150
|
1 //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8 //
|
|
9 // This file implements a flow-sensitive, path-insensitive analysis of
|
|
10 // determining reachable blocks within a CFG.
|
|
11 //
|
|
12 //===----------------------------------------------------------------------===//
|
|
13
|
|
14 #include "clang/Analysis/Analyses/ReachableCode.h"
|
|
15 #include "clang/AST/Expr.h"
|
|
16 #include "clang/AST/ExprCXX.h"
|
|
17 #include "clang/AST/ExprObjC.h"
|
|
18 #include "clang/AST/ParentMap.h"
|
|
19 #include "clang/AST/StmtCXX.h"
|
|
20 #include "clang/Analysis/AnalysisDeclContext.h"
|
|
21 #include "clang/Analysis/CFG.h"
|
|
22 #include "clang/Basic/Builtins.h"
|
|
23 #include "clang/Basic/SourceManager.h"
|
|
24 #include "clang/Lex/Preprocessor.h"
|
|
25 #include "llvm/ADT/BitVector.h"
|
|
26 #include "llvm/ADT/SmallVector.h"
|
|
27
|
|
28 using namespace clang;
|
|
29
|
|
30 //===----------------------------------------------------------------------===//
|
|
31 // Core Reachability Analysis routines.
|
|
32 //===----------------------------------------------------------------------===//
|
|
33
|
|
34 static bool isEnumConstant(const Expr *Ex) {
|
|
35 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
|
|
36 if (!DR)
|
|
37 return false;
|
|
38 return isa<EnumConstantDecl>(DR->getDecl());
|
|
39 }
|
|
40
|
|
41 static bool isTrivialExpression(const Expr *Ex) {
|
|
42 Ex = Ex->IgnoreParenCasts();
|
|
43 return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
|
|
44 isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
|
|
45 isa<CharacterLiteral>(Ex) ||
|
|
46 isEnumConstant(Ex);
|
|
47 }
|
|
48
|
|
49 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
|
|
50 // Check if the block ends with a do...while() and see if 'S' is the
|
|
51 // condition.
|
|
52 if (const Stmt *Term = B->getTerminatorStmt()) {
|
|
53 if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
|
|
54 const Expr *Cond = DS->getCond()->IgnoreParenCasts();
|
|
55 return Cond == S && isTrivialExpression(Cond);
|
|
56 }
|
|
57 }
|
|
58 return false;
|
|
59 }
|
|
60
|
|
61 static bool isBuiltinUnreachable(const Stmt *S) {
|
|
62 if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
|
|
63 if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
|
|
64 return FDecl->getIdentifier() &&
|
|
65 FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
|
|
66 return false;
|
|
67 }
|
|
68
|
|
69 static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
|
|
70 ASTContext &C) {
|
|
71 if (B->empty()) {
|
|
72 // Happens if S is B's terminator and B contains nothing else
|
|
73 // (e.g. a CFGBlock containing only a goto).
|
|
74 return false;
|
|
75 }
|
|
76 if (Optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
|
|
77 if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) {
|
|
78 return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C);
|
|
79 }
|
|
80 }
|
|
81 return false;
|
|
82 }
|
|
83
|
|
84 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
|
|
85 // Look to see if the current control flow ends with a 'return', and see if
|
|
86 // 'S' is a substatement. The 'return' may not be the last element in the
|
|
87 // block, or may be in a subsequent block because of destructors.
|
|
88 const CFGBlock *Current = B;
|
|
89 while (true) {
|
|
90 for (CFGBlock::const_reverse_iterator I = Current->rbegin(),
|
|
91 E = Current->rend();
|
|
92 I != E; ++I) {
|
|
93 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
|
|
94 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
|
|
95 if (RS == S)
|
|
96 return true;
|
|
97 if (const Expr *RE = RS->getRetValue()) {
|
|
98 RE = RE->IgnoreParenCasts();
|
|
99 if (RE == S)
|
|
100 return true;
|
|
101 ParentMap PM(const_cast<Expr *>(RE));
|
|
102 // If 'S' is in the ParentMap, it is a subexpression of
|
|
103 // the return statement.
|
|
104 return PM.getParent(S);
|
|
105 }
|
|
106 }
|
|
107 break;
|
|
108 }
|
|
109 }
|
|
110 // Note also that we are restricting the search for the return statement
|
|
111 // to stop at control-flow; only part of a return statement may be dead,
|
|
112 // without the whole return statement being dead.
|
|
113 if (Current->getTerminator().isTemporaryDtorsBranch()) {
|
|
114 // Temporary destructors have a predictable control flow, thus we want to
|
|
115 // look into the next block for the return statement.
|
|
116 // We look into the false branch, as we know the true branch only contains
|
|
117 // the call to the destructor.
|
|
118 assert(Current->succ_size() == 2);
|
|
119 Current = *(Current->succ_begin() + 1);
|
|
120 } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) {
|
|
121 // If there is only one successor, we're not dealing with outgoing control
|
|
122 // flow. Thus, look into the next block.
|
|
123 Current = *Current->succ_begin();
|
|
124 if (Current->pred_size() > 1) {
|
|
125 // If there is more than one predecessor, we're dealing with incoming
|
|
126 // control flow - if the return statement is in that block, it might
|
|
127 // well be reachable via a different control flow, thus it's not dead.
|
|
128 return false;
|
|
129 }
|
|
130 } else {
|
|
131 // We hit control flow or a dead end. Stop searching.
|
|
132 return false;
|
|
133 }
|
|
134 }
|
|
135 llvm_unreachable("Broke out of infinite loop.");
|
|
136 }
|
|
137
|
|
138 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
|
|
139 assert(Loc.isMacroID());
|
|
140 SourceLocation Last;
|
221
|
141 do {
|
150
|
142 Last = Loc;
|
|
143 Loc = SM.getImmediateMacroCallerLoc(Loc);
|
221
|
144 } while (Loc.isMacroID());
|
150
|
145 return Last;
|
|
146 }
|
|
147
|
|
148 /// Returns true if the statement is expanded from a configuration macro.
|
|
149 static bool isExpandedFromConfigurationMacro(const Stmt *S,
|
|
150 Preprocessor &PP,
|
|
151 bool IgnoreYES_NO = false) {
|
|
152 // FIXME: This is not very precise. Here we just check to see if the
|
|
153 // value comes from a macro, but we can do much better. This is likely
|
|
154 // to be over conservative. This logic is factored into a separate function
|
|
155 // so that we can refine it later.
|
|
156 SourceLocation L = S->getBeginLoc();
|
|
157 if (L.isMacroID()) {
|
|
158 SourceManager &SM = PP.getSourceManager();
|
|
159 if (IgnoreYES_NO) {
|
|
160 // The Objective-C constant 'YES' and 'NO'
|
|
161 // are defined as macros. Do not treat them
|
|
162 // as configuration values.
|
|
163 SourceLocation TopL = getTopMostMacro(L, SM);
|
|
164 StringRef MacroName = PP.getImmediateMacroName(TopL);
|
|
165 if (MacroName == "YES" || MacroName == "NO")
|
|
166 return false;
|
|
167 } else if (!PP.getLangOpts().CPlusPlus) {
|
|
168 // Do not treat C 'false' and 'true' macros as configuration values.
|
|
169 SourceLocation TopL = getTopMostMacro(L, SM);
|
|
170 StringRef MacroName = PP.getImmediateMacroName(TopL);
|
|
171 if (MacroName == "false" || MacroName == "true")
|
|
172 return false;
|
|
173 }
|
|
174 return true;
|
|
175 }
|
|
176 return false;
|
|
177 }
|
|
178
|
|
179 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
|
|
180
|
|
181 /// Returns true if the statement represents a configuration value.
|
|
182 ///
|
|
183 /// A configuration value is something usually determined at compile-time
|
|
184 /// to conditionally always execute some branch. Such guards are for
|
|
185 /// "sometimes unreachable" code. Such code is usually not interesting
|
|
186 /// to report as unreachable, and may mask truly unreachable code within
|
|
187 /// those blocks.
|
|
188 static bool isConfigurationValue(const Stmt *S,
|
|
189 Preprocessor &PP,
|
|
190 SourceRange *SilenceableCondVal = nullptr,
|
|
191 bool IncludeIntegers = true,
|
|
192 bool WrappedInParens = false) {
|
|
193 if (!S)
|
|
194 return false;
|
|
195
|
|
196 if (const auto *Ex = dyn_cast<Expr>(S))
|
|
197 S = Ex->IgnoreImplicit();
|
|
198
|
|
199 if (const auto *Ex = dyn_cast<Expr>(S))
|
|
200 S = Ex->IgnoreCasts();
|
|
201
|
|
202 // Special case looking for the sigil '()' around an integer literal.
|
|
203 if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
|
|
204 if (!PE->getBeginLoc().isMacroID())
|
|
205 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
|
|
206 IncludeIntegers, true);
|
|
207
|
|
208 if (const Expr *Ex = dyn_cast<Expr>(S))
|
|
209 S = Ex->IgnoreCasts();
|
|
210
|
|
211 bool IgnoreYES_NO = false;
|
|
212
|
|
213 switch (S->getStmtClass()) {
|
|
214 case Stmt::CallExprClass: {
|
|
215 const FunctionDecl *Callee =
|
|
216 dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
|
|
217 return Callee ? Callee->isConstexpr() : false;
|
|
218 }
|
|
219 case Stmt::DeclRefExprClass:
|
|
220 return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
|
|
221 case Stmt::ObjCBoolLiteralExprClass:
|
|
222 IgnoreYES_NO = true;
|
|
223 LLVM_FALLTHROUGH;
|
|
224 case Stmt::CXXBoolLiteralExprClass:
|
|
225 case Stmt::IntegerLiteralClass: {
|
|
226 const Expr *E = cast<Expr>(S);
|
|
227 if (IncludeIntegers) {
|
|
228 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
|
|
229 *SilenceableCondVal = E->getSourceRange();
|
|
230 return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
|
|
231 }
|
|
232 return false;
|
|
233 }
|
|
234 case Stmt::MemberExprClass:
|
|
235 return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
|
|
236 case Stmt::UnaryExprOrTypeTraitExprClass:
|
|
237 return true;
|
|
238 case Stmt::BinaryOperatorClass: {
|
|
239 const BinaryOperator *B = cast<BinaryOperator>(S);
|
|
240 // Only include raw integers (not enums) as configuration
|
|
241 // values if they are used in a logical or comparison operator
|
|
242 // (not arithmetic).
|
|
243 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
|
|
244 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
|
|
245 IncludeIntegers) ||
|
|
246 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
|
|
247 IncludeIntegers);
|
|
248 }
|
|
249 case Stmt::UnaryOperatorClass: {
|
|
250 const UnaryOperator *UO = cast<UnaryOperator>(S);
|
|
251 if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus)
|
|
252 return false;
|
|
253 bool SilenceableCondValNotSet =
|
|
254 SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
|
|
255 bool IsSubExprConfigValue =
|
|
256 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
|
|
257 IncludeIntegers, WrappedInParens);
|
|
258 // Update the silenceable condition value source range only if the range
|
|
259 // was set directly by the child expression.
|
|
260 if (SilenceableCondValNotSet &&
|
|
261 SilenceableCondVal->getBegin().isValid() &&
|
|
262 *SilenceableCondVal ==
|
|
263 UO->getSubExpr()->IgnoreCasts()->getSourceRange())
|
|
264 *SilenceableCondVal = UO->getSourceRange();
|
|
265 return IsSubExprConfigValue;
|
|
266 }
|
|
267 default:
|
|
268 return false;
|
|
269 }
|
|
270 }
|
|
271
|
|
272 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
|
|
273 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
|
|
274 return isConfigurationValue(ED->getInitExpr(), PP);
|
|
275 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
276 // As a heuristic, treat globals as configuration values. Note
|
|
277 // that we only will get here if Sema evaluated this
|
|
278 // condition to a constant expression, which means the global
|
|
279 // had to be declared in a way to be a truly constant value.
|
|
280 // We could generalize this to local variables, but it isn't
|
|
281 // clear if those truly represent configuration values that
|
|
282 // gate unreachable code.
|
|
283 if (!VD->hasLocalStorage())
|
|
284 return true;
|
|
285
|
|
286 // As a heuristic, locals that have been marked 'const' explicitly
|
|
287 // can be treated as configuration values as well.
|
|
288 return VD->getType().isLocalConstQualified();
|
|
289 }
|
|
290 return false;
|
|
291 }
|
|
292
|
|
293 /// Returns true if we should always explore all successors of a block.
|
|
294 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
|
|
295 Preprocessor &PP) {
|
|
296 if (const Stmt *Term = B->getTerminatorStmt()) {
|
|
297 if (isa<SwitchStmt>(Term))
|
|
298 return true;
|
|
299 // Specially handle '||' and '&&'.
|
|
300 if (isa<BinaryOperator>(Term)) {
|
|
301 return isConfigurationValue(Term, PP);
|
|
302 }
|
|
303 }
|
|
304
|
|
305 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
|
|
306 return isConfigurationValue(Cond, PP);
|
|
307 }
|
|
308
|
|
309 static unsigned scanFromBlock(const CFGBlock *Start,
|
|
310 llvm::BitVector &Reachable,
|
|
311 Preprocessor *PP,
|
|
312 bool IncludeSometimesUnreachableEdges) {
|
|
313 unsigned count = 0;
|
|
314
|
|
315 // Prep work queue
|
|
316 SmallVector<const CFGBlock*, 32> WL;
|
|
317
|
|
318 // The entry block may have already been marked reachable
|
|
319 // by the caller.
|
|
320 if (!Reachable[Start->getBlockID()]) {
|
|
321 ++count;
|
|
322 Reachable[Start->getBlockID()] = true;
|
|
323 }
|
|
324
|
|
325 WL.push_back(Start);
|
|
326
|
|
327 // Find the reachable blocks from 'Start'.
|
|
328 while (!WL.empty()) {
|
|
329 const CFGBlock *item = WL.pop_back_val();
|
|
330
|
|
331 // There are cases where we want to treat all successors as reachable.
|
|
332 // The idea is that some "sometimes unreachable" code is not interesting,
|
|
333 // and that we should forge ahead and explore those branches anyway.
|
|
334 // This allows us to potentially uncover some "always unreachable" code
|
|
335 // within the "sometimes unreachable" code.
|
|
336 // Look at the successors and mark then reachable.
|
|
337 Optional<bool> TreatAllSuccessorsAsReachable;
|
|
338 if (!IncludeSometimesUnreachableEdges)
|
|
339 TreatAllSuccessorsAsReachable = false;
|
|
340
|
|
341 for (CFGBlock::const_succ_iterator I = item->succ_begin(),
|
|
342 E = item->succ_end(); I != E; ++I) {
|
|
343 const CFGBlock *B = *I;
|
|
344 if (!B) do {
|
|
345 const CFGBlock *UB = I->getPossiblyUnreachableBlock();
|
|
346 if (!UB)
|
|
347 break;
|
|
348
|
|
349 if (!TreatAllSuccessorsAsReachable.hasValue()) {
|
|
350 assert(PP);
|
|
351 TreatAllSuccessorsAsReachable =
|
|
352 shouldTreatSuccessorsAsReachable(item, *PP);
|
|
353 }
|
|
354
|
|
355 if (TreatAllSuccessorsAsReachable.getValue()) {
|
|
356 B = UB;
|
|
357 break;
|
|
358 }
|
|
359 }
|
|
360 while (false);
|
|
361
|
|
362 if (B) {
|
|
363 unsigned blockID = B->getBlockID();
|
|
364 if (!Reachable[blockID]) {
|
|
365 Reachable.set(blockID);
|
|
366 WL.push_back(B);
|
|
367 ++count;
|
|
368 }
|
|
369 }
|
|
370 }
|
|
371 }
|
|
372 return count;
|
|
373 }
|
|
374
|
|
375 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
|
|
376 Preprocessor &PP,
|
|
377 llvm::BitVector &Reachable) {
|
|
378 return scanFromBlock(Start, Reachable, &PP, true);
|
|
379 }
|
|
380
|
|
381 //===----------------------------------------------------------------------===//
|
|
382 // Dead Code Scanner.
|
|
383 //===----------------------------------------------------------------------===//
|
|
384
|
|
385 namespace {
|
|
386 class DeadCodeScan {
|
|
387 llvm::BitVector Visited;
|
|
388 llvm::BitVector &Reachable;
|
|
389 SmallVector<const CFGBlock *, 10> WorkList;
|
|
390 Preprocessor &PP;
|
|
391 ASTContext &C;
|
|
392
|
|
393 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
|
|
394 DeferredLocsTy;
|
|
395
|
|
396 DeferredLocsTy DeferredLocs;
|
|
397
|
|
398 public:
|
|
399 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
|
|
400 : Visited(reachable.size()),
|
|
401 Reachable(reachable),
|
|
402 PP(PP), C(C) {}
|
|
403
|
|
404 void enqueue(const CFGBlock *block);
|
|
405 unsigned scanBackwards(const CFGBlock *Start,
|
|
406 clang::reachable_code::Callback &CB);
|
|
407
|
|
408 bool isDeadCodeRoot(const CFGBlock *Block);
|
|
409
|
|
410 const Stmt *findDeadCode(const CFGBlock *Block);
|
|
411
|
|
412 void reportDeadCode(const CFGBlock *B,
|
|
413 const Stmt *S,
|
|
414 clang::reachable_code::Callback &CB);
|
|
415 };
|
|
416 }
|
|
417
|
|
418 void DeadCodeScan::enqueue(const CFGBlock *block) {
|
|
419 unsigned blockID = block->getBlockID();
|
|
420 if (Reachable[blockID] || Visited[blockID])
|
|
421 return;
|
|
422 Visited[blockID] = true;
|
|
423 WorkList.push_back(block);
|
|
424 }
|
|
425
|
|
426 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
|
|
427 bool isDeadRoot = true;
|
|
428
|
|
429 for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
|
|
430 E = Block->pred_end(); I != E; ++I) {
|
|
431 if (const CFGBlock *PredBlock = *I) {
|
|
432 unsigned blockID = PredBlock->getBlockID();
|
|
433 if (Visited[blockID]) {
|
|
434 isDeadRoot = false;
|
|
435 continue;
|
|
436 }
|
|
437 if (!Reachable[blockID]) {
|
|
438 isDeadRoot = false;
|
|
439 Visited[blockID] = true;
|
|
440 WorkList.push_back(PredBlock);
|
|
441 continue;
|
|
442 }
|
|
443 }
|
|
444 }
|
|
445
|
|
446 return isDeadRoot;
|
|
447 }
|
|
448
|
|
449 static bool isValidDeadStmt(const Stmt *S) {
|
|
450 if (S->getBeginLoc().isInvalid())
|
|
451 return false;
|
|
452 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
|
|
453 return BO->getOpcode() != BO_Comma;
|
|
454 return true;
|
|
455 }
|
|
456
|
|
457 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
|
|
458 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
|
|
459 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
|
|
460 const Stmt *S = CS->getStmt();
|
|
461 if (isValidDeadStmt(S))
|
|
462 return S;
|
|
463 }
|
|
464
|
|
465 CFGTerminator T = Block->getTerminator();
|
|
466 if (T.isStmtBranch()) {
|
|
467 const Stmt *S = T.getStmt();
|
|
468 if (S && isValidDeadStmt(S))
|
|
469 return S;
|
|
470 }
|
|
471
|
|
472 return nullptr;
|
|
473 }
|
|
474
|
|
475 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
|
|
476 const std::pair<const CFGBlock *, const Stmt *> *p2) {
|
|
477 if (p1->second->getBeginLoc() < p2->second->getBeginLoc())
|
|
478 return -1;
|
|
479 if (p2->second->getBeginLoc() < p1->second->getBeginLoc())
|
|
480 return 1;
|
|
481 return 0;
|
|
482 }
|
|
483
|
|
484 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
|
|
485 clang::reachable_code::Callback &CB) {
|
|
486
|
|
487 unsigned count = 0;
|
|
488 enqueue(Start);
|
|
489
|
|
490 while (!WorkList.empty()) {
|
|
491 const CFGBlock *Block = WorkList.pop_back_val();
|
|
492
|
|
493 // It is possible that this block has been marked reachable after
|
|
494 // it was enqueued.
|
|
495 if (Reachable[Block->getBlockID()])
|
|
496 continue;
|
|
497
|
|
498 // Look for any dead code within the block.
|
|
499 const Stmt *S = findDeadCode(Block);
|
|
500
|
|
501 if (!S) {
|
|
502 // No dead code. Possibly an empty block. Look at dead predecessors.
|
|
503 for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
|
|
504 E = Block->pred_end(); I != E; ++I) {
|
|
505 if (const CFGBlock *predBlock = *I)
|
|
506 enqueue(predBlock);
|
|
507 }
|
|
508 continue;
|
|
509 }
|
|
510
|
|
511 // Specially handle macro-expanded code.
|
|
512 if (S->getBeginLoc().isMacroID()) {
|
|
513 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
|
|
514 continue;
|
|
515 }
|
|
516
|
|
517 if (isDeadCodeRoot(Block)) {
|
|
518 reportDeadCode(Block, S, CB);
|
|
519 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
|
|
520 }
|
|
521 else {
|
|
522 // Record this statement as the possibly best location in a
|
|
523 // strongly-connected component of dead code for emitting a
|
|
524 // warning.
|
|
525 DeferredLocs.push_back(std::make_pair(Block, S));
|
|
526 }
|
|
527 }
|
|
528
|
|
529 // If we didn't find a dead root, then report the dead code with the
|
|
530 // earliest location.
|
|
531 if (!DeferredLocs.empty()) {
|
|
532 llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
|
|
533 for (DeferredLocsTy::iterator I = DeferredLocs.begin(),
|
|
534 E = DeferredLocs.end(); I != E; ++I) {
|
|
535 const CFGBlock *Block = I->first;
|
|
536 if (Reachable[Block->getBlockID()])
|
|
537 continue;
|
|
538 reportDeadCode(Block, I->second, CB);
|
|
539 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
|
|
540 }
|
|
541 }
|
|
542
|
|
543 return count;
|
|
544 }
|
|
545
|
|
546 static SourceLocation GetUnreachableLoc(const Stmt *S,
|
|
547 SourceRange &R1,
|
|
548 SourceRange &R2) {
|
|
549 R1 = R2 = SourceRange();
|
|
550
|
|
551 if (const Expr *Ex = dyn_cast<Expr>(S))
|
|
552 S = Ex->IgnoreParenImpCasts();
|
|
553
|
|
554 switch (S->getStmtClass()) {
|
|
555 case Expr::BinaryOperatorClass: {
|
|
556 const BinaryOperator *BO = cast<BinaryOperator>(S);
|
|
557 return BO->getOperatorLoc();
|
|
558 }
|
|
559 case Expr::UnaryOperatorClass: {
|
|
560 const UnaryOperator *UO = cast<UnaryOperator>(S);
|
|
561 R1 = UO->getSubExpr()->getSourceRange();
|
|
562 return UO->getOperatorLoc();
|
|
563 }
|
|
564 case Expr::CompoundAssignOperatorClass: {
|
|
565 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
|
|
566 R1 = CAO->getLHS()->getSourceRange();
|
|
567 R2 = CAO->getRHS()->getSourceRange();
|
|
568 return CAO->getOperatorLoc();
|
|
569 }
|
|
570 case Expr::BinaryConditionalOperatorClass:
|
|
571 case Expr::ConditionalOperatorClass: {
|
|
572 const AbstractConditionalOperator *CO =
|
|
573 cast<AbstractConditionalOperator>(S);
|
|
574 return CO->getQuestionLoc();
|
|
575 }
|
|
576 case Expr::MemberExprClass: {
|
|
577 const MemberExpr *ME = cast<MemberExpr>(S);
|
|
578 R1 = ME->getSourceRange();
|
|
579 return ME->getMemberLoc();
|
|
580 }
|
|
581 case Expr::ArraySubscriptExprClass: {
|
|
582 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
|
|
583 R1 = ASE->getLHS()->getSourceRange();
|
|
584 R2 = ASE->getRHS()->getSourceRange();
|
|
585 return ASE->getRBracketLoc();
|
|
586 }
|
|
587 case Expr::CStyleCastExprClass: {
|
|
588 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
|
|
589 R1 = CSC->getSubExpr()->getSourceRange();
|
|
590 return CSC->getLParenLoc();
|
|
591 }
|
|
592 case Expr::CXXFunctionalCastExprClass: {
|
|
593 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
|
|
594 R1 = CE->getSubExpr()->getSourceRange();
|
|
595 return CE->getBeginLoc();
|
|
596 }
|
|
597 case Stmt::CXXTryStmtClass: {
|
|
598 return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
|
|
599 }
|
|
600 case Expr::ObjCBridgedCastExprClass: {
|
|
601 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
|
|
602 R1 = CSC->getSubExpr()->getSourceRange();
|
|
603 return CSC->getLParenLoc();
|
|
604 }
|
|
605 default: ;
|
|
606 }
|
|
607 R1 = S->getSourceRange();
|
|
608 return S->getBeginLoc();
|
|
609 }
|
|
610
|
|
611 void DeadCodeScan::reportDeadCode(const CFGBlock *B,
|
|
612 const Stmt *S,
|
|
613 clang::reachable_code::Callback &CB) {
|
|
614 // Classify the unreachable code found, or suppress it in some cases.
|
|
615 reachable_code::UnreachableKind UK = reachable_code::UK_Other;
|
|
616
|
|
617 if (isa<BreakStmt>(S)) {
|
|
618 UK = reachable_code::UK_Break;
|
|
619 } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
|
|
620 isBuiltinAssumeFalse(B, S, C)) {
|
|
621 return;
|
|
622 }
|
|
623 else if (isDeadReturn(B, S)) {
|
|
624 UK = reachable_code::UK_Return;
|
|
625 }
|
|
626
|
|
627 SourceRange SilenceableCondVal;
|
|
628
|
|
629 if (UK == reachable_code::UK_Other) {
|
|
630 // Check if the dead code is part of the "loop target" of
|
|
631 // a for/for-range loop. This is the block that contains
|
|
632 // the increment code.
|
|
633 if (const Stmt *LoopTarget = B->getLoopTarget()) {
|
|
634 SourceLocation Loc = LoopTarget->getBeginLoc();
|
|
635 SourceRange R1(Loc, Loc), R2;
|
|
636
|
|
637 if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
|
|
638 const Expr *Inc = FS->getInc();
|
|
639 Loc = Inc->getBeginLoc();
|
|
640 R2 = Inc->getSourceRange();
|
|
641 }
|
|
642
|
|
643 CB.HandleUnreachable(reachable_code::UK_Loop_Increment,
|
|
644 Loc, SourceRange(), SourceRange(Loc, Loc), R2);
|
|
645 return;
|
|
646 }
|
|
647
|
|
648 // Check if the dead block has a predecessor whose branch has
|
|
649 // a configuration value that *could* be modified to
|
|
650 // silence the warning.
|
|
651 CFGBlock::const_pred_iterator PI = B->pred_begin();
|
|
652 if (PI != B->pred_end()) {
|
|
653 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
|
|
654 const Stmt *TermCond =
|
|
655 PredBlock->getTerminatorCondition(/* strip parens */ false);
|
|
656 isConfigurationValue(TermCond, PP, &SilenceableCondVal);
|
|
657 }
|
|
658 }
|
|
659 }
|
|
660
|
|
661 SourceRange R1, R2;
|
|
662 SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
|
|
663 CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2);
|
|
664 }
|
|
665
|
|
666 //===----------------------------------------------------------------------===//
|
|
667 // Reachability APIs.
|
|
668 //===----------------------------------------------------------------------===//
|
|
669
|
|
670 namespace clang { namespace reachable_code {
|
|
671
|
|
672 void Callback::anchor() { }
|
|
673
|
|
674 unsigned ScanReachableFromBlock(const CFGBlock *Start,
|
|
675 llvm::BitVector &Reachable) {
|
|
676 return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
|
|
677 }
|
|
678
|
|
679 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
|
|
680 Callback &CB) {
|
|
681
|
|
682 CFG *cfg = AC.getCFG();
|
|
683 if (!cfg)
|
|
684 return;
|
|
685
|
|
686 // Scan for reachable blocks from the entrance of the CFG.
|
|
687 // If there are no unreachable blocks, we're done.
|
|
688 llvm::BitVector reachable(cfg->getNumBlockIDs());
|
|
689 unsigned numReachable =
|
|
690 scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
|
|
691 if (numReachable == cfg->getNumBlockIDs())
|
|
692 return;
|
|
693
|
|
694 // If there aren't explicit EH edges, we should include the 'try' dispatch
|
|
695 // blocks as roots.
|
|
696 if (!AC.getCFGBuildOptions().AddEHEdges) {
|
|
697 for (CFG::try_block_iterator I = cfg->try_blocks_begin(),
|
|
698 E = cfg->try_blocks_end() ; I != E; ++I) {
|
|
699 numReachable += scanMaybeReachableFromBlock(*I, PP, reachable);
|
|
700 }
|
|
701 if (numReachable == cfg->getNumBlockIDs())
|
|
702 return;
|
|
703 }
|
|
704
|
|
705 // There are some unreachable blocks. We need to find the root blocks that
|
|
706 // contain code that should be considered unreachable.
|
|
707 for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
|
|
708 const CFGBlock *block = *I;
|
|
709 // A block may have been marked reachable during this loop.
|
|
710 if (reachable[block->getBlockID()])
|
|
711 continue;
|
|
712
|
|
713 DeadCodeScan DS(reachable, PP, AC.getASTContext());
|
|
714 numReachable += DS.scanBackwards(block, CB);
|
|
715
|
|
716 if (numReachable == cfg->getNumBlockIDs())
|
|
717 return;
|
|
718 }
|
|
719 }
|
|
720
|
|
721 }} // end namespace clang::reachable_code
|