150
|
1 //===------ CGGPUBuiltin.cpp - Codegen for GPU builtins -------------------===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8 //
|
|
9 // Generates code for built-in GPU calls which are not runtime-specific.
|
|
10 // (Runtime-specific codegen lives in programming model specific files.)
|
|
11 //
|
|
12 //===----------------------------------------------------------------------===//
|
|
13
|
|
14 #include "CodeGenFunction.h"
|
|
15 #include "clang/Basic/Builtins.h"
|
|
16 #include "llvm/IR/DataLayout.h"
|
|
17 #include "llvm/IR/Instruction.h"
|
|
18 #include "llvm/Support/MathExtras.h"
|
|
19 #include "llvm/Transforms/Utils/AMDGPUEmitPrintf.h"
|
|
20
|
|
21 using namespace clang;
|
|
22 using namespace CodeGen;
|
|
23
|
|
24 static llvm::Function *GetVprintfDeclaration(llvm::Module &M) {
|
|
25 llvm::Type *ArgTypes[] = {llvm::Type::getInt8PtrTy(M.getContext()),
|
|
26 llvm::Type::getInt8PtrTy(M.getContext())};
|
|
27 llvm::FunctionType *VprintfFuncType = llvm::FunctionType::get(
|
|
28 llvm::Type::getInt32Ty(M.getContext()), ArgTypes, false);
|
|
29
|
|
30 if (auto* F = M.getFunction("vprintf")) {
|
|
31 // Our CUDA system header declares vprintf with the right signature, so
|
|
32 // nobody else should have been able to declare vprintf with a bogus
|
|
33 // signature.
|
|
34 assert(F->getFunctionType() == VprintfFuncType);
|
|
35 return F;
|
|
36 }
|
|
37
|
|
38 // vprintf doesn't already exist; create a declaration and insert it into the
|
|
39 // module.
|
|
40 return llvm::Function::Create(
|
|
41 VprintfFuncType, llvm::GlobalVariable::ExternalLinkage, "vprintf", &M);
|
|
42 }
|
|
43
|
|
44 // Transforms a call to printf into a call to the NVPTX vprintf syscall (which
|
|
45 // isn't particularly special; it's invoked just like a regular function).
|
|
46 // vprintf takes two args: A format string, and a pointer to a buffer containing
|
|
47 // the varargs.
|
|
48 //
|
|
49 // For example, the call
|
|
50 //
|
|
51 // printf("format string", arg1, arg2, arg3);
|
|
52 //
|
|
53 // is converted into something resembling
|
|
54 //
|
|
55 // struct Tmp {
|
|
56 // Arg1 a1;
|
|
57 // Arg2 a2;
|
|
58 // Arg3 a3;
|
|
59 // };
|
|
60 // char* buf = alloca(sizeof(Tmp));
|
|
61 // *(Tmp*)buf = {a1, a2, a3};
|
|
62 // vprintf("format string", buf);
|
|
63 //
|
|
64 // buf is aligned to the max of {alignof(Arg1), ...}. Furthermore, each of the
|
|
65 // args is itself aligned to its preferred alignment.
|
|
66 //
|
|
67 // Note that by the time this function runs, E's args have already undergone the
|
|
68 // standard C vararg promotion (short -> int, float -> double, etc.).
|
|
69 RValue
|
|
70 CodeGenFunction::EmitNVPTXDevicePrintfCallExpr(const CallExpr *E,
|
|
71 ReturnValueSlot ReturnValue) {
|
|
72 assert(getTarget().getTriple().isNVPTX());
|
|
73 assert(E->getBuiltinCallee() == Builtin::BIprintf);
|
|
74 assert(E->getNumArgs() >= 1); // printf always has at least one arg.
|
|
75
|
|
76 const llvm::DataLayout &DL = CGM.getDataLayout();
|
|
77 llvm::LLVMContext &Ctx = CGM.getLLVMContext();
|
|
78
|
|
79 CallArgList Args;
|
|
80 EmitCallArgs(Args,
|
|
81 E->getDirectCallee()->getType()->getAs<FunctionProtoType>(),
|
|
82 E->arguments(), E->getDirectCallee(),
|
|
83 /* ParamsToSkip = */ 0);
|
|
84
|
|
85 // We don't know how to emit non-scalar varargs.
|
|
86 if (std::any_of(Args.begin() + 1, Args.end(), [&](const CallArg &A) {
|
|
87 return !A.getRValue(*this).isScalar();
|
|
88 })) {
|
|
89 CGM.ErrorUnsupported(E, "non-scalar arg to printf");
|
|
90 return RValue::get(llvm::ConstantInt::get(IntTy, 0));
|
|
91 }
|
|
92
|
|
93 // Construct and fill the args buffer that we'll pass to vprintf.
|
|
94 llvm::Value *BufferPtr;
|
|
95 if (Args.size() <= 1) {
|
|
96 // If there are no args, pass a null pointer to vprintf.
|
|
97 BufferPtr = llvm::ConstantPointerNull::get(llvm::Type::getInt8PtrTy(Ctx));
|
|
98 } else {
|
|
99 llvm::SmallVector<llvm::Type *, 8> ArgTypes;
|
|
100 for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I)
|
|
101 ArgTypes.push_back(Args[I].getRValue(*this).getScalarVal()->getType());
|
|
102
|
|
103 // Using llvm::StructType is correct only because printf doesn't accept
|
|
104 // aggregates. If we had to handle aggregates here, we'd have to manually
|
|
105 // compute the offsets within the alloca -- we wouldn't be able to assume
|
|
106 // that the alignment of the llvm type was the same as the alignment of the
|
|
107 // clang type.
|
|
108 llvm::Type *AllocaTy = llvm::StructType::create(ArgTypes, "printf_args");
|
|
109 llvm::Value *Alloca = CreateTempAlloca(AllocaTy);
|
|
110
|
|
111 for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) {
|
|
112 llvm::Value *P = Builder.CreateStructGEP(AllocaTy, Alloca, I - 1);
|
|
113 llvm::Value *Arg = Args[I].getRValue(*this).getScalarVal();
|
|
114 Builder.CreateAlignedStore(Arg, P, DL.getPrefTypeAlign(Arg->getType()));
|
|
115 }
|
|
116 BufferPtr = Builder.CreatePointerCast(Alloca, llvm::Type::getInt8PtrTy(Ctx));
|
|
117 }
|
|
118
|
|
119 // Invoke vprintf and return.
|
|
120 llvm::Function* VprintfFunc = GetVprintfDeclaration(CGM.getModule());
|
|
121 return RValue::get(Builder.CreateCall(
|
|
122 VprintfFunc, {Args[0].getRValue(*this).getScalarVal(), BufferPtr}));
|
|
123 }
|
|
124
|
|
125 RValue
|
|
126 CodeGenFunction::EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E,
|
|
127 ReturnValueSlot ReturnValue) {
|
|
128 assert(getTarget().getTriple().getArch() == llvm::Triple::amdgcn);
|
|
129 assert(E->getBuiltinCallee() == Builtin::BIprintf ||
|
|
130 E->getBuiltinCallee() == Builtin::BI__builtin_printf);
|
|
131 assert(E->getNumArgs() >= 1); // printf always has at least one arg.
|
|
132
|
|
133 CallArgList CallArgs;
|
|
134 EmitCallArgs(CallArgs,
|
|
135 E->getDirectCallee()->getType()->getAs<FunctionProtoType>(),
|
|
136 E->arguments(), E->getDirectCallee(),
|
|
137 /* ParamsToSkip = */ 0);
|
|
138
|
|
139 SmallVector<llvm::Value *, 8> Args;
|
|
140 for (auto A : CallArgs) {
|
|
141 // We don't know how to emit non-scalar varargs.
|
|
142 if (!A.getRValue(*this).isScalar()) {
|
|
143 CGM.ErrorUnsupported(E, "non-scalar arg to printf");
|
|
144 return RValue::get(llvm::ConstantInt::get(IntTy, -1));
|
|
145 }
|
|
146
|
|
147 llvm::Value *Arg = A.getRValue(*this).getScalarVal();
|
|
148 Args.push_back(Arg);
|
|
149 }
|
|
150
|
|
151 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
|
|
152 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
|
|
153 auto Printf = llvm::emitAMDGPUPrintfCall(IRB, Args);
|
|
154 Builder.SetInsertPoint(IRB.GetInsertBlock(), IRB.GetInsertPoint());
|
|
155 return RValue::get(Printf);
|
|
156 }
|