150
|
1 //===--- FuzzyMatch.h - Approximate identifier matching ---------*- C++-*-===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8 //
|
|
9 // To check for a match between a Pattern ('u_p') and a Word ('unique_ptr'),
|
|
10 // we consider the possible partial match states:
|
|
11 //
|
|
12 // u n i q u e _ p t r
|
|
13 // +---------------------
|
|
14 // |A . . . . . . . . . .
|
|
15 // u|
|
|
16 // |. . . . . . . . . . .
|
|
17 // _|
|
|
18 // |. . . . . . . O . . .
|
|
19 // p|
|
|
20 // |. . . . . . . . . . B
|
|
21 //
|
|
22 // Each dot represents some prefix of the pattern being matched against some
|
|
23 // prefix of the word.
|
|
24 // - A is the initial state: '' matched against ''
|
|
25 // - O is an intermediate state: 'u_' matched against 'unique_'
|
|
26 // - B is the target state: 'u_p' matched against 'unique_ptr'
|
|
27 //
|
|
28 // We aim to find the best path from A->B.
|
|
29 // - Moving right (consuming a word character)
|
|
30 // Always legal: not all word characters must match.
|
|
31 // - Moving diagonally (consuming both a word and pattern character)
|
|
32 // Legal if the characters match.
|
|
33 // - Moving down (consuming a pattern character) is never legal.
|
|
34 // Never legal: all pattern characters must match something.
|
|
35 // Characters are matched case-insensitively.
|
|
36 // The first pattern character may only match the start of a word segment.
|
|
37 //
|
|
38 // The scoring is based on heuristics:
|
|
39 // - when matching a character, apply a bonus or penalty depending on the
|
|
40 // match quality (does case match, do word segments align, etc)
|
|
41 // - when skipping a character, apply a penalty if it hurts the match
|
|
42 // (it starts a word segment, or splits the matched region, etc)
|
|
43 //
|
|
44 // These heuristics require the ability to "look backward" one character, to
|
|
45 // see whether it was matched or not. Therefore the dynamic-programming matrix
|
|
46 // has an extra dimension (last character matched).
|
|
47 // Each entry also has an additional flag indicating whether the last-but-one
|
|
48 // character matched, which is needed to trace back through the scoring table
|
|
49 // and reconstruct the match.
|
|
50 //
|
|
51 // We treat strings as byte-sequences, so only ASCII has first-class support.
|
|
52 //
|
|
53 // This algorithm was inspired by VS code's client-side filtering, and aims
|
|
54 // to be mostly-compatible.
|
|
55 //
|
|
56 //===----------------------------------------------------------------------===//
|
|
57
|
|
58 #include "FuzzyMatch.h"
|
|
59 #include "llvm/ADT/Optional.h"
|
|
60 #include "llvm/Support/Format.h"
|
|
61
|
|
62 namespace clang {
|
|
63 namespace clangd {
|
|
64
|
|
65 constexpr int FuzzyMatcher::MaxPat;
|
|
66 constexpr int FuzzyMatcher::MaxWord;
|
|
67
|
|
68 static char lower(char C) { return C >= 'A' && C <= 'Z' ? C + ('a' - 'A') : C; }
|
|
69 // A "negative infinity" score that won't overflow.
|
|
70 // We use this to mark unreachable states and forbidden solutions.
|
|
71 // Score field is 15 bits wide, min value is -2^14, we use half of that.
|
|
72 static constexpr int AwfulScore = -(1 << 13);
|
|
73 static bool isAwful(int S) { return S < AwfulScore / 2; }
|
|
74 static constexpr int PerfectBonus = 4; // Perfect per-pattern-char score.
|
|
75
|
|
76 FuzzyMatcher::FuzzyMatcher(llvm::StringRef Pattern)
|
|
77 : PatN(std::min<int>(MaxPat, Pattern.size())),
|
|
78 ScoreScale(PatN ? float{1} / (PerfectBonus * PatN) : 0), WordN(0) {
|
|
79 std::copy(Pattern.begin(), Pattern.begin() + PatN, Pat);
|
|
80 for (int I = 0; I < PatN; ++I)
|
|
81 LowPat[I] = lower(Pat[I]);
|
|
82 Scores[0][0][Miss] = {0, Miss};
|
|
83 Scores[0][0][Match] = {AwfulScore, Miss};
|
|
84 for (int P = 0; P <= PatN; ++P)
|
|
85 for (int W = 0; W < P; ++W)
|
|
86 for (Action A : {Miss, Match})
|
|
87 Scores[P][W][A] = {AwfulScore, Miss};
|
|
88 PatTypeSet = calculateRoles(llvm::StringRef(Pat, PatN),
|
|
89 llvm::makeMutableArrayRef(PatRole, PatN));
|
|
90 }
|
|
91
|
|
92 llvm::Optional<float> FuzzyMatcher::match(llvm::StringRef Word) {
|
|
93 if (!(WordContainsPattern = init(Word)))
|
|
94 return llvm::None;
|
|
95 if (!PatN)
|
|
96 return 1;
|
|
97 buildGraph();
|
|
98 auto Best = std::max(Scores[PatN][WordN][Miss].Score,
|
|
99 Scores[PatN][WordN][Match].Score);
|
|
100 if (isAwful(Best))
|
|
101 return llvm::None;
|
|
102 float Score =
|
|
103 ScoreScale * std::min(PerfectBonus * PatN, std::max<int>(0, Best));
|
|
104 // If the pattern is as long as the word, we have an exact string match,
|
|
105 // since every pattern character must match something.
|
|
106 if (WordN == PatN)
|
|
107 Score *= 2; // May not be perfect 2 if case differs in a significant way.
|
|
108 return Score;
|
|
109 }
|
|
110
|
|
111 // We get CharTypes from a lookup table. Each is 2 bits, 4 fit in each byte.
|
|
112 // The top 6 bits of the char select the byte, the bottom 2 select the offset.
|
|
113 // e.g. 'q' = 010100 01 = byte 28 (55), bits 3-2 (01) -> Lower.
|
|
114 constexpr static uint8_t CharTypes[] = {
|
|
115 0x00, 0x00, 0x00, 0x00, // Control characters
|
|
116 0x00, 0x00, 0x00, 0x00, // Control characters
|
|
117 0xff, 0xff, 0xff, 0xff, // Punctuation
|
|
118 0x55, 0x55, 0xf5, 0xff, // Numbers->Lower, more Punctuation.
|
|
119 0xab, 0xaa, 0xaa, 0xaa, // @ and A-O
|
|
120 0xaa, 0xaa, 0xea, 0xff, // P-Z, more Punctuation.
|
|
121 0x57, 0x55, 0x55, 0x55, // ` and a-o
|
|
122 0x55, 0x55, 0xd5, 0x3f, // p-z, Punctuation, DEL.
|
|
123 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, // Bytes over 127 -> Lower.
|
|
124 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, // (probably UTF-8).
|
|
125 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55,
|
|
126 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55,
|
|
127 };
|
|
128
|
|
129 // The Role can be determined from the Type of a character and its neighbors:
|
|
130 //
|
|
131 // Example | Chars | Type | Role
|
|
132 // ---------+--------------+-----
|
|
133 // F(o)oBar | Foo | Ull | Tail
|
|
134 // Foo(B)ar | oBa | lUl | Head
|
|
135 // (f)oo | ^fo | Ell | Head
|
|
136 // H(T)TP | HTT | UUU | Tail
|
|
137 //
|
|
138 // Our lookup table maps a 6 bit key (Prev, Curr, Next) to a 2-bit Role.
|
|
139 // A byte packs 4 Roles. (Prev, Curr) selects a byte, Next selects the offset.
|
|
140 // e.g. Lower, Upper, Lower -> 01 10 01 -> byte 6 (aa), bits 3-2 (10) -> Head.
|
|
141 constexpr static uint8_t CharRoles[] = {
|
|
142 // clang-format off
|
|
143 // Curr= Empty Lower Upper Separ
|
|
144 /* Prev=Empty */ 0x00, 0xaa, 0xaa, 0xff, // At start, Lower|Upper->Head
|
|
145 /* Prev=Lower */ 0x00, 0x55, 0xaa, 0xff, // In word, Upper->Head;Lower->Tail
|
|
146 /* Prev=Upper */ 0x00, 0x55, 0x59, 0xff, // Ditto, but U(U)U->Tail
|
|
147 /* Prev=Separ */ 0x00, 0xaa, 0xaa, 0xff, // After separator, like at start
|
|
148 // clang-format on
|
|
149 };
|
|
150
|
|
151 template <typename T> static T packedLookup(const uint8_t *Data, int I) {
|
|
152 return static_cast<T>((Data[I >> 2] >> ((I & 3) * 2)) & 3);
|
|
153 }
|
|
154 CharTypeSet calculateRoles(llvm::StringRef Text,
|
|
155 llvm::MutableArrayRef<CharRole> Roles) {
|
|
156 assert(Text.size() == Roles.size());
|
|
157 if (Text.size() == 0)
|
|
158 return 0;
|
|
159 CharType Type = packedLookup<CharType>(CharTypes, Text[0]);
|
|
160 CharTypeSet TypeSet = 1 << Type;
|
|
161 // Types holds a sliding window of (Prev, Curr, Next) types.
|
|
162 // Initial value is (Empty, Empty, type of Text[0]).
|
|
163 int Types = Type;
|
|
164 // Rotate slides in the type of the next character.
|
|
165 auto Rotate = [&](CharType T) { Types = ((Types << 2) | T) & 0x3f; };
|
|
166 for (unsigned I = 0; I < Text.size() - 1; ++I) {
|
|
167 // For each character, rotate in the next, and look up the role.
|
|
168 Type = packedLookup<CharType>(CharTypes, Text[I + 1]);
|
|
169 TypeSet |= 1 << Type;
|
|
170 Rotate(Type);
|
|
171 Roles[I] = packedLookup<CharRole>(CharRoles, Types);
|
|
172 }
|
|
173 // For the last character, the "next character" is Empty.
|
|
174 Rotate(Empty);
|
|
175 Roles[Text.size() - 1] = packedLookup<CharRole>(CharRoles, Types);
|
|
176 return TypeSet;
|
|
177 }
|
|
178
|
|
179 // Sets up the data structures matching Word.
|
|
180 // Returns false if we can cheaply determine that no match is possible.
|
|
181 bool FuzzyMatcher::init(llvm::StringRef NewWord) {
|
|
182 WordN = std::min<int>(MaxWord, NewWord.size());
|
|
183 if (PatN > WordN)
|
|
184 return false;
|
|
185 std::copy(NewWord.begin(), NewWord.begin() + WordN, Word);
|
|
186 if (PatN == 0)
|
|
187 return true;
|
|
188 for (int I = 0; I < WordN; ++I)
|
|
189 LowWord[I] = lower(Word[I]);
|
|
190
|
|
191 // Cheap subsequence check.
|
|
192 for (int W = 0, P = 0; P != PatN; ++W) {
|
|
193 if (W == WordN)
|
|
194 return false;
|
|
195 if (LowWord[W] == LowPat[P])
|
|
196 ++P;
|
|
197 }
|
|
198
|
|
199 // FIXME: some words are hard to tokenize algorithmically.
|
|
200 // e.g. vsprintf is V S Print F, and should match [pri] but not [int].
|
|
201 // We could add a tokenization dictionary for common stdlib names.
|
|
202 WordTypeSet = calculateRoles(llvm::StringRef(Word, WordN),
|
|
203 llvm::makeMutableArrayRef(WordRole, WordN));
|
|
204 return true;
|
|
205 }
|
|
206
|
|
207 // The forwards pass finds the mappings of Pattern onto Word.
|
|
208 // Score = best score achieved matching Word[..W] against Pat[..P].
|
|
209 // Unlike other tables, indices range from 0 to N *inclusive*
|
|
210 // Matched = whether we chose to match Word[W] with Pat[P] or not.
|
|
211 //
|
|
212 // Points are mostly assigned to matched characters, with 1 being a good score
|
|
213 // and 3 being a great one. So we treat the score range as [0, 3 * PatN].
|
|
214 // This range is not strict: we can apply larger bonuses/penalties, or penalize
|
|
215 // non-matched characters.
|
|
216 void FuzzyMatcher::buildGraph() {
|
|
217 for (int W = 0; W < WordN; ++W) {
|
|
218 Scores[0][W + 1][Miss] = {Scores[0][W][Miss].Score - skipPenalty(W, Miss),
|
|
219 Miss};
|
|
220 Scores[0][W + 1][Match] = {AwfulScore, Miss};
|
|
221 }
|
|
222 for (int P = 0; P < PatN; ++P) {
|
|
223 for (int W = P; W < WordN; ++W) {
|
|
224 auto &Score = Scores[P + 1][W + 1], &PreMiss = Scores[P + 1][W];
|
|
225
|
|
226 auto MatchMissScore = PreMiss[Match].Score;
|
|
227 auto MissMissScore = PreMiss[Miss].Score;
|
|
228 if (P < PatN - 1) { // Skipping trailing characters is always free.
|
|
229 MatchMissScore -= skipPenalty(W, Match);
|
|
230 MissMissScore -= skipPenalty(W, Miss);
|
|
231 }
|
|
232 Score[Miss] = (MatchMissScore > MissMissScore)
|
|
233 ? ScoreInfo{MatchMissScore, Match}
|
|
234 : ScoreInfo{MissMissScore, Miss};
|
|
235
|
|
236 auto &PreMatch = Scores[P][W];
|
|
237 auto MatchMatchScore =
|
|
238 allowMatch(P, W, Match)
|
|
239 ? PreMatch[Match].Score + matchBonus(P, W, Match)
|
|
240 : AwfulScore;
|
|
241 auto MissMatchScore = allowMatch(P, W, Miss)
|
|
242 ? PreMatch[Miss].Score + matchBonus(P, W, Miss)
|
|
243 : AwfulScore;
|
|
244 Score[Match] = (MatchMatchScore > MissMatchScore)
|
|
245 ? ScoreInfo{MatchMatchScore, Match}
|
|
246 : ScoreInfo{MissMatchScore, Miss};
|
|
247 }
|
|
248 }
|
|
249 }
|
|
250
|
|
251 bool FuzzyMatcher::allowMatch(int P, int W, Action Last) const {
|
|
252 if (LowPat[P] != LowWord[W])
|
|
253 return false;
|
|
254 // We require a "strong" match:
|
|
255 // - for the first pattern character. [foo] !~ "barefoot"
|
|
256 // - after a gap. [pat] !~ "patnther"
|
|
257 if (Last == Miss) {
|
|
258 // We're banning matches outright, so conservatively accept some other cases
|
|
259 // where our segmentation might be wrong:
|
|
260 // - allow matching B in ABCDef (but not in NDEBUG)
|
|
261 // - we'd like to accept print in sprintf, but too many false positives
|
|
262 if (WordRole[W] == Tail &&
|
|
263 (Word[W] == LowWord[W] || !(WordTypeSet & 1 << Lower)))
|
|
264 return false;
|
|
265 }
|
|
266 return true;
|
|
267 }
|
|
268
|
|
269 int FuzzyMatcher::skipPenalty(int W, Action Last) const {
|
|
270 if (W == 0) // Skipping the first character.
|
|
271 return 3;
|
|
272 if (WordRole[W] == Head) // Skipping a segment.
|
|
273 return 1; // We want to keep this lower than a consecutive match bonus.
|
|
274 // Instead of penalizing non-consecutive matches, we give a bonus to a
|
|
275 // consecutive match in matchBonus. This produces a better score distribution
|
|
276 // than penalties in case of small patterns, e.g. 'up' for 'unique_ptr'.
|
|
277 return 0;
|
|
278 }
|
|
279
|
|
280 int FuzzyMatcher::matchBonus(int P, int W, Action Last) const {
|
|
281 assert(LowPat[P] == LowWord[W]);
|
|
282 int S = 1;
|
|
283 bool IsPatSingleCase =
|
|
284 (PatTypeSet == 1 << Lower) || (PatTypeSet == 1 << Upper);
|
|
285 // Bonus: case matches, or a Head in the pattern aligns with one in the word.
|
|
286 // Single-case patterns lack segmentation signals and we assume any character
|
|
287 // can be a head of a segment.
|
|
288 if (Pat[P] == Word[W] ||
|
|
289 (WordRole[W] == Head && (IsPatSingleCase || PatRole[P] == Head)))
|
|
290 ++S;
|
|
291 // Bonus: a consecutive match. First character match also gets a bonus to
|
|
292 // ensure prefix final match score normalizes to 1.0.
|
|
293 if (W == 0 || Last == Match)
|
|
294 S += 2;
|
|
295 // Penalty: matching inside a segment (and previous char wasn't matched).
|
|
296 if (WordRole[W] == Tail && P && Last == Miss)
|
|
297 S -= 3;
|
|
298 // Penalty: a Head in the pattern matches in the middle of a word segment.
|
|
299 if (PatRole[P] == Head && WordRole[W] == Tail)
|
|
300 --S;
|
|
301 // Penalty: matching the first pattern character in the middle of a segment.
|
|
302 if (P == 0 && WordRole[W] == Tail)
|
|
303 S -= 4;
|
|
304 assert(S <= PerfectBonus);
|
|
305 return S;
|
|
306 }
|
|
307
|
|
308 llvm::SmallString<256> FuzzyMatcher::dumpLast(llvm::raw_ostream &OS) const {
|
|
309 llvm::SmallString<256> Result;
|
|
310 OS << "=== Match \"" << llvm::StringRef(Word, WordN) << "\" against ["
|
|
311 << llvm::StringRef(Pat, PatN) << "] ===\n";
|
|
312 if (PatN == 0) {
|
|
313 OS << "Pattern is empty: perfect match.\n";
|
|
314 return Result = llvm::StringRef(Word, WordN);
|
|
315 }
|
|
316 if (WordN == 0) {
|
|
317 OS << "Word is empty: no match.\n";
|
|
318 return Result;
|
|
319 }
|
|
320 if (!WordContainsPattern) {
|
|
321 OS << "Substring check failed.\n";
|
|
322 return Result;
|
|
323 } else if (isAwful(std::max(Scores[PatN][WordN][Match].Score,
|
|
324 Scores[PatN][WordN][Miss].Score))) {
|
|
325 OS << "Substring check passed, but all matches are forbidden\n";
|
|
326 }
|
|
327 if (!(PatTypeSet & 1 << Upper))
|
|
328 OS << "Lowercase query, so scoring ignores case\n";
|
|
329
|
|
330 // Traverse Matched table backwards to reconstruct the Pattern/Word mapping.
|
|
331 // The Score table has cumulative scores, subtracting along this path gives
|
|
332 // us the per-letter scores.
|
|
333 Action Last =
|
|
334 (Scores[PatN][WordN][Match].Score > Scores[PatN][WordN][Miss].Score)
|
|
335 ? Match
|
|
336 : Miss;
|
|
337 int S[MaxWord];
|
|
338 Action A[MaxWord];
|
|
339 for (int W = WordN - 1, P = PatN - 1; W >= 0; --W) {
|
|
340 A[W] = Last;
|
|
341 const auto &Cell = Scores[P + 1][W + 1][Last];
|
|
342 if (Last == Match)
|
|
343 --P;
|
|
344 const auto &Prev = Scores[P + 1][W][Cell.Prev];
|
|
345 S[W] = Cell.Score - Prev.Score;
|
|
346 Last = Cell.Prev;
|
|
347 }
|
|
348 for (int I = 0; I < WordN; ++I) {
|
|
349 if (A[I] == Match && (I == 0 || A[I - 1] == Miss))
|
|
350 Result.push_back('[');
|
|
351 if (A[I] == Miss && I > 0 && A[I - 1] == Match)
|
|
352 Result.push_back(']');
|
|
353 Result.push_back(Word[I]);
|
|
354 }
|
|
355 if (A[WordN - 1] == Match)
|
|
356 Result.push_back(']');
|
|
357
|
|
358 for (char C : llvm::StringRef(Word, WordN))
|
|
359 OS << " " << C << " ";
|
|
360 OS << "\n";
|
|
361 for (int I = 0, J = 0; I < WordN; I++)
|
|
362 OS << " " << (A[I] == Match ? Pat[J++] : ' ') << " ";
|
|
363 OS << "\n";
|
|
364 for (int I = 0; I < WordN; I++)
|
|
365 OS << llvm::format("%2d ", S[I]);
|
|
366 OS << "\n";
|
|
367
|
|
368 OS << "\nSegmentation:";
|
|
369 OS << "\n'" << llvm::StringRef(Word, WordN) << "'\n ";
|
|
370 for (int I = 0; I < WordN; ++I)
|
|
371 OS << "?-+ "[static_cast<int>(WordRole[I])];
|
|
372 OS << "\n[" << llvm::StringRef(Pat, PatN) << "]\n ";
|
|
373 for (int I = 0; I < PatN; ++I)
|
|
374 OS << "?-+ "[static_cast<int>(PatRole[I])];
|
|
375 OS << "\n";
|
|
376
|
|
377 OS << "\nScoring table (last-Miss, last-Match):\n";
|
|
378 OS << " | ";
|
|
379 for (char C : llvm::StringRef(Word, WordN))
|
|
380 OS << " " << C << " ";
|
|
381 OS << "\n";
|
|
382 OS << "-+----" << std::string(WordN * 4, '-') << "\n";
|
|
383 for (int I = 0; I <= PatN; ++I) {
|
|
384 for (Action A : {Miss, Match}) {
|
|
385 OS << ((I && A == Miss) ? Pat[I - 1] : ' ') << "|";
|
|
386 for (int J = 0; J <= WordN; ++J) {
|
|
387 if (!isAwful(Scores[I][J][A].Score))
|
|
388 OS << llvm::format("%3d%c", Scores[I][J][A].Score,
|
|
389 Scores[I][J][A].Prev == Match ? '*' : ' ');
|
|
390 else
|
|
391 OS << " ";
|
|
392 }
|
|
393 OS << "\n";
|
|
394 }
|
|
395 }
|
|
396
|
|
397 return Result;
|
|
398 }
|
|
399
|
|
400 } // namespace clangd
|
|
401 } // namespace clang
|