147
|
1 #!/usr/bin/env python
|
121
|
2
|
|
3 from __future__ import print_function
|
|
4
|
|
5 desc = '''Generate statistics about optimization records from the YAML files
|
|
6 generated with -fsave-optimization-record and -fdiagnostics-show-hotness.
|
|
7
|
|
8 The tools requires PyYAML and Pygments Python packages.'''
|
|
9
|
|
10 import optrecord
|
|
11 import argparse
|
|
12 import operator
|
|
13 from collections import defaultdict
|
|
14 from multiprocessing import cpu_count, Pool
|
|
15
|
|
16 try:
|
|
17 from guppy import hpy
|
|
18 hp = hpy()
|
|
19 except ImportError:
|
|
20 print("Memory consumption not shown because guppy is not installed")
|
|
21 hp = None
|
|
22
|
|
23 if __name__ == '__main__':
|
|
24 parser = argparse.ArgumentParser(description=desc)
|
|
25 parser.add_argument(
|
|
26 'yaml_dirs_or_files',
|
|
27 nargs='+',
|
|
28 help='List of optimization record files or directories searched '
|
|
29 'for optimization record files.')
|
|
30 parser.add_argument(
|
|
31 '--jobs',
|
|
32 '-j',
|
134
|
33 default=None,
|
121
|
34 type=int,
|
|
35 help='Max job count (defaults to %(default)s, the current CPU count)')
|
|
36 parser.add_argument(
|
|
37 '--no-progress-indicator',
|
|
38 '-n',
|
|
39 action='store_true',
|
|
40 default=False,
|
|
41 help='Do not display any indicator of how many YAML files were read.')
|
|
42 args = parser.parse_args()
|
|
43
|
|
44 print_progress = not args.no_progress_indicator
|
|
45
|
|
46 files = optrecord.find_opt_files(*args.yaml_dirs_or_files)
|
|
47 if not files:
|
|
48 parser.error("No *.opt.yaml files found")
|
|
49 sys.exit(1)
|
|
50
|
|
51 all_remarks, file_remarks, _ = optrecord.gather_results(
|
|
52 files, args.jobs, print_progress)
|
|
53 if print_progress:
|
|
54 print('\n')
|
|
55
|
|
56 bypass = defaultdict(int)
|
|
57 byname = defaultdict(int)
|
|
58 for r in optrecord.itervalues(all_remarks):
|
|
59 bypass[r.Pass] += 1
|
|
60 byname[r.Pass + "/" + r.Name] += 1
|
|
61
|
|
62 total = len(all_remarks)
|
|
63 print("{:24s} {:10d}".format("Total number of remarks", total))
|
|
64 if hp:
|
|
65 h = hp.heap()
|
|
66 print("{:24s} {:10d}".format("Memory per remark",
|
|
67 h.size / len(all_remarks)))
|
|
68 print('\n')
|
|
69
|
|
70 print("Top 10 remarks by pass:")
|
|
71 for (passname, count) in sorted(bypass.items(), key=operator.itemgetter(1),
|
|
72 reverse=True)[:10]:
|
|
73 print(" {:30s} {:2.0f}%". format(passname, count * 100. / total))
|
|
74
|
|
75 print("\nTop 10 remarks:")
|
|
76 for (name, count) in sorted(byname.items(), key=operator.itemgetter(1),
|
|
77 reverse=True)[:10]:
|
|
78 print(" {:30s} {:2.0f}%". format(name, count * 100. / total))
|