150
|
1 //===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8 ///
|
|
9 /// This file implements classes for searching and analyzing source code clones.
|
|
10 ///
|
|
11 //===----------------------------------------------------------------------===//
|
|
12
|
|
13 #include "clang/Analysis/CloneDetection.h"
|
|
14 #include "clang/AST/Attr.h"
|
|
15 #include "clang/AST/DataCollection.h"
|
|
16 #include "clang/AST/DeclTemplate.h"
|
173
|
17 #include "clang/Basic/SourceManager.h"
|
150
|
18 #include "llvm/Support/MD5.h"
|
|
19 #include "llvm/Support/Path.h"
|
|
20
|
|
21 using namespace clang;
|
|
22
|
|
23 StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D,
|
|
24 unsigned StartIndex, unsigned EndIndex)
|
|
25 : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) {
|
|
26 assert(Stmt && "Stmt must not be a nullptr");
|
|
27 assert(StartIndex < EndIndex && "Given array should not be empty");
|
|
28 assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
|
|
29 }
|
|
30
|
|
31 StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D)
|
|
32 : S(Stmt), D(D), StartIndex(0), EndIndex(0) {}
|
|
33
|
|
34 StmtSequence::StmtSequence()
|
|
35 : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}
|
|
36
|
|
37 bool StmtSequence::contains(const StmtSequence &Other) const {
|
|
38 // If both sequences reside in different declarations, they can never contain
|
|
39 // each other.
|
|
40 if (D != Other.D)
|
|
41 return false;
|
|
42
|
|
43 const SourceManager &SM = getASTContext().getSourceManager();
|
|
44
|
|
45 // Otherwise check if the start and end locations of the current sequence
|
|
46 // surround the other sequence.
|
|
47 bool StartIsInBounds =
|
|
48 SM.isBeforeInTranslationUnit(getBeginLoc(), Other.getBeginLoc()) ||
|
|
49 getBeginLoc() == Other.getBeginLoc();
|
|
50 if (!StartIsInBounds)
|
|
51 return false;
|
|
52
|
|
53 bool EndIsInBounds =
|
|
54 SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
|
|
55 Other.getEndLoc() == getEndLoc();
|
|
56 return EndIsInBounds;
|
|
57 }
|
|
58
|
|
59 StmtSequence::iterator StmtSequence::begin() const {
|
|
60 if (!holdsSequence()) {
|
|
61 return &S;
|
|
62 }
|
|
63 auto CS = cast<CompoundStmt>(S);
|
|
64 return CS->body_begin() + StartIndex;
|
|
65 }
|
|
66
|
|
67 StmtSequence::iterator StmtSequence::end() const {
|
|
68 if (!holdsSequence()) {
|
|
69 return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
|
|
70 }
|
|
71 auto CS = cast<CompoundStmt>(S);
|
|
72 return CS->body_begin() + EndIndex;
|
|
73 }
|
|
74
|
|
75 ASTContext &StmtSequence::getASTContext() const {
|
|
76 assert(D);
|
|
77 return D->getASTContext();
|
|
78 }
|
|
79
|
|
80 SourceLocation StmtSequence::getBeginLoc() const {
|
|
81 return front()->getBeginLoc();
|
|
82 }
|
|
83
|
|
84 SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); }
|
|
85
|
|
86 SourceRange StmtSequence::getSourceRange() const {
|
|
87 return SourceRange(getBeginLoc(), getEndLoc());
|
|
88 }
|
|
89
|
|
90 void CloneDetector::analyzeCodeBody(const Decl *D) {
|
|
91 assert(D);
|
|
92 assert(D->hasBody());
|
|
93
|
|
94 Sequences.push_back(StmtSequence(D->getBody(), D));
|
|
95 }
|
|
96
|
|
97 /// Returns true if and only if \p Stmt contains at least one other
|
|
98 /// sequence in the \p Group.
|
|
99 static bool containsAnyInGroup(StmtSequence &Seq,
|
|
100 CloneDetector::CloneGroup &Group) {
|
|
101 for (StmtSequence &GroupSeq : Group) {
|
|
102 if (Seq.contains(GroupSeq))
|
|
103 return true;
|
|
104 }
|
|
105 return false;
|
|
106 }
|
|
107
|
|
108 /// Returns true if and only if all sequences in \p OtherGroup are
|
|
109 /// contained by a sequence in \p Group.
|
|
110 static bool containsGroup(CloneDetector::CloneGroup &Group,
|
|
111 CloneDetector::CloneGroup &OtherGroup) {
|
|
112 // We have less sequences in the current group than we have in the other,
|
|
113 // so we will never fulfill the requirement for returning true. This is only
|
|
114 // possible because we know that a sequence in Group can contain at most
|
|
115 // one sequence in OtherGroup.
|
|
116 if (Group.size() < OtherGroup.size())
|
|
117 return false;
|
|
118
|
|
119 for (StmtSequence &Stmt : Group) {
|
|
120 if (!containsAnyInGroup(Stmt, OtherGroup))
|
|
121 return false;
|
|
122 }
|
|
123 return true;
|
|
124 }
|
|
125
|
|
126 void OnlyLargestCloneConstraint::constrain(
|
|
127 std::vector<CloneDetector::CloneGroup> &Result) {
|
|
128 std::vector<unsigned> IndexesToRemove;
|
|
129
|
|
130 // Compare every group in the result with the rest. If one groups contains
|
|
131 // another group, we only need to return the bigger group.
|
|
132 // Note: This doesn't scale well, so if possible avoid calling any heavy
|
|
133 // function from this loop to minimize the performance impact.
|
|
134 for (unsigned i = 0; i < Result.size(); ++i) {
|
|
135 for (unsigned j = 0; j < Result.size(); ++j) {
|
|
136 // Don't compare a group with itself.
|
|
137 if (i == j)
|
|
138 continue;
|
|
139
|
|
140 if (containsGroup(Result[j], Result[i])) {
|
|
141 IndexesToRemove.push_back(i);
|
|
142 break;
|
|
143 }
|
|
144 }
|
|
145 }
|
|
146
|
|
147 // Erasing a list of indexes from the vector should be done with decreasing
|
|
148 // indexes. As IndexesToRemove is constructed with increasing values, we just
|
|
149 // reverse iterate over it to get the desired order.
|
|
150 for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) {
|
|
151 Result.erase(Result.begin() + *I);
|
|
152 }
|
|
153 }
|
|
154
|
|
155 bool FilenamePatternConstraint::isAutoGenerated(
|
|
156 const CloneDetector::CloneGroup &Group) {
|
|
157 if (IgnoredFilesPattern.empty() || Group.empty() ||
|
|
158 !IgnoredFilesRegex->isValid())
|
|
159 return false;
|
|
160
|
|
161 for (const StmtSequence &S : Group) {
|
|
162 const SourceManager &SM = S.getASTContext().getSourceManager();
|
|
163 StringRef Filename = llvm::sys::path::filename(
|
|
164 SM.getFilename(S.getContainingDecl()->getLocation()));
|
|
165 if (IgnoredFilesRegex->match(Filename))
|
|
166 return true;
|
|
167 }
|
|
168
|
|
169 return false;
|
|
170 }
|
|
171
|
|
172 /// This class defines what a type II code clone is: If it collects for two
|
|
173 /// statements the same data, then those two statements are considered to be
|
|
174 /// clones of each other.
|
|
175 ///
|
|
176 /// All collected data is forwarded to the given data consumer of the type T.
|
|
177 /// The data consumer class needs to provide a member method with the signature:
|
|
178 /// update(StringRef Str)
|
|
179 namespace {
|
|
180 template <class T>
|
|
181 class CloneTypeIIStmtDataCollector
|
|
182 : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> {
|
|
183 ASTContext &Context;
|
|
184 /// The data sink to which all data is forwarded.
|
|
185 T &DataConsumer;
|
|
186
|
|
187 template <class Ty> void addData(const Ty &Data) {
|
|
188 data_collection::addDataToConsumer(DataConsumer, Data);
|
|
189 }
|
|
190
|
|
191 public:
|
|
192 CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context,
|
|
193 T &DataConsumer)
|
|
194 : Context(Context), DataConsumer(DataConsumer) {
|
|
195 this->Visit(S);
|
|
196 }
|
|
197
|
|
198 // Define a visit method for each class to collect data and subsequently visit
|
|
199 // all parent classes. This uses a template so that custom visit methods by us
|
|
200 // take precedence.
|
|
201 #define DEF_ADD_DATA(CLASS, CODE) \
|
|
202 template <class = void> void Visit##CLASS(const CLASS *S) { \
|
|
203 CODE; \
|
|
204 ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \
|
|
205 }
|
|
206
|
|
207 #include "clang/AST/StmtDataCollectors.inc"
|
|
208
|
|
209 // Type II clones ignore variable names and literals, so let's skip them.
|
|
210 #define SKIP(CLASS) \
|
|
211 void Visit##CLASS(const CLASS *S) { \
|
|
212 ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \
|
|
213 }
|
|
214 SKIP(DeclRefExpr)
|
|
215 SKIP(MemberExpr)
|
|
216 SKIP(IntegerLiteral)
|
|
217 SKIP(FloatingLiteral)
|
|
218 SKIP(StringLiteral)
|
|
219 SKIP(CXXBoolLiteralExpr)
|
|
220 SKIP(CharacterLiteral)
|
|
221 #undef SKIP
|
|
222 };
|
|
223 } // end anonymous namespace
|
|
224
|
|
225 static size_t createHash(llvm::MD5 &Hash) {
|
|
226 size_t HashCode;
|
|
227
|
|
228 // Create the final hash code for the current Stmt.
|
|
229 llvm::MD5::MD5Result HashResult;
|
|
230 Hash.final(HashResult);
|
|
231
|
|
232 // Copy as much as possible of the generated hash code to the Stmt's hash
|
|
233 // code.
|
|
234 std::memcpy(&HashCode, &HashResult,
|
|
235 std::min(sizeof(HashCode), sizeof(HashResult)));
|
|
236
|
|
237 return HashCode;
|
|
238 }
|
|
239
|
|
240 /// Generates and saves a hash code for the given Stmt.
|
|
241 /// \param S The given Stmt.
|
|
242 /// \param D The Decl containing S.
|
|
243 /// \param StmtsByHash Output parameter that will contain the hash codes for
|
|
244 /// each StmtSequence in the given Stmt.
|
|
245 /// \return The hash code of the given Stmt.
|
|
246 ///
|
|
247 /// If the given Stmt is a CompoundStmt, this method will also generate
|
|
248 /// hashes for all possible StmtSequences in the children of this Stmt.
|
|
249 static size_t
|
|
250 saveHash(const Stmt *S, const Decl *D,
|
|
251 std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) {
|
|
252 llvm::MD5 Hash;
|
|
253 ASTContext &Context = D->getASTContext();
|
|
254
|
|
255 CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash);
|
|
256
|
|
257 auto CS = dyn_cast<CompoundStmt>(S);
|
|
258 SmallVector<size_t, 8> ChildHashes;
|
|
259
|
|
260 for (const Stmt *Child : S->children()) {
|
|
261 if (Child == nullptr) {
|
|
262 ChildHashes.push_back(0);
|
|
263 continue;
|
|
264 }
|
|
265 size_t ChildHash = saveHash(Child, D, StmtsByHash);
|
|
266 Hash.update(
|
|
267 StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
|
|
268 ChildHashes.push_back(ChildHash);
|
|
269 }
|
|
270
|
|
271 if (CS) {
|
|
272 // If we're in a CompoundStmt, we hash all possible combinations of child
|
|
273 // statements to find clones in those subsequences.
|
|
274 // We first go through every possible starting position of a subsequence.
|
|
275 for (unsigned Pos = 0; Pos < CS->size(); ++Pos) {
|
|
276 // Then we try all possible lengths this subsequence could have and
|
|
277 // reuse the same hash object to make sure we only hash every child
|
|
278 // hash exactly once.
|
|
279 llvm::MD5 Hash;
|
|
280 for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) {
|
|
281 // Grab the current child hash and put it into our hash. We do
|
|
282 // -1 on the index because we start counting the length at 1.
|
|
283 size_t ChildHash = ChildHashes[Pos + Length - 1];
|
|
284 Hash.update(
|
|
285 StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
|
|
286 // If we have at least two elements in our subsequence, we can start
|
|
287 // saving it.
|
|
288 if (Length > 1) {
|
|
289 llvm::MD5 SubHash = Hash;
|
|
290 StmtsByHash.push_back(std::make_pair(
|
|
291 createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length)));
|
|
292 }
|
|
293 }
|
|
294 }
|
|
295 }
|
|
296
|
|
297 size_t HashCode = createHash(Hash);
|
|
298 StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D)));
|
|
299 return HashCode;
|
|
300 }
|
|
301
|
|
302 namespace {
|
|
303 /// Wrapper around FoldingSetNodeID that it can be used as the template
|
|
304 /// argument of the StmtDataCollector.
|
|
305 class FoldingSetNodeIDWrapper {
|
|
306
|
|
307 llvm::FoldingSetNodeID &FS;
|
|
308
|
|
309 public:
|
|
310 FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}
|
|
311
|
|
312 void update(StringRef Str) { FS.AddString(Str); }
|
|
313 };
|
|
314 } // end anonymous namespace
|
|
315
|
|
316 /// Writes the relevant data from all statements and child statements
|
|
317 /// in the given StmtSequence into the given FoldingSetNodeID.
|
|
318 static void CollectStmtSequenceData(const StmtSequence &Sequence,
|
|
319 FoldingSetNodeIDWrapper &OutputData) {
|
|
320 for (const Stmt *S : Sequence) {
|
|
321 CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>(
|
|
322 S, Sequence.getASTContext(), OutputData);
|
|
323
|
|
324 for (const Stmt *Child : S->children()) {
|
|
325 if (!Child)
|
|
326 continue;
|
|
327
|
|
328 CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()),
|
|
329 OutputData);
|
|
330 }
|
|
331 }
|
|
332 }
|
|
333
|
|
334 /// Returns true if both sequences are clones of each other.
|
|
335 static bool areSequencesClones(const StmtSequence &LHS,
|
|
336 const StmtSequence &RHS) {
|
|
337 // We collect the data from all statements in the sequence as we did before
|
|
338 // when generating a hash value for each sequence. But this time we don't
|
|
339 // hash the collected data and compare the whole data set instead. This
|
|
340 // prevents any false-positives due to hash code collisions.
|
|
341 llvm::FoldingSetNodeID DataLHS, DataRHS;
|
|
342 FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
|
|
343 FoldingSetNodeIDWrapper RHSWrapper(DataRHS);
|
|
344
|
|
345 CollectStmtSequenceData(LHS, LHSWrapper);
|
|
346 CollectStmtSequenceData(RHS, RHSWrapper);
|
|
347
|
|
348 return DataLHS == DataRHS;
|
|
349 }
|
|
350
|
|
351 void RecursiveCloneTypeIIHashConstraint::constrain(
|
|
352 std::vector<CloneDetector::CloneGroup> &Sequences) {
|
|
353 // FIXME: Maybe we can do this in-place and don't need this additional vector.
|
|
354 std::vector<CloneDetector::CloneGroup> Result;
|
|
355
|
|
356 for (CloneDetector::CloneGroup &Group : Sequences) {
|
|
357 // We assume in the following code that the Group is non-empty, so we
|
|
358 // skip all empty groups.
|
|
359 if (Group.empty())
|
|
360 continue;
|
|
361
|
|
362 std::vector<std::pair<size_t, StmtSequence>> StmtsByHash;
|
|
363
|
|
364 // Generate hash codes for all children of S and save them in StmtsByHash.
|
|
365 for (const StmtSequence &S : Group) {
|
|
366 saveHash(S.front(), S.getContainingDecl(), StmtsByHash);
|
|
367 }
|
|
368
|
|
369 // Sort hash_codes in StmtsByHash.
|
|
370 llvm::stable_sort(StmtsByHash, llvm::less_first());
|
|
371
|
|
372 // Check for each StmtSequence if its successor has the same hash value.
|
|
373 // We don't check the last StmtSequence as it has no successor.
|
|
374 // Note: The 'size - 1 ' in the condition is safe because we check for an
|
|
375 // empty Group vector at the beginning of this function.
|
|
376 for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) {
|
|
377 const auto Current = StmtsByHash[i];
|
|
378
|
|
379 // It's likely that we just found a sequence of StmtSequences that
|
|
380 // represent a CloneGroup, so we create a new group and start checking and
|
|
381 // adding the StmtSequences in this sequence.
|
|
382 CloneDetector::CloneGroup NewGroup;
|
|
383
|
|
384 size_t PrototypeHash = Current.first;
|
|
385
|
|
386 for (; i < StmtsByHash.size(); ++i) {
|
|
387 // A different hash value means we have reached the end of the sequence.
|
|
388 if (PrototypeHash != StmtsByHash[i].first) {
|
|
389 // The current sequence could be the start of a new CloneGroup. So we
|
|
390 // decrement i so that we visit it again in the outer loop.
|
|
391 // Note: i can never be 0 at this point because we are just comparing
|
|
392 // the hash of the Current StmtSequence with itself in the 'if' above.
|
|
393 assert(i != 0);
|
|
394 --i;
|
|
395 break;
|
|
396 }
|
|
397 // Same hash value means we should add the StmtSequence to the current
|
|
398 // group.
|
|
399 NewGroup.push_back(StmtsByHash[i].second);
|
|
400 }
|
|
401
|
|
402 // We created a new clone group with matching hash codes and move it to
|
|
403 // the result vector.
|
|
404 Result.push_back(NewGroup);
|
|
405 }
|
|
406 }
|
|
407 // Sequences is the output parameter, so we copy our result into it.
|
|
408 Sequences = Result;
|
|
409 }
|
|
410
|
|
411 void RecursiveCloneTypeIIVerifyConstraint::constrain(
|
|
412 std::vector<CloneDetector::CloneGroup> &Sequences) {
|
|
413 CloneConstraint::splitCloneGroups(
|
|
414 Sequences, [](const StmtSequence &A, const StmtSequence &B) {
|
|
415 return areSequencesClones(A, B);
|
|
416 });
|
|
417 }
|
|
418
|
|
419 size_t MinComplexityConstraint::calculateStmtComplexity(
|
|
420 const StmtSequence &Seq, std::size_t Limit,
|
|
421 const std::string &ParentMacroStack) {
|
|
422 if (Seq.empty())
|
|
423 return 0;
|
|
424
|
|
425 size_t Complexity = 1;
|
|
426
|
|
427 ASTContext &Context = Seq.getASTContext();
|
|
428
|
|
429 // Look up what macros expanded into the current statement.
|
|
430 std::string MacroStack =
|
|
431 data_collection::getMacroStack(Seq.getBeginLoc(), Context);
|
|
432
|
|
433 // First, check if ParentMacroStack is not empty which means we are currently
|
|
434 // dealing with a parent statement which was expanded from a macro.
|
|
435 // If this parent statement was expanded from the same macros as this
|
|
436 // statement, we reduce the initial complexity of this statement to zero.
|
|
437 // This causes that a group of statements that were generated by a single
|
|
438 // macro expansion will only increase the total complexity by one.
|
|
439 // Note: This is not the final complexity of this statement as we still
|
|
440 // add the complexity of the child statements to the complexity value.
|
|
441 if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) {
|
|
442 Complexity = 0;
|
|
443 }
|
|
444
|
|
445 // Iterate over the Stmts in the StmtSequence and add their complexity values
|
|
446 // to the current complexity value.
|
|
447 if (Seq.holdsSequence()) {
|
|
448 for (const Stmt *S : Seq) {
|
|
449 Complexity += calculateStmtComplexity(
|
|
450 StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
|
|
451 if (Complexity >= Limit)
|
|
452 return Limit;
|
|
453 }
|
|
454 } else {
|
|
455 for (const Stmt *S : Seq.front()->children()) {
|
|
456 Complexity += calculateStmtComplexity(
|
|
457 StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
|
|
458 if (Complexity >= Limit)
|
|
459 return Limit;
|
|
460 }
|
|
461 }
|
|
462 return Complexity;
|
|
463 }
|
|
464
|
|
465 void MatchingVariablePatternConstraint::constrain(
|
|
466 std::vector<CloneDetector::CloneGroup> &CloneGroups) {
|
|
467 CloneConstraint::splitCloneGroups(
|
|
468 CloneGroups, [](const StmtSequence &A, const StmtSequence &B) {
|
|
469 VariablePattern PatternA(A);
|
|
470 VariablePattern PatternB(B);
|
|
471 return PatternA.countPatternDifferences(PatternB) == 0;
|
|
472 });
|
|
473 }
|
|
474
|
|
475 void CloneConstraint::splitCloneGroups(
|
|
476 std::vector<CloneDetector::CloneGroup> &CloneGroups,
|
|
477 llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)>
|
|
478 Compare) {
|
|
479 std::vector<CloneDetector::CloneGroup> Result;
|
|
480 for (auto &HashGroup : CloneGroups) {
|
|
481 // Contains all indexes in HashGroup that were already added to a
|
|
482 // CloneGroup.
|
|
483 std::vector<char> Indexes;
|
|
484 Indexes.resize(HashGroup.size());
|
|
485
|
|
486 for (unsigned i = 0; i < HashGroup.size(); ++i) {
|
|
487 // Skip indexes that are already part of a CloneGroup.
|
|
488 if (Indexes[i])
|
|
489 continue;
|
|
490
|
|
491 // Pick the first unhandled StmtSequence and consider it as the
|
|
492 // beginning
|
|
493 // of a new CloneGroup for now.
|
|
494 // We don't add i to Indexes because we never iterate back.
|
|
495 StmtSequence Prototype = HashGroup[i];
|
|
496 CloneDetector::CloneGroup PotentialGroup = {Prototype};
|
|
497 ++Indexes[i];
|
|
498
|
|
499 // Check all following StmtSequences for clones.
|
|
500 for (unsigned j = i + 1; j < HashGroup.size(); ++j) {
|
|
501 // Skip indexes that are already part of a CloneGroup.
|
|
502 if (Indexes[j])
|
|
503 continue;
|
|
504
|
|
505 // If a following StmtSequence belongs to our CloneGroup, we add it.
|
|
506 const StmtSequence &Candidate = HashGroup[j];
|
|
507
|
|
508 if (!Compare(Prototype, Candidate))
|
|
509 continue;
|
|
510
|
|
511 PotentialGroup.push_back(Candidate);
|
|
512 // Make sure we never visit this StmtSequence again.
|
|
513 ++Indexes[j];
|
|
514 }
|
|
515
|
|
516 // Otherwise, add it to the result and continue searching for more
|
|
517 // groups.
|
|
518 Result.push_back(PotentialGroup);
|
|
519 }
|
|
520
|
|
521 assert(llvm::all_of(Indexes, [](char c) { return c == 1; }));
|
|
522 }
|
|
523 CloneGroups = Result;
|
|
524 }
|
|
525
|
|
526 void VariablePattern::addVariableOccurence(const VarDecl *VarDecl,
|
|
527 const Stmt *Mention) {
|
|
528 // First check if we already reference this variable
|
|
529 for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
|
|
530 if (Variables[KindIndex] == VarDecl) {
|
|
531 // If yes, add a new occurrence that points to the existing entry in
|
|
532 // the Variables vector.
|
|
533 Occurences.emplace_back(KindIndex, Mention);
|
|
534 return;
|
|
535 }
|
|
536 }
|
|
537 // If this variable wasn't already referenced, add it to the list of
|
|
538 // referenced variables and add a occurrence that points to this new entry.
|
|
539 Occurences.emplace_back(Variables.size(), Mention);
|
|
540 Variables.push_back(VarDecl);
|
|
541 }
|
|
542
|
|
543 void VariablePattern::addVariables(const Stmt *S) {
|
|
544 // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
|
|
545 // children). We skip such statements as they don't reference any
|
|
546 // variables.
|
|
547 if (!S)
|
|
548 return;
|
|
549
|
|
550 // Check if S is a reference to a variable. If yes, add it to the pattern.
|
|
551 if (auto D = dyn_cast<DeclRefExpr>(S)) {
|
|
552 if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
|
|
553 addVariableOccurence(VD, D);
|
|
554 }
|
|
555
|
|
556 // Recursively check all children of the given statement.
|
|
557 for (const Stmt *Child : S->children()) {
|
|
558 addVariables(Child);
|
|
559 }
|
|
560 }
|
|
561
|
|
562 unsigned VariablePattern::countPatternDifferences(
|
|
563 const VariablePattern &Other,
|
|
564 VariablePattern::SuspiciousClonePair *FirstMismatch) {
|
|
565 unsigned NumberOfDifferences = 0;
|
|
566
|
|
567 assert(Other.Occurences.size() == Occurences.size());
|
|
568 for (unsigned i = 0; i < Occurences.size(); ++i) {
|
|
569 auto ThisOccurence = Occurences[i];
|
|
570 auto OtherOccurence = Other.Occurences[i];
|
|
571 if (ThisOccurence.KindID == OtherOccurence.KindID)
|
|
572 continue;
|
|
573
|
|
574 ++NumberOfDifferences;
|
|
575
|
|
576 // If FirstMismatch is not a nullptr, we need to store information about
|
|
577 // the first difference between the two patterns.
|
|
578 if (FirstMismatch == nullptr)
|
|
579 continue;
|
|
580
|
|
581 // Only proceed if we just found the first difference as we only store
|
|
582 // information about the first difference.
|
|
583 if (NumberOfDifferences != 1)
|
|
584 continue;
|
|
585
|
|
586 const VarDecl *FirstSuggestion = nullptr;
|
|
587 // If there is a variable available in the list of referenced variables
|
|
588 // which wouldn't break the pattern if it is used in place of the
|
|
589 // current variable, we provide this variable as the suggested fix.
|
|
590 if (OtherOccurence.KindID < Variables.size())
|
|
591 FirstSuggestion = Variables[OtherOccurence.KindID];
|
|
592
|
|
593 // Store information about the first clone.
|
|
594 FirstMismatch->FirstCloneInfo =
|
|
595 VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
|
|
596 Variables[ThisOccurence.KindID], ThisOccurence.Mention,
|
|
597 FirstSuggestion);
|
|
598
|
|
599 // Same as above but with the other clone. We do this for both clones as
|
|
600 // we don't know which clone is the one containing the unintended
|
|
601 // pattern error.
|
|
602 const VarDecl *SecondSuggestion = nullptr;
|
|
603 if (ThisOccurence.KindID < Other.Variables.size())
|
|
604 SecondSuggestion = Other.Variables[ThisOccurence.KindID];
|
|
605
|
|
606 // Store information about the second clone.
|
|
607 FirstMismatch->SecondCloneInfo =
|
|
608 VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
|
|
609 Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
|
|
610 SecondSuggestion);
|
|
611
|
|
612 // SuspiciousClonePair guarantees that the first clone always has a
|
|
613 // suggested variable associated with it. As we know that one of the two
|
|
614 // clones in the pair always has suggestion, we swap the two clones
|
|
615 // in case the first clone has no suggested variable which means that
|
|
616 // the second clone has a suggested variable and should be first.
|
|
617 if (!FirstMismatch->FirstCloneInfo.Suggestion)
|
|
618 std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo);
|
|
619
|
|
620 // This ensures that we always have at least one suggestion in a pair.
|
|
621 assert(FirstMismatch->FirstCloneInfo.Suggestion);
|
|
622 }
|
|
623
|
|
624 return NumberOfDifferences;
|
|
625 }
|