params_index); tree type = gcc_type_for_iv_of_clast_loop (stmt, level, lb_type, ub_type); tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs, newivs_index, params_index); tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs, newivs_index, params_index); tree stride = gmp_cst_to_tree (type, stmt->stride); tree ivvar = create_tmp_var (type, "graphite_IV"); tree iv, iv_after_increment; loop_p loop = create_empty_loop_on_edge (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment, outer ? outer : entry_edge->src->loop_father); add_referenced_var (ivvar); save_clast_name_index (newivs_index, stmt->iterator, VEC_length (tree, *newivs)); VEC_safe_push (tree, heap, *newivs, iv); return loop; } /* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the induction variables of the loops around GBB in SESE. */ static void build_iv_mapping (VEC (tree, heap) *iv_map, sese region, VEC (tree, heap) *newivs, htab_t newivs_index, struct clast_user_stmt *user_stmt, htab_t params_index) { struct clast_stmt *t; int depth = 0; CloogStatement *cs = user_stmt->statement; poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs); gimple_bb_p gbb = PBB_BLACK_BOX (pbb); for (t = user_stmt->substitutions; t; t = t->next, depth++) { struct clast_expr *expr = (struct clast_expr *) ((struct clast_assignment *)t)->RHS; tree type = gcc_type_for_clast_expr (expr, region, newivs, newivs_index, params_index); tree new_name = clast_to_gcc_expression (type, expr, region, newivs, newivs_index, params_index); loop_p old_loop = gbb_loop_at_index (gbb, region, depth); VEC_replace (tree, iv_map, old_loop->num, new_name); } } /* Construct bb_pbb_def with BB and PBB. */ static bb_pbb_def * new_bb_pbb_def (basic_block bb, poly_bb_p pbb) { bb_pbb_def *bb_pbb_p; bb_pbb_p = XNEW (bb_pbb_def); bb_pbb_p->bb = bb; bb_pbb_p->pbb = pbb; return bb_pbb_p; } /* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */ static void mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping) { bb_pbb_def tmp; PTR *x; tmp.bb = bb; x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT); if (x && !*x) *x = new_bb_pbb_def (bb, pbb); } /* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */ static poly_bb_p find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb) { bb_pbb_def tmp; PTR *slot; tmp.bb = bb; slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT); if (slot && *slot) return ((bb_pbb_def *) *slot)->pbb; return NULL; } /* Check data dependency in LOOP at scattering level LEVEL. BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping. */ static bool dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level) { unsigned i,j; basic_block *bbs = get_loop_body_in_dom_order (loop); for (i = 0; i < loop->num_nodes; i++) { poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]); if (pbb1 == NULL) continue; for (j = 0; j < loop->num_nodes; j++) { poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]); if (pbb2 == NULL) continue; if (dependency_between_pbbs_p (pbb1, pbb2, level)) { free (bbs); return true; } } } free (bbs); return false; } /* Translates a clast user statement STMT to gimple. - REGION is the sese region we used to generate the scop. - NEXT_E is the edge where new generated code should be attached. - CONTEXT_LOOP is the loop in which the generated code will be placed - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. - PARAMS_INDEX connects the cloog parameters with the gimple parameters in the sese region. */ static edge translate_clast_user (sese region, struct clast_user_stmt *stmt, edge next_e, VEC (tree, heap) **newivs, htab_t newivs_index, htab_t bb_pbb_mapping, htab_t params_index) { int i, nb_loops; basic_block new_bb; poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement); gimple_bb_p gbb = PBB_BLACK_BOX (pbb); VEC (tree, heap) *iv_map; if (GBB_BB (gbb) == ENTRY_BLOCK_PTR) return next_e; nb_loops = number_of_loops (); iv_map = VEC_alloc (tree, heap, nb_loops); for (i = 0; i < nb_loops; i++) VEC_quick_push (tree, iv_map, NULL_TREE); build_iv_mapping (iv_map, region, *newivs, newivs_index, stmt, params_index); next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region, next_e, iv_map); VEC_free (tree, heap, iv_map); new_bb = next_e->src; mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping); update_ssa (TODO_update_ssa); return next_e; } /* Creates a new if region protecting the loop to be executed, if the execution count is zero (lb > ub). */ static edge graphite_create_new_loop_guard (sese region, edge entry_edge, struct clast_for *stmt, VEC (tree, heap) *newivs, htab_t newivs_index, htab_t params_index) { tree cond_expr; edge exit_edge; tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, newivs, newivs_index, params_index); tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, newivs, newivs_index, params_index); tree type = max_precision_type (lb_type, ub_type); tree lb = clast_to_gcc_expression (type, stmt->LB, region, newivs, newivs_index, params_index); tree ub = clast_to_gcc_expression (type, stmt->UB, region, newivs, newivs_index, params_index); /* When ub is simply a constant or a parameter, use lb <= ub. */ if (TREE_CODE (ub) == INTEGER_CST || TREE_CODE (ub) == SSA_NAME) cond_expr = fold_build2 (LE_EXPR, boolean_type_node, lb, ub); else { tree one = (POINTER_TYPE_P (type) ? size_one_node : fold_convert (type, integer_one_node)); /* Adding +1 and using LT_EXPR helps with loop latches that have a loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes 2^k-1 due to integer overflow, and the condition lb <= ub is true, even if we do not want this. However lb < ub + 1 is false, as expected. */ tree ub_one = fold_build2 (POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR, type, ub, one); cond_expr = fold_build2 (LT_EXPR, boolean_type_node, lb, ub_one); } exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr); return exit_edge; } static edge translate_clast (sese, loop_p, struct clast_stmt *, edge, VEC (tree, heap) **, htab_t, htab_t, int, htab_t); /* Create the loop for a clast for statement. - REGION is the sese region we used to generate the scop. - NEXT_E is the edge where new generated code should be attached. - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. - PARAMS_INDEX connects the cloog parameters with the gimple parameters in the sese region. */ static edge translate_clast_for_loop (sese region, loop_p context_loop, struct clast_for *stmt, edge next_e, VEC (tree, heap) **newivs, htab_t newivs_index, htab_t bb_pbb_mapping, int level, htab_t params_index) { struct loop *loop = graphite_create_new_loop (region, next_e, stmt, context_loop, newivs, newivs_index, params_index, level); edge last_e = single_exit (loop); edge to_body = single_succ_edge (loop->header); basic_block after = to_body->dest; /* Create a basic block for loop close phi nodes. */ last_e = single_succ_edge (split_edge (last_e)); /* Translate the body of the loop. */ next_e = translate_clast (region, loop, stmt->body, to_body, newivs, newivs_index, bb_pbb_mapping, level + 1, params_index); redirect_edge_succ_nodup (next_e, after); set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src); if (flag_loop_parallelize_all && !dependency_in_loop_p (loop, bb_pbb_mapping, get_scattering_level (level))) loop->can_be_parallel = true; return last_e; } /* Translates a clast for statement STMT to gimple. First a guard is created protecting the loop, if it is executed zero times. In this guard we create the real loop structure. - REGION is the sese region we used to generate the scop. - NEXT_E is the edge where new generated code should be attached. - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. - PARAMS_INDEX connects the cloog parameters with the gimple parameters in the sese region. */ static edge translate_clast_for (sese region, loop_p context_loop, struct clast_for *stmt, edge next_e, VEC (tree, heap) **newivs, htab_t newivs_index, htab_t bb_pbb_mapping, int level, htab_t params_index) { edge last_e = graphite_create_new_loop_guard (region, next_e, stmt, *newivs, newivs_index, params_index); edge true_e = get_true_edge_from_guard_bb (next_e->dest); translate_clast_for_loop (region, context_loop, stmt, true_e, newivs, newivs_index, bb_pbb_mapping, level, params_index); return last_e; } /* Translates a clast guard statement STMT to gimple. - REGION is the sese region we used to generate the scop. - NEXT_E is the edge where new generated code should be attached. - CONTEXT_LOOP is the loop in which the generated code will be placed - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. - PARAMS_INDEX connects the cloog parameters with the gimple parameters in the sese region. */ static edge translate_clast_guard (sese region, loop_p context_loop, struct clast_guard *stmt, edge next_e, VEC (tree, heap) **newivs, htab_t newivs_index, htab_t bb_pbb_mapping, int level, htab_t params_index) { edge last_e = graphite_create_new_guard (region, next_e, stmt, *newivs, newivs_index, params_index); edge true_e = get_true_edge_from_guard_bb (next_e->dest); translate_clast (region, context_loop, stmt->then, true_e, newivs, newivs_index, bb_pbb_mapping, level, params_index); return last_e; } /* Translates a CLAST statement STMT to GCC representation in the context of a SESE. - NEXT_E is the edge where new generated code should be attached. - CONTEXT_LOOP is the loop in which the generated code will be placed - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ static edge translate_clast (sese region, loop_p context_loop, struct clast_stmt *stmt, edge next_e, VEC (tree, heap) **newivs, htab_t newivs_index, htab_t bb_pbb_mapping, int level, htab_t params_index) { if (!stmt) return next_e; if (CLAST_STMT_IS_A (stmt, stmt_root)) ; /* Do nothing. */ else if (CLAST_STMT_IS_A (stmt, stmt_user)) next_e = translate_clast_user (region, (struct clast_user_stmt *) stmt, next_e, newivs, newivs_index, bb_pbb_mapping, params_index); else if (CLAST_STMT_IS_A (stmt, stmt_for)) next_e = translate_clast_for (region, context_loop, (struct clast_for *) stmt, next_e, newivs, newivs_index, bb_pbb_mapping, level, params_index); else if (CLAST_STMT_IS_A (stmt, stmt_guard)) next_e = translate_clast_guard (region, context_loop, (struct clast_guard *) stmt, next_e, newivs, newivs_index, bb_pbb_mapping, level, params_index); else if (CLAST_STMT_IS_A (stmt, stmt_block)) next_e = translate_clast (region, context_loop, ((struct clast_block *) stmt)->body, next_e, newivs, newivs_index, bb_pbb_mapping, level, params_index); else gcc_unreachable(); recompute_all_dominators (); graphite_verify (); return translate_clast (region, context_loop, stmt->next, next_e, newivs, newivs_index, bb_pbb_mapping, level, params_index); } /* Free the SCATTERING domain list. */ static void free_scattering (CloogScatteringList *scattering) { while (scattering) { CloogScattering *dom = cloog_scattering (scattering); CloogScatteringList *next = cloog_next_scattering (scattering); cloog_scattering_free (dom); free (scattering); scattering = next; } } /* Initialize Cloog's parameter names from the names used in GIMPLE. Initialize Cloog's iterator names, using 'graphite_iterator_%d' from 0 to scop_nb_loops (scop). */ static void initialize_cloog_names (scop_p scop, CloogProgram *prog) { sese region = SCOP_REGION (scop); int i; int nb_iterators = scop_max_loop_depth (scop); int nb_scattering = cloog_program_nb_scattdims (prog); int nb_parameters = VEC_length (tree, SESE_PARAMS (region)); char **iterators = XNEWVEC (char *, nb_iterators * 2); char **scattering = XNEWVEC (char *, nb_scattering); char **parameters= XNEWVEC (char *, nb_parameters); cloog_program_set_names (prog, cloog_names_malloc ()); for (i = 0; i < nb_parameters; i++) { tree param = VEC_index (tree, SESE_PARAMS(region), i); const char *name = get_name (param); int len; if (!name) name = "T"; len = strlen (name); len += 17; parameters[i] = XNEWVEC (char, len + 1); snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param)); } cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters); cloog_names_set_parameters (cloog_program_names (prog), parameters); for (i = 0; i < nb_iterators; i++) { int len = 4 + 16; iterators[i] = XNEWVEC (char, len); snprintf (iterators[i], len, "git_%d", i); } cloog_names_set_nb_iterators (cloog_program_names (prog), nb_iterators); cloog_names_set_iterators (cloog_program_names (prog), iterators); for (i = 0; i < nb_scattering; i++) { int len = 5 + 16; scattering[i] = XNEWVEC (char, len); snprintf (scattering[i], len, "scat_%d", i); } cloog_names_set_nb_scattering (cloog_program_names (prog), nb_scattering); cloog_names_set_scattering (cloog_program_names (prog), scattering); } /* Initialize a CLooG input file. */ static FILE * init_cloog_input_file (int scop_number) { FILE *graphite_out_file; int len = strlen (dump_base_name); char *dumpname = XNEWVEC (char, len + 25); char *s_scop_number = XNEWVEC (char, 15); memcpy (dumpname, dump_base_name, len + 1); strip_off_ending (dumpname, len); sprintf (s_scop_number, ".%d", scop_number); strcat (dumpname, s_scop_number); strcat (dumpname, ".cloog"); graphite_out_file = fopen (dumpname, "w+b"); if (graphite_out_file == 0) fatal_error ("can%'t open %s for writing: %m", dumpname); free (dumpname); return graphite_out_file; } /* Build cloog program for SCoP. */ static void build_cloog_prog (scop_p scop, CloogProgram *prog, CloogOptions *options) { int i; int max_nb_loops = scop_max_loop_depth (scop); poly_bb_p pbb; CloogLoop *loop_list = NULL; CloogBlockList *block_list = NULL; CloogScatteringList *scattering = NULL; int nbs = 2 * max_nb_loops + 1; int *scaldims; cloog_program_set_context (prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop), scop_nb_params (scop), cloog_state)); nbs = unify_scattering_dimensions (scop); scaldims = (int *) xmalloc (nbs * (sizeof (int))); cloog_program_set_nb_scattdims (prog, nbs); initialize_cloog_names (scop, prog); FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb) { CloogStatement *stmt; CloogBlock *block; CloogDomain *dom; /* Dead code elimination: when the domain of a PBB is empty, don't generate code for the PBB. */ if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb))) continue; /* Build the new statement and its block. */ stmt = cloog_statement_alloc (cloog_state, pbb_index (pbb)); dom = new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb), scop_nb_params (scop), cloog_state); block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb)); cloog_statement_set_usr (stmt, pbb); /* Build loop list. */ { CloogLoop *new_loop_list = cloog_loop_malloc (cloog_state); cloog_loop_set_next (new_loop_list, loop_list); cloog_loop_set_domain (new_loop_list, dom); cloog_loop_set_block (new_loop_list, block); loop_list = new_loop_list; } /* Build block list. */ { CloogBlockList *new_block_list = cloog_block_list_malloc (); cloog_block_list_set_next (new_block_list, block_list); cloog_block_list_set_block (new_block_list, block); block_list = new_block_list; } /* Build scattering list. */ { /* XXX: Replace with cloog_domain_list_alloc(), when available. */ CloogScatteringList *new_scattering = (CloogScatteringList *) xmalloc (sizeof (CloogScatteringList)); ppl_Polyhedron_t scat; CloogScattering *dom; scat = PBB_TRANSFORMED_SCATTERING (pbb); dom = new_Cloog_Scattering_from_ppl_Polyhedron (scat, scop_nb_params (scop), pbb_nb_scattering_transform (pbb), cloog_state); cloog_set_next_scattering (new_scattering, scattering); cloog_set_scattering (new_scattering, dom); scattering = new_scattering; } } cloog_program_set_loop (prog, loop_list); cloog_program_set_blocklist (prog, block_list); for (i = 0; i < nbs; i++) scaldims[i] = 0 ; cloog_program_set_scaldims (prog, scaldims); /* Extract scalar dimensions to simplify the code generation problem. */ cloog_program_extract_scalars (prog, scattering, options); /* Dump a .cloog input file, if requested. This feature is only enabled in the Graphite branch. */ if (0) { static size_t file_scop_number = 0; FILE *cloog_file = init_cloog_input_file (file_scop_number); cloog_program_dump_cloog (cloog_file, prog, scattering); ++file_scop_number; } /* Apply scattering. */ cloog_program_scatter (prog, scattering, options); free_scattering (scattering); /* Iterators corresponding to scalar dimensions have to be extracted. */ cloog_names_scalarize (cloog_program_names (prog), nbs, cloog_program_scaldims (prog)); /* Free blocklist. */ { CloogBlockList *next = cloog_program_blocklist (prog); while (next) { CloogBlockList *toDelete = next; next = cloog_block_list_next (next); cloog_block_list_set_next (toDelete, NULL); cloog_block_list_set_block (toDelete, NULL); cloog_block_list_free (toDelete); } cloog_program_set_blocklist (prog, NULL); } } /* Return the options that will be used in GLOOG. */ static CloogOptions * set_cloog_options (void) { CloogOptions *options = cloog_options_malloc (cloog_state); /* Change cloog output language to C. If we do use FORTRAN instead, cloog will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if we pass an incomplete program to cloog. */ options->language = LANGUAGE_C; /* Enable complex equality spreading: removes dummy statements (assignments) in the generated code which repeats the substitution equations for statements. This is useless for GLooG. */ options->esp = 1; #ifdef CLOOG_ORG /* Silence CLooG to avoid failing tests due to debug output to stderr. */ options->quiet = 1; #else /* Enable C pretty-printing mode: normalizes the substitution equations for statements. */ options->cpp = 1; #endif /* Allow cloog to build strides with a stride width different to one. This example has stride = 4: for (i = 0; i < 20; i += 4) A */ options->strides = 1; /* Disable optimizations and make cloog generate source code closer to the input. This is useful for debugging, but later we want the optimized code. XXX: We can not disable optimizations, as loop blocking is not working without them. */ if (0) { options->f = -1; options->l = INT_MAX; } return options; } /* Prints STMT to STDERR. */ void print_clast_stmt (FILE *file, struct clast_stmt *stmt) { CloogOptions *options = set_cloog_options (); clast_pprint (file, stmt, 0, options); cloog_options_free (options); } /* Prints STMT to STDERR. */ DEBUG_FUNCTION void debug_clast_stmt (struct clast_stmt *stmt) { print_clast_stmt (stderr, stmt); } /* Translate SCOP to a CLooG program and clast. These two representations should be freed together: a clast cannot be used without a program. */ cloog_prog_clast scop_to_clast (scop_p scop) { CloogOptions *options = set_cloog_options (); cloog_prog_clast pc; /* Connect new cloog prog generation to graphite. */ pc.prog = cloog_program_malloc (); build_cloog_prog (scop, pc.prog, options); pc.prog = cloog_program_generate (pc.prog, options); pc.stmt = cloog_clast_create (pc.prog, options); cloog_options_free (options); return pc; } /* Prints to FILE the code generated by CLooG for SCOP. */ void print_generated_program (FILE *file, scop_p scop) { CloogOptions *options = set_cloog_options (); cloog_prog_clast pc = scop_to_clast (scop); fprintf (file, " (prog: \n"); cloog_program_print (file, pc.prog); fprintf (file, " )\n"); fprintf (file, " (clast: \n"); clast_pprint (file, pc.stmt, 0, options); fprintf (file, " )\n"); cloog_options_free (options); cloog_clast_free (pc.stmt); cloog_program_free (pc.prog); } /* Prints to STDERR the code generated by CLooG for SCOP. */ DEBUG_FUNCTION void debug_generated_program (scop_p scop) { print_generated_program (stderr, scop); } /* Add CLooG names to parameter index. The index is used to translate back from CLooG names to GCC trees. */ static void create_params_index (htab_t index_table, CloogProgram *prog) { CloogNames* names = cloog_program_names (prog); int nb_parameters = cloog_names_nb_parameters (names); char **parameters = cloog_names_parameters (names); int i; for (i = 0; i < nb_parameters; i++) save_clast_name_index (index_table, parameters[i], i); } /* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for the given SCOP. Return true if code generation succeeded. BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping. */ bool gloog (scop_p scop, htab_t bb_pbb_mapping) { VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10); loop_p context_loop; sese region = SCOP_REGION (scop); ifsese if_region = NULL; htab_t newivs_index, params_index; cloog_prog_clast pc; timevar_push (TV_GRAPHITE_CODE_GEN); gloog_error = false; pc = scop_to_clast (scop); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\nCLAST generated by CLooG: \n"); print_clast_stmt (dump_file, pc.stmt); fprintf (dump_file, "\n"); } recompute_all_dominators (); graphite_verify (); if_region = move_sese_in_condition (region); sese_insert_phis_for_liveouts (region, if_region->region->exit->src, if_region->false_region->exit, if_region->true_region->exit); recompute_all_dominators (); graphite_verify (); context_loop = SESE_ENTRY (region)->src->loop_father; newivs_index = htab_create (10, clast_name_index_elt_info, eq_clast_name_indexes, free); params_index = htab_create (10, clast_name_index_elt_info, eq_clast_name_indexes, free); create_params_index (params_index, pc.prog); translate_clast (region, context_loop, pc.stmt, if_region->true_region->entry, &newivs, newivs_index, bb_pbb_mapping, 1, params_index); graphite_verify (); scev_reset (); recompute_all_dominators (); graphite_verify (); if (gloog_error) set_ifsese_condition (if_region, integer_zero_node); free (if_region->true_region); free (if_region->region); free (if_region); htab_delete (newivs_index); htab_delete (params_index); VEC_free (tree, heap, newivs); cloog_clast_free (pc.stmt); cloog_program_free (pc.prog); timevar_pop (TV_GRAPHITE_CODE_GEN); if (dump_file && (dump_flags & TDF_DETAILS)) { loop_p loop; loop_iterator li; int num_no_dependency = 0; FOR_EACH_LOOP (li, loop, 0) if (loop->can_be_parallel) num_no_dependency++; fprintf (dump_file, "\n%d loops carried no dependency.\n", num_no_dependency); } return !gloog_error; } #endif