150
|
1 //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8 //
|
|
9 // Implementation of the abstract lowering for the Swift calling convention.
|
|
10 //
|
|
11 //===----------------------------------------------------------------------===//
|
|
12
|
|
13 #include "clang/CodeGen/SwiftCallingConv.h"
|
|
14 #include "clang/Basic/TargetInfo.h"
|
|
15 #include "CodeGenModule.h"
|
|
16 #include "TargetInfo.h"
|
|
17
|
|
18 using namespace clang;
|
|
19 using namespace CodeGen;
|
|
20 using namespace swiftcall;
|
|
21
|
|
22 static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
|
|
23 return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo());
|
|
24 }
|
|
25
|
|
26 static bool isPowerOf2(unsigned n) {
|
|
27 return n == (n & -n);
|
|
28 }
|
|
29
|
|
30 /// Given two types with the same size, try to find a common type.
|
|
31 static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
|
|
32 assert(first != second);
|
|
33
|
|
34 // Allow pointers to merge with integers, but prefer the integer type.
|
|
35 if (first->isIntegerTy()) {
|
|
36 if (second->isPointerTy()) return first;
|
|
37 } else if (first->isPointerTy()) {
|
|
38 if (second->isIntegerTy()) return second;
|
|
39 if (second->isPointerTy()) return first;
|
|
40
|
|
41 // Allow two vectors to be merged (given that they have the same size).
|
|
42 // This assumes that we never have two different vector register sets.
|
|
43 } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
|
|
44 if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
|
|
45 if (auto commonTy = getCommonType(firstVecTy->getElementType(),
|
|
46 secondVecTy->getElementType())) {
|
|
47 return (commonTy == firstVecTy->getElementType() ? first : second);
|
|
48 }
|
|
49 }
|
|
50 }
|
|
51
|
|
52 return nullptr;
|
|
53 }
|
|
54
|
|
55 static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
|
|
56 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
|
|
57 }
|
|
58
|
|
59 static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
|
|
60 return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
|
|
61 }
|
|
62
|
|
63 void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
|
|
64 // Deal with various aggregate types as special cases:
|
|
65
|
|
66 // Record types.
|
|
67 if (auto recType = type->getAs<RecordType>()) {
|
|
68 addTypedData(recType->getDecl(), begin);
|
|
69
|
|
70 // Array types.
|
|
71 } else if (type->isArrayType()) {
|
|
72 // Incomplete array types (flexible array members?) don't provide
|
|
73 // data to lay out, and the other cases shouldn't be possible.
|
|
74 auto arrayType = CGM.getContext().getAsConstantArrayType(type);
|
|
75 if (!arrayType) return;
|
|
76
|
|
77 QualType eltType = arrayType->getElementType();
|
|
78 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
|
|
79 for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
|
|
80 addTypedData(eltType, begin + i * eltSize);
|
|
81 }
|
|
82
|
|
83 // Complex types.
|
|
84 } else if (auto complexType = type->getAs<ComplexType>()) {
|
|
85 auto eltType = complexType->getElementType();
|
|
86 auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
|
|
87 auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
|
|
88 addTypedData(eltLLVMType, begin, begin + eltSize);
|
|
89 addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
|
|
90
|
|
91 // Member pointer types.
|
|
92 } else if (type->getAs<MemberPointerType>()) {
|
|
93 // Just add it all as opaque.
|
|
94 addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
|
|
95
|
|
96 // Everything else is scalar and should not convert as an LLVM aggregate.
|
|
97 } else {
|
|
98 // We intentionally convert as !ForMem because we want to preserve
|
|
99 // that a type was an i1.
|
|
100 auto llvmType = CGM.getTypes().ConvertType(type);
|
|
101 addTypedData(llvmType, begin);
|
|
102 }
|
|
103 }
|
|
104
|
|
105 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
|
|
106 addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
|
|
107 }
|
|
108
|
|
109 void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
|
|
110 const ASTRecordLayout &layout) {
|
|
111 // Unions are a special case.
|
|
112 if (record->isUnion()) {
|
|
113 for (auto field : record->fields()) {
|
|
114 if (field->isBitField()) {
|
|
115 addBitFieldData(field, begin, 0);
|
|
116 } else {
|
|
117 addTypedData(field->getType(), begin);
|
|
118 }
|
|
119 }
|
|
120 return;
|
|
121 }
|
|
122
|
|
123 // Note that correctness does not rely on us adding things in
|
|
124 // their actual order of layout; it's just somewhat more efficient
|
|
125 // for the builder.
|
|
126
|
|
127 // With that in mind, add "early" C++ data.
|
|
128 auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
|
|
129 if (cxxRecord) {
|
|
130 // - a v-table pointer, if the class adds its own
|
|
131 if (layout.hasOwnVFPtr()) {
|
|
132 addTypedData(CGM.Int8PtrTy, begin);
|
|
133 }
|
|
134
|
|
135 // - non-virtual bases
|
|
136 for (auto &baseSpecifier : cxxRecord->bases()) {
|
|
137 if (baseSpecifier.isVirtual()) continue;
|
|
138
|
|
139 auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
|
|
140 addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
|
|
141 }
|
|
142
|
|
143 // - a vbptr if the class adds its own
|
|
144 if (layout.hasOwnVBPtr()) {
|
|
145 addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
|
|
146 }
|
|
147 }
|
|
148
|
|
149 // Add fields.
|
|
150 for (auto field : record->fields()) {
|
|
151 auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
|
|
152 if (field->isBitField()) {
|
|
153 addBitFieldData(field, begin, fieldOffsetInBits);
|
|
154 } else {
|
|
155 addTypedData(field->getType(),
|
|
156 begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
|
|
157 }
|
|
158 }
|
|
159
|
|
160 // Add "late" C++ data:
|
|
161 if (cxxRecord) {
|
|
162 // - virtual bases
|
|
163 for (auto &vbaseSpecifier : cxxRecord->vbases()) {
|
|
164 auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
|
|
165 addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
|
|
166 }
|
|
167 }
|
|
168 }
|
|
169
|
|
170 void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
|
|
171 CharUnits recordBegin,
|
|
172 uint64_t bitfieldBitBegin) {
|
|
173 assert(bitfield->isBitField());
|
|
174 auto &ctx = CGM.getContext();
|
|
175 auto width = bitfield->getBitWidthValue(ctx);
|
|
176
|
|
177 // We can ignore zero-width bit-fields.
|
|
178 if (width == 0) return;
|
|
179
|
|
180 // toCharUnitsFromBits rounds down.
|
|
181 CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
|
|
182
|
|
183 // Find the offset of the last byte that is partially occupied by the
|
|
184 // bit-field; since we otherwise expect exclusive ends, the end is the
|
|
185 // next byte.
|
|
186 uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
|
|
187 CharUnits bitfieldByteEnd =
|
|
188 ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
|
|
189 addOpaqueData(recordBegin + bitfieldByteBegin,
|
|
190 recordBegin + bitfieldByteEnd);
|
|
191 }
|
|
192
|
|
193 void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
|
|
194 assert(type && "didn't provide type for typed data");
|
|
195 addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
|
|
196 }
|
|
197
|
|
198 void SwiftAggLowering::addTypedData(llvm::Type *type,
|
|
199 CharUnits begin, CharUnits end) {
|
|
200 assert(type && "didn't provide type for typed data");
|
|
201 assert(getTypeStoreSize(CGM, type) == end - begin);
|
|
202
|
|
203 // Legalize vector types.
|
|
204 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
|
|
205 SmallVector<llvm::Type*, 4> componentTys;
|
|
206 legalizeVectorType(CGM, end - begin, vecTy, componentTys);
|
|
207 assert(componentTys.size() >= 1);
|
|
208
|
|
209 // Walk the initial components.
|
|
210 for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
|
|
211 llvm::Type *componentTy = componentTys[i];
|
|
212 auto componentSize = getTypeStoreSize(CGM, componentTy);
|
|
213 assert(componentSize < end - begin);
|
|
214 addLegalTypedData(componentTy, begin, begin + componentSize);
|
|
215 begin += componentSize;
|
|
216 }
|
|
217
|
|
218 return addLegalTypedData(componentTys.back(), begin, end);
|
|
219 }
|
|
220
|
|
221 // Legalize integer types.
|
|
222 if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
|
|
223 if (!isLegalIntegerType(CGM, intTy))
|
|
224 return addOpaqueData(begin, end);
|
|
225 }
|
|
226
|
|
227 // All other types should be legal.
|
|
228 return addLegalTypedData(type, begin, end);
|
|
229 }
|
|
230
|
|
231 void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
|
|
232 CharUnits begin, CharUnits end) {
|
|
233 // Require the type to be naturally aligned.
|
|
234 if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
|
|
235
|
|
236 // Try splitting vector types.
|
|
237 if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
|
|
238 auto split = splitLegalVectorType(CGM, end - begin, vecTy);
|
|
239 auto eltTy = split.first;
|
|
240 auto numElts = split.second;
|
|
241
|
|
242 auto eltSize = (end - begin) / numElts;
|
|
243 assert(eltSize == getTypeStoreSize(CGM, eltTy));
|
|
244 for (size_t i = 0, e = numElts; i != e; ++i) {
|
|
245 addLegalTypedData(eltTy, begin, begin + eltSize);
|
|
246 begin += eltSize;
|
|
247 }
|
|
248 assert(begin == end);
|
|
249 return;
|
|
250 }
|
|
251
|
|
252 return addOpaqueData(begin, end);
|
|
253 }
|
|
254
|
|
255 addEntry(type, begin, end);
|
|
256 }
|
|
257
|
|
258 void SwiftAggLowering::addEntry(llvm::Type *type,
|
|
259 CharUnits begin, CharUnits end) {
|
|
260 assert((!type ||
|
|
261 (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
|
|
262 "cannot add aggregate-typed data");
|
|
263 assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
|
|
264
|
|
265 // Fast path: we can just add entries to the end.
|
|
266 if (Entries.empty() || Entries.back().End <= begin) {
|
|
267 Entries.push_back({begin, end, type});
|
|
268 return;
|
|
269 }
|
|
270
|
|
271 // Find the first existing entry that ends after the start of the new data.
|
|
272 // TODO: do a binary search if Entries is big enough for it to matter.
|
|
273 size_t index = Entries.size() - 1;
|
|
274 while (index != 0) {
|
|
275 if (Entries[index - 1].End <= begin) break;
|
|
276 --index;
|
|
277 }
|
|
278
|
|
279 // The entry ends after the start of the new data.
|
|
280 // If the entry starts after the end of the new data, there's no conflict.
|
|
281 if (Entries[index].Begin >= end) {
|
|
282 // This insertion is potentially O(n), but the way we generally build
|
|
283 // these layouts makes that unlikely to matter: we'd need a union of
|
|
284 // several very large types.
|
|
285 Entries.insert(Entries.begin() + index, {begin, end, type});
|
|
286 return;
|
|
287 }
|
|
288
|
|
289 // Otherwise, the ranges overlap. The new range might also overlap
|
|
290 // with later ranges.
|
|
291 restartAfterSplit:
|
|
292
|
|
293 // Simplest case: an exact overlap.
|
|
294 if (Entries[index].Begin == begin && Entries[index].End == end) {
|
|
295 // If the types match exactly, great.
|
|
296 if (Entries[index].Type == type) return;
|
|
297
|
|
298 // If either type is opaque, make the entry opaque and return.
|
|
299 if (Entries[index].Type == nullptr) {
|
|
300 return;
|
|
301 } else if (type == nullptr) {
|
|
302 Entries[index].Type = nullptr;
|
|
303 return;
|
|
304 }
|
|
305
|
|
306 // If they disagree in an ABI-agnostic way, just resolve the conflict
|
|
307 // arbitrarily.
|
|
308 if (auto entryType = getCommonType(Entries[index].Type, type)) {
|
|
309 Entries[index].Type = entryType;
|
|
310 return;
|
|
311 }
|
|
312
|
|
313 // Otherwise, make the entry opaque.
|
|
314 Entries[index].Type = nullptr;
|
|
315 return;
|
|
316 }
|
|
317
|
|
318 // Okay, we have an overlapping conflict of some sort.
|
|
319
|
|
320 // If we have a vector type, split it.
|
|
321 if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
|
|
322 auto eltTy = vecTy->getElementType();
|
|
323 CharUnits eltSize = (end - begin) / vecTy->getNumElements();
|
|
324 assert(eltSize == getTypeStoreSize(CGM, eltTy));
|
|
325 for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) {
|
|
326 addEntry(eltTy, begin, begin + eltSize);
|
|
327 begin += eltSize;
|
|
328 }
|
|
329 assert(begin == end);
|
|
330 return;
|
|
331 }
|
|
332
|
|
333 // If the entry is a vector type, split it and try again.
|
|
334 if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
|
|
335 splitVectorEntry(index);
|
|
336 goto restartAfterSplit;
|
|
337 }
|
|
338
|
|
339 // Okay, we have no choice but to make the existing entry opaque.
|
|
340
|
|
341 Entries[index].Type = nullptr;
|
|
342
|
|
343 // Stretch the start of the entry to the beginning of the range.
|
|
344 if (begin < Entries[index].Begin) {
|
|
345 Entries[index].Begin = begin;
|
|
346 assert(index == 0 || begin >= Entries[index - 1].End);
|
|
347 }
|
|
348
|
|
349 // Stretch the end of the entry to the end of the range; but if we run
|
|
350 // into the start of the next entry, just leave the range there and repeat.
|
|
351 while (end > Entries[index].End) {
|
|
352 assert(Entries[index].Type == nullptr);
|
|
353
|
|
354 // If the range doesn't overlap the next entry, we're done.
|
|
355 if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
|
|
356 Entries[index].End = end;
|
|
357 break;
|
|
358 }
|
|
359
|
|
360 // Otherwise, stretch to the start of the next entry.
|
|
361 Entries[index].End = Entries[index + 1].Begin;
|
|
362
|
|
363 // Continue with the next entry.
|
|
364 index++;
|
|
365
|
|
366 // This entry needs to be made opaque if it is not already.
|
|
367 if (Entries[index].Type == nullptr)
|
|
368 continue;
|
|
369
|
|
370 // Split vector entries unless we completely subsume them.
|
|
371 if (Entries[index].Type->isVectorTy() &&
|
|
372 end < Entries[index].End) {
|
|
373 splitVectorEntry(index);
|
|
374 }
|
|
375
|
|
376 // Make the entry opaque.
|
|
377 Entries[index].Type = nullptr;
|
|
378 }
|
|
379 }
|
|
380
|
|
381 /// Replace the entry of vector type at offset 'index' with a sequence
|
|
382 /// of its component vectors.
|
|
383 void SwiftAggLowering::splitVectorEntry(unsigned index) {
|
|
384 auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
|
|
385 auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
|
|
386
|
|
387 auto eltTy = split.first;
|
|
388 CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
|
|
389 auto numElts = split.second;
|
|
390 Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
|
|
391
|
|
392 CharUnits begin = Entries[index].Begin;
|
|
393 for (unsigned i = 0; i != numElts; ++i) {
|
|
394 Entries[index].Type = eltTy;
|
|
395 Entries[index].Begin = begin;
|
|
396 Entries[index].End = begin + eltSize;
|
|
397 begin += eltSize;
|
|
398 }
|
|
399 }
|
|
400
|
|
401 /// Given a power-of-two unit size, return the offset of the aligned unit
|
|
402 /// of that size which contains the given offset.
|
|
403 ///
|
|
404 /// In other words, round down to the nearest multiple of the unit size.
|
|
405 static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
|
|
406 assert(isPowerOf2(unitSize.getQuantity()));
|
|
407 auto unitMask = ~(unitSize.getQuantity() - 1);
|
|
408 return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
|
|
409 }
|
|
410
|
|
411 static bool areBytesInSameUnit(CharUnits first, CharUnits second,
|
|
412 CharUnits chunkSize) {
|
|
413 return getOffsetAtStartOfUnit(first, chunkSize)
|
|
414 == getOffsetAtStartOfUnit(second, chunkSize);
|
|
415 }
|
|
416
|
|
417 static bool isMergeableEntryType(llvm::Type *type) {
|
|
418 // Opaquely-typed memory is always mergeable.
|
|
419 if (type == nullptr) return true;
|
|
420
|
|
421 // Pointers and integers are always mergeable. In theory we should not
|
|
422 // merge pointers, but (1) it doesn't currently matter in practice because
|
|
423 // the chunk size is never greater than the size of a pointer and (2)
|
|
424 // Swift IRGen uses integer types for a lot of things that are "really"
|
|
425 // just storing pointers (like Optional<SomePointer>). If we ever have a
|
|
426 // target that would otherwise combine pointers, we should put some effort
|
|
427 // into fixing those cases in Swift IRGen and then call out pointer types
|
|
428 // here.
|
|
429
|
|
430 // Floating-point and vector types should never be merged.
|
|
431 // Most such types are too large and highly-aligned to ever trigger merging
|
|
432 // in practice, but it's important for the rule to cover at least 'half'
|
|
433 // and 'float', as well as things like small vectors of 'i1' or 'i8'.
|
|
434 return (!type->isFloatingPointTy() && !type->isVectorTy());
|
|
435 }
|
|
436
|
|
437 bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
|
|
438 const StorageEntry &second,
|
|
439 CharUnits chunkSize) {
|
|
440 // Only merge entries that overlap the same chunk. We test this first
|
|
441 // despite being a bit more expensive because this is the condition that
|
|
442 // tends to prevent merging.
|
|
443 if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin,
|
|
444 chunkSize))
|
|
445 return false;
|
|
446
|
|
447 return (isMergeableEntryType(first.Type) &&
|
|
448 isMergeableEntryType(second.Type));
|
|
449 }
|
|
450
|
|
451 void SwiftAggLowering::finish() {
|
|
452 if (Entries.empty()) {
|
|
453 Finished = true;
|
|
454 return;
|
|
455 }
|
|
456
|
|
457 // We logically split the layout down into a series of chunks of this size,
|
|
458 // which is generally the size of a pointer.
|
|
459 const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
|
|
460
|
|
461 // First pass: if two entries should be merged, make them both opaque
|
|
462 // and stretch one to meet the next.
|
|
463 // Also, remember if there are any opaque entries.
|
|
464 bool hasOpaqueEntries = (Entries[0].Type == nullptr);
|
|
465 for (size_t i = 1, e = Entries.size(); i != e; ++i) {
|
|
466 if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) {
|
|
467 Entries[i - 1].Type = nullptr;
|
|
468 Entries[i].Type = nullptr;
|
|
469 Entries[i - 1].End = Entries[i].Begin;
|
|
470 hasOpaqueEntries = true;
|
|
471
|
|
472 } else if (Entries[i].Type == nullptr) {
|
|
473 hasOpaqueEntries = true;
|
|
474 }
|
|
475 }
|
|
476
|
|
477 // The rest of the algorithm leaves non-opaque entries alone, so if we
|
|
478 // have no opaque entries, we're done.
|
|
479 if (!hasOpaqueEntries) {
|
|
480 Finished = true;
|
|
481 return;
|
|
482 }
|
|
483
|
|
484 // Okay, move the entries to a temporary and rebuild Entries.
|
|
485 auto orig = std::move(Entries);
|
|
486 assert(Entries.empty());
|
|
487
|
|
488 for (size_t i = 0, e = orig.size(); i != e; ++i) {
|
|
489 // Just copy over non-opaque entries.
|
|
490 if (orig[i].Type != nullptr) {
|
|
491 Entries.push_back(orig[i]);
|
|
492 continue;
|
|
493 }
|
|
494
|
|
495 // Scan forward to determine the full extent of the next opaque range.
|
|
496 // We know from the first pass that only contiguous ranges will overlap
|
|
497 // the same aligned chunk.
|
|
498 auto begin = orig[i].Begin;
|
|
499 auto end = orig[i].End;
|
|
500 while (i + 1 != e &&
|
|
501 orig[i + 1].Type == nullptr &&
|
|
502 end == orig[i + 1].Begin) {
|
|
503 end = orig[i + 1].End;
|
|
504 i++;
|
|
505 }
|
|
506
|
|
507 // Add an entry per intersected chunk.
|
|
508 do {
|
|
509 // Find the smallest aligned storage unit in the maximal aligned
|
|
510 // storage unit containing 'begin' that contains all the bytes in
|
|
511 // the intersection between the range and this chunk.
|
|
512 CharUnits localBegin = begin;
|
|
513 CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
|
|
514 CharUnits chunkEnd = chunkBegin + chunkSize;
|
|
515 CharUnits localEnd = std::min(end, chunkEnd);
|
|
516
|
|
517 // Just do a simple loop over ever-increasing unit sizes.
|
|
518 CharUnits unitSize = CharUnits::One();
|
|
519 CharUnits unitBegin, unitEnd;
|
|
520 for (; ; unitSize *= 2) {
|
|
521 assert(unitSize <= chunkSize);
|
|
522 unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
|
|
523 unitEnd = unitBegin + unitSize;
|
|
524 if (unitEnd >= localEnd) break;
|
|
525 }
|
|
526
|
|
527 // Add an entry for this unit.
|
|
528 auto entryTy =
|
|
529 llvm::IntegerType::get(CGM.getLLVMContext(),
|
|
530 CGM.getContext().toBits(unitSize));
|
|
531 Entries.push_back({unitBegin, unitEnd, entryTy});
|
|
532
|
|
533 // The next chunk starts where this chunk left off.
|
|
534 begin = localEnd;
|
|
535 } while (begin != end);
|
|
536 }
|
|
537
|
|
538 // Okay, finally finished.
|
|
539 Finished = true;
|
|
540 }
|
|
541
|
|
542 void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
|
|
543 assert(Finished && "haven't yet finished lowering");
|
|
544
|
|
545 for (auto &entry : Entries) {
|
|
546 callback(entry.Begin, entry.End, entry.Type);
|
|
547 }
|
|
548 }
|
|
549
|
|
550 std::pair<llvm::StructType*, llvm::Type*>
|
|
551 SwiftAggLowering::getCoerceAndExpandTypes() const {
|
|
552 assert(Finished && "haven't yet finished lowering");
|
|
553
|
|
554 auto &ctx = CGM.getLLVMContext();
|
|
555
|
|
556 if (Entries.empty()) {
|
|
557 auto type = llvm::StructType::get(ctx);
|
|
558 return { type, type };
|
|
559 }
|
|
560
|
|
561 SmallVector<llvm::Type*, 8> elts;
|
|
562 CharUnits lastEnd = CharUnits::Zero();
|
|
563 bool hasPadding = false;
|
|
564 bool packed = false;
|
|
565 for (auto &entry : Entries) {
|
|
566 if (entry.Begin != lastEnd) {
|
|
567 auto paddingSize = entry.Begin - lastEnd;
|
|
568 assert(!paddingSize.isNegative());
|
|
569
|
|
570 auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
|
|
571 paddingSize.getQuantity());
|
|
572 elts.push_back(padding);
|
|
573 hasPadding = true;
|
|
574 }
|
|
575
|
|
576 if (!packed && !entry.Begin.isMultipleOf(
|
|
577 CharUnits::fromQuantity(
|
|
578 CGM.getDataLayout().getABITypeAlignment(entry.Type))))
|
|
579 packed = true;
|
|
580
|
|
581 elts.push_back(entry.Type);
|
|
582
|
|
583 lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
|
|
584 assert(entry.End <= lastEnd);
|
|
585 }
|
|
586
|
|
587 // We don't need to adjust 'packed' to deal with possible tail padding
|
|
588 // because we never do that kind of access through the coercion type.
|
|
589 auto coercionType = llvm::StructType::get(ctx, elts, packed);
|
|
590
|
|
591 llvm::Type *unpaddedType = coercionType;
|
|
592 if (hasPadding) {
|
|
593 elts.clear();
|
|
594 for (auto &entry : Entries) {
|
|
595 elts.push_back(entry.Type);
|
|
596 }
|
|
597 if (elts.size() == 1) {
|
|
598 unpaddedType = elts[0];
|
|
599 } else {
|
|
600 unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
|
|
601 }
|
|
602 } else if (Entries.size() == 1) {
|
|
603 unpaddedType = Entries[0].Type;
|
|
604 }
|
|
605
|
|
606 return { coercionType, unpaddedType };
|
|
607 }
|
|
608
|
|
609 bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
|
|
610 assert(Finished && "haven't yet finished lowering");
|
|
611
|
|
612 // Empty types don't need to be passed indirectly.
|
|
613 if (Entries.empty()) return false;
|
|
614
|
|
615 // Avoid copying the array of types when there's just a single element.
|
|
616 if (Entries.size() == 1) {
|
|
617 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(
|
|
618 Entries.back().Type,
|
|
619 asReturnValue);
|
|
620 }
|
|
621
|
|
622 SmallVector<llvm::Type*, 8> componentTys;
|
|
623 componentTys.reserve(Entries.size());
|
|
624 for (auto &entry : Entries) {
|
|
625 componentTys.push_back(entry.Type);
|
|
626 }
|
|
627 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
|
|
628 asReturnValue);
|
|
629 }
|
|
630
|
|
631 bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
|
|
632 ArrayRef<llvm::Type*> componentTys,
|
|
633 bool asReturnValue) {
|
|
634 return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
|
|
635 asReturnValue);
|
|
636 }
|
|
637
|
|
638 CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
|
|
639 // Currently always the size of an ordinary pointer.
|
|
640 return CGM.getContext().toCharUnitsFromBits(
|
|
641 CGM.getContext().getTargetInfo().getPointerWidth(0));
|
|
642 }
|
|
643
|
|
644 CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
|
|
645 // For Swift's purposes, this is always just the store size of the type
|
|
646 // rounded up to a power of 2.
|
|
647 auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
|
|
648 if (!isPowerOf2(size)) {
|
|
649 size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1);
|
|
650 }
|
|
651 assert(size >= CGM.getDataLayout().getABITypeAlignment(type));
|
|
652 return CharUnits::fromQuantity(size);
|
|
653 }
|
|
654
|
|
655 bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
|
|
656 llvm::IntegerType *intTy) {
|
|
657 auto size = intTy->getBitWidth();
|
|
658 switch (size) {
|
|
659 case 1:
|
|
660 case 8:
|
|
661 case 16:
|
|
662 case 32:
|
|
663 case 64:
|
|
664 // Just assume that the above are always legal.
|
|
665 return true;
|
|
666
|
|
667 case 128:
|
|
668 return CGM.getContext().getTargetInfo().hasInt128Type();
|
|
669
|
|
670 default:
|
|
671 return false;
|
|
672 }
|
|
673 }
|
|
674
|
|
675 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
|
|
676 llvm::VectorType *vectorTy) {
|
|
677 return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(),
|
|
678 vectorTy->getNumElements());
|
|
679 }
|
|
680
|
|
681 bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
|
|
682 llvm::Type *eltTy, unsigned numElts) {
|
|
683 assert(numElts > 1 && "illegal vector length");
|
|
684 return getSwiftABIInfo(CGM)
|
|
685 .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts);
|
|
686 }
|
|
687
|
|
688 std::pair<llvm::Type*, unsigned>
|
|
689 swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
|
|
690 llvm::VectorType *vectorTy) {
|
|
691 auto numElts = vectorTy->getNumElements();
|
|
692 auto eltTy = vectorTy->getElementType();
|
|
693
|
|
694 // Try to split the vector type in half.
|
|
695 if (numElts >= 4 && isPowerOf2(numElts)) {
|
|
696 if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
|
|
697 return {llvm::VectorType::get(eltTy, numElts / 2), 2};
|
|
698 }
|
|
699
|
|
700 return {eltTy, numElts};
|
|
701 }
|
|
702
|
|
703 void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
|
|
704 llvm::VectorType *origVectorTy,
|
|
705 llvm::SmallVectorImpl<llvm::Type*> &components) {
|
|
706 // If it's already a legal vector type, use it.
|
|
707 if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
|
|
708 components.push_back(origVectorTy);
|
|
709 return;
|
|
710 }
|
|
711
|
|
712 // Try to split the vector into legal subvectors.
|
|
713 auto numElts = origVectorTy->getNumElements();
|
|
714 auto eltTy = origVectorTy->getElementType();
|
|
715 assert(numElts != 1);
|
|
716
|
|
717 // The largest size that we're still considering making subvectors of.
|
|
718 // Always a power of 2.
|
|
719 unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined);
|
|
720 unsigned candidateNumElts = 1U << logCandidateNumElts;
|
|
721 assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
|
|
722
|
|
723 // Minor optimization: don't check the legality of this exact size twice.
|
|
724 if (candidateNumElts == numElts) {
|
|
725 logCandidateNumElts--;
|
|
726 candidateNumElts >>= 1;
|
|
727 }
|
|
728
|
|
729 CharUnits eltSize = (origVectorSize / numElts);
|
|
730 CharUnits candidateSize = eltSize * candidateNumElts;
|
|
731
|
|
732 // The sensibility of this algorithm relies on the fact that we never
|
|
733 // have a legal non-power-of-2 vector size without having the power of 2
|
|
734 // also be legal.
|
|
735 while (logCandidateNumElts > 0) {
|
|
736 assert(candidateNumElts == 1U << logCandidateNumElts);
|
|
737 assert(candidateNumElts <= numElts);
|
|
738 assert(candidateSize == eltSize * candidateNumElts);
|
|
739
|
|
740 // Skip illegal vector sizes.
|
|
741 if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
|
|
742 logCandidateNumElts--;
|
|
743 candidateNumElts /= 2;
|
|
744 candidateSize /= 2;
|
|
745 continue;
|
|
746 }
|
|
747
|
|
748 // Add the right number of vectors of this size.
|
|
749 auto numVecs = numElts >> logCandidateNumElts;
|
|
750 components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts));
|
|
751 numElts -= (numVecs << logCandidateNumElts);
|
|
752
|
|
753 if (numElts == 0) return;
|
|
754
|
|
755 // It's possible that the number of elements remaining will be legal.
|
|
756 // This can happen with e.g. <7 x float> when <3 x float> is legal.
|
|
757 // This only needs to be separately checked if it's not a power of 2.
|
|
758 if (numElts > 2 && !isPowerOf2(numElts) &&
|
|
759 isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
|
|
760 components.push_back(llvm::VectorType::get(eltTy, numElts));
|
|
761 return;
|
|
762 }
|
|
763
|
|
764 // Bring vecSize down to something no larger than numElts.
|
|
765 do {
|
|
766 logCandidateNumElts--;
|
|
767 candidateNumElts /= 2;
|
|
768 candidateSize /= 2;
|
|
769 } while (candidateNumElts > numElts);
|
|
770 }
|
|
771
|
|
772 // Otherwise, just append a bunch of individual elements.
|
|
773 components.append(numElts, eltTy);
|
|
774 }
|
|
775
|
|
776 bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
|
|
777 const RecordDecl *record) {
|
|
778 // FIXME: should we not rely on the standard computation in Sema, just in
|
|
779 // case we want to diverge from the platform ABI (e.g. on targets where
|
|
780 // that uses the MSVC rule)?
|
|
781 return !record->canPassInRegisters();
|
|
782 }
|
|
783
|
|
784 static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
|
|
785 bool forReturn,
|
|
786 CharUnits alignmentForIndirect) {
|
|
787 if (lowering.empty()) {
|
|
788 return ABIArgInfo::getIgnore();
|
|
789 } else if (lowering.shouldPassIndirectly(forReturn)) {
|
|
790 return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
|
|
791 } else {
|
|
792 auto types = lowering.getCoerceAndExpandTypes();
|
|
793 return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
|
|
794 }
|
|
795 }
|
|
796
|
|
797 static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
|
|
798 bool forReturn) {
|
|
799 if (auto recordType = dyn_cast<RecordType>(type)) {
|
|
800 auto record = recordType->getDecl();
|
|
801 auto &layout = CGM.getContext().getASTRecordLayout(record);
|
|
802
|
|
803 if (mustPassRecordIndirectly(CGM, record))
|
|
804 return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
|
|
805
|
|
806 SwiftAggLowering lowering(CGM);
|
|
807 lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
|
|
808 lowering.finish();
|
|
809
|
|
810 return classifyExpandedType(lowering, forReturn, layout.getAlignment());
|
|
811 }
|
|
812
|
|
813 // Just assume that all of our target ABIs can support returning at least
|
|
814 // two integer or floating-point values.
|
|
815 if (isa<ComplexType>(type)) {
|
|
816 return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
|
|
817 }
|
|
818
|
|
819 // Vector types may need to be legalized.
|
|
820 if (isa<VectorType>(type)) {
|
|
821 SwiftAggLowering lowering(CGM);
|
|
822 lowering.addTypedData(type, CharUnits::Zero());
|
|
823 lowering.finish();
|
|
824
|
|
825 CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
|
|
826 return classifyExpandedType(lowering, forReturn, alignment);
|
|
827 }
|
|
828
|
|
829 // Member pointer types need to be expanded, but it's a simple form of
|
|
830 // expansion that 'Direct' can handle. Note that CanBeFlattened should be
|
|
831 // true for this to work.
|
|
832
|
|
833 // 'void' needs to be ignored.
|
|
834 if (type->isVoidType()) {
|
|
835 return ABIArgInfo::getIgnore();
|
|
836 }
|
|
837
|
|
838 // Everything else can be passed directly.
|
|
839 return ABIArgInfo::getDirect();
|
|
840 }
|
|
841
|
|
842 ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
|
|
843 return classifyType(CGM, type, /*forReturn*/ true);
|
|
844 }
|
|
845
|
|
846 ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
|
|
847 CanQualType type) {
|
|
848 return classifyType(CGM, type, /*forReturn*/ false);
|
|
849 }
|
|
850
|
|
851 void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
|
|
852 auto &retInfo = FI.getReturnInfo();
|
|
853 retInfo = classifyReturnType(CGM, FI.getReturnType());
|
|
854
|
|
855 for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
|
|
856 auto &argInfo = FI.arg_begin()[i];
|
|
857 argInfo.info = classifyArgumentType(CGM, argInfo.type);
|
|
858 }
|
|
859 }
|
|
860
|
|
861 // Is swifterror lowered to a register by the target ABI.
|
|
862 bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
|
|
863 return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
|
|
864 }
|