150
|
1 //===- ThreadSafetyTIL.cpp ------------------------------------------------===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8
|
|
9 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
|
|
10 #include "clang/Basic/LLVM.h"
|
|
11 #include "llvm/Support/Casting.h"
|
|
12 #include <cassert>
|
|
13 #include <cstddef>
|
|
14
|
|
15 using namespace clang;
|
|
16 using namespace threadSafety;
|
|
17 using namespace til;
|
|
18
|
|
19 StringRef til::getUnaryOpcodeString(TIL_UnaryOpcode Op) {
|
|
20 switch (Op) {
|
|
21 case UOP_Minus: return "-";
|
|
22 case UOP_BitNot: return "~";
|
|
23 case UOP_LogicNot: return "!";
|
|
24 }
|
|
25 return {};
|
|
26 }
|
|
27
|
|
28 StringRef til::getBinaryOpcodeString(TIL_BinaryOpcode Op) {
|
|
29 switch (Op) {
|
|
30 case BOP_Mul: return "*";
|
|
31 case BOP_Div: return "/";
|
|
32 case BOP_Rem: return "%";
|
|
33 case BOP_Add: return "+";
|
|
34 case BOP_Sub: return "-";
|
|
35 case BOP_Shl: return "<<";
|
|
36 case BOP_Shr: return ">>";
|
|
37 case BOP_BitAnd: return "&";
|
|
38 case BOP_BitXor: return "^";
|
|
39 case BOP_BitOr: return "|";
|
|
40 case BOP_Eq: return "==";
|
|
41 case BOP_Neq: return "!=";
|
|
42 case BOP_Lt: return "<";
|
|
43 case BOP_Leq: return "<=";
|
|
44 case BOP_Cmp: return "<=>";
|
|
45 case BOP_LogicAnd: return "&&";
|
|
46 case BOP_LogicOr: return "||";
|
|
47 }
|
|
48 return {};
|
|
49 }
|
|
50
|
|
51 SExpr* Future::force() {
|
|
52 Status = FS_evaluating;
|
|
53 Result = compute();
|
|
54 Status = FS_done;
|
|
55 return Result;
|
|
56 }
|
|
57
|
|
58 unsigned BasicBlock::addPredecessor(BasicBlock *Pred) {
|
|
59 unsigned Idx = Predecessors.size();
|
|
60 Predecessors.reserveCheck(1, Arena);
|
|
61 Predecessors.push_back(Pred);
|
|
62 for (auto *E : Args) {
|
|
63 if (auto *Ph = dyn_cast<Phi>(E)) {
|
|
64 Ph->values().reserveCheck(1, Arena);
|
|
65 Ph->values().push_back(nullptr);
|
|
66 }
|
|
67 }
|
|
68 return Idx;
|
|
69 }
|
|
70
|
|
71 void BasicBlock::reservePredecessors(unsigned NumPreds) {
|
|
72 Predecessors.reserve(NumPreds, Arena);
|
|
73 for (auto *E : Args) {
|
|
74 if (auto *Ph = dyn_cast<Phi>(E)) {
|
|
75 Ph->values().reserve(NumPreds, Arena);
|
|
76 }
|
|
77 }
|
|
78 }
|
|
79
|
|
80 // If E is a variable, then trace back through any aliases or redundant
|
|
81 // Phi nodes to find the canonical definition.
|
|
82 const SExpr *til::getCanonicalVal(const SExpr *E) {
|
|
83 while (true) {
|
|
84 if (const auto *V = dyn_cast<Variable>(E)) {
|
|
85 if (V->kind() == Variable::VK_Let) {
|
|
86 E = V->definition();
|
|
87 continue;
|
|
88 }
|
|
89 }
|
|
90 if (const auto *Ph = dyn_cast<Phi>(E)) {
|
|
91 if (Ph->status() == Phi::PH_SingleVal) {
|
|
92 E = Ph->values()[0];
|
|
93 continue;
|
|
94 }
|
|
95 }
|
|
96 break;
|
|
97 }
|
|
98 return E;
|
|
99 }
|
|
100
|
|
101 // If E is a variable, then trace back through any aliases or redundant
|
|
102 // Phi nodes to find the canonical definition.
|
|
103 // The non-const version will simplify incomplete Phi nodes.
|
|
104 SExpr *til::simplifyToCanonicalVal(SExpr *E) {
|
|
105 while (true) {
|
|
106 if (auto *V = dyn_cast<Variable>(E)) {
|
|
107 if (V->kind() != Variable::VK_Let)
|
|
108 return V;
|
|
109 // Eliminate redundant variables, e.g. x = y, or x = 5,
|
|
110 // but keep anything more complicated.
|
|
111 if (til::ThreadSafetyTIL::isTrivial(V->definition())) {
|
|
112 E = V->definition();
|
|
113 continue;
|
|
114 }
|
|
115 return V;
|
|
116 }
|
|
117 if (auto *Ph = dyn_cast<Phi>(E)) {
|
|
118 if (Ph->status() == Phi::PH_Incomplete)
|
|
119 simplifyIncompleteArg(Ph);
|
|
120 // Eliminate redundant Phi nodes.
|
|
121 if (Ph->status() == Phi::PH_SingleVal) {
|
|
122 E = Ph->values()[0];
|
|
123 continue;
|
|
124 }
|
|
125 }
|
|
126 return E;
|
|
127 }
|
|
128 }
|
|
129
|
|
130 // Trace the arguments of an incomplete Phi node to see if they have the same
|
|
131 // canonical definition. If so, mark the Phi node as redundant.
|
|
132 // getCanonicalVal() will recursively call simplifyIncompletePhi().
|
|
133 void til::simplifyIncompleteArg(til::Phi *Ph) {
|
|
134 assert(Ph && Ph->status() == Phi::PH_Incomplete);
|
|
135
|
|
136 // eliminate infinite recursion -- assume that this node is not redundant.
|
|
137 Ph->setStatus(Phi::PH_MultiVal);
|
|
138
|
|
139 SExpr *E0 = simplifyToCanonicalVal(Ph->values()[0]);
|
|
140 for (unsigned i = 1, n = Ph->values().size(); i < n; ++i) {
|
|
141 SExpr *Ei = simplifyToCanonicalVal(Ph->values()[i]);
|
|
142 if (Ei == Ph)
|
|
143 continue; // Recursive reference to itself. Don't count.
|
|
144 if (Ei != E0) {
|
|
145 return; // Status is already set to MultiVal.
|
|
146 }
|
|
147 }
|
|
148 Ph->setStatus(Phi::PH_SingleVal);
|
|
149 }
|
|
150
|
|
151 // Renumbers the arguments and instructions to have unique, sequential IDs.
|
|
152 unsigned BasicBlock::renumberInstrs(unsigned ID) {
|
|
153 for (auto *Arg : Args)
|
|
154 Arg->setID(this, ID++);
|
|
155 for (auto *Instr : Instrs)
|
|
156 Instr->setID(this, ID++);
|
|
157 TermInstr->setID(this, ID++);
|
|
158 return ID;
|
|
159 }
|
|
160
|
|
161 // Sorts the CFGs blocks using a reverse post-order depth-first traversal.
|
|
162 // Each block will be written into the Blocks array in order, and its BlockID
|
|
163 // will be set to the index in the array. Sorting should start from the entry
|
|
164 // block, and ID should be the total number of blocks.
|
|
165 unsigned BasicBlock::topologicalSort(SimpleArray<BasicBlock *> &Blocks,
|
|
166 unsigned ID) {
|
|
167 if (Visited) return ID;
|
|
168 Visited = true;
|
|
169 for (auto *Block : successors())
|
|
170 ID = Block->topologicalSort(Blocks, ID);
|
|
171 // set ID and update block array in place.
|
|
172 // We may lose pointers to unreachable blocks.
|
|
173 assert(ID > 0);
|
|
174 BlockID = --ID;
|
|
175 Blocks[BlockID] = this;
|
|
176 return ID;
|
|
177 }
|
|
178
|
|
179 // Performs a reverse topological traversal, starting from the exit block and
|
|
180 // following back-edges. The dominator is serialized before any predecessors,
|
|
181 // which guarantees that all blocks are serialized after their dominator and
|
|
182 // before their post-dominator (because it's a reverse topological traversal).
|
|
183 // ID should be initially set to 0.
|
|
184 //
|
|
185 // This sort assumes that (1) dominators have been computed, (2) there are no
|
|
186 // critical edges, and (3) the entry block is reachable from the exit block
|
|
187 // and no blocks are accessible via traversal of back-edges from the exit that
|
|
188 // weren't accessible via forward edges from the entry.
|
|
189 unsigned BasicBlock::topologicalFinalSort(SimpleArray<BasicBlock *> &Blocks,
|
|
190 unsigned ID) {
|
|
191 // Visited is assumed to have been set by the topologicalSort. This pass
|
|
192 // assumes !Visited means that we've visited this node before.
|
|
193 if (!Visited) return ID;
|
|
194 Visited = false;
|
|
195 if (DominatorNode.Parent)
|
|
196 ID = DominatorNode.Parent->topologicalFinalSort(Blocks, ID);
|
|
197 for (auto *Pred : Predecessors)
|
|
198 ID = Pred->topologicalFinalSort(Blocks, ID);
|
|
199 assert(static_cast<size_t>(ID) < Blocks.size());
|
|
200 BlockID = ID++;
|
|
201 Blocks[BlockID] = this;
|
|
202 return ID;
|
|
203 }
|
|
204
|
|
205 // Computes the immediate dominator of the current block. Assumes that all of
|
|
206 // its predecessors have already computed their dominators. This is achieved
|
|
207 // by visiting the nodes in topological order.
|
|
208 void BasicBlock::computeDominator() {
|
|
209 BasicBlock *Candidate = nullptr;
|
|
210 // Walk backwards from each predecessor to find the common dominator node.
|
|
211 for (auto *Pred : Predecessors) {
|
|
212 // Skip back-edges
|
|
213 if (Pred->BlockID >= BlockID) continue;
|
|
214 // If we don't yet have a candidate for dominator yet, take this one.
|
|
215 if (Candidate == nullptr) {
|
|
216 Candidate = Pred;
|
|
217 continue;
|
|
218 }
|
|
219 // Walk the alternate and current candidate back to find a common ancestor.
|
|
220 auto *Alternate = Pred;
|
|
221 while (Alternate != Candidate) {
|
|
222 if (Candidate->BlockID > Alternate->BlockID)
|
|
223 Candidate = Candidate->DominatorNode.Parent;
|
|
224 else
|
|
225 Alternate = Alternate->DominatorNode.Parent;
|
|
226 }
|
|
227 }
|
|
228 DominatorNode.Parent = Candidate;
|
|
229 DominatorNode.SizeOfSubTree = 1;
|
|
230 }
|
|
231
|
|
232 // Computes the immediate post-dominator of the current block. Assumes that all
|
|
233 // of its successors have already computed their post-dominators. This is
|
|
234 // achieved visiting the nodes in reverse topological order.
|
|
235 void BasicBlock::computePostDominator() {
|
|
236 BasicBlock *Candidate = nullptr;
|
|
237 // Walk back from each predecessor to find the common post-dominator node.
|
|
238 for (auto *Succ : successors()) {
|
|
239 // Skip back-edges
|
|
240 if (Succ->BlockID <= BlockID) continue;
|
|
241 // If we don't yet have a candidate for post-dominator yet, take this one.
|
|
242 if (Candidate == nullptr) {
|
|
243 Candidate = Succ;
|
|
244 continue;
|
|
245 }
|
|
246 // Walk the alternate and current candidate back to find a common ancestor.
|
|
247 auto *Alternate = Succ;
|
|
248 while (Alternate != Candidate) {
|
|
249 if (Candidate->BlockID < Alternate->BlockID)
|
|
250 Candidate = Candidate->PostDominatorNode.Parent;
|
|
251 else
|
|
252 Alternate = Alternate->PostDominatorNode.Parent;
|
|
253 }
|
|
254 }
|
|
255 PostDominatorNode.Parent = Candidate;
|
|
256 PostDominatorNode.SizeOfSubTree = 1;
|
|
257 }
|
|
258
|
|
259 // Renumber instructions in all blocks
|
|
260 void SCFG::renumberInstrs() {
|
|
261 unsigned InstrID = 0;
|
|
262 for (auto *Block : Blocks)
|
|
263 InstrID = Block->renumberInstrs(InstrID);
|
|
264 }
|
|
265
|
|
266 static inline void computeNodeSize(BasicBlock *B,
|
|
267 BasicBlock::TopologyNode BasicBlock::*TN) {
|
|
268 BasicBlock::TopologyNode *N = &(B->*TN);
|
|
269 if (N->Parent) {
|
|
270 BasicBlock::TopologyNode *P = &(N->Parent->*TN);
|
|
271 // Initially set ID relative to the (as yet uncomputed) parent ID
|
|
272 N->NodeID = P->SizeOfSubTree;
|
|
273 P->SizeOfSubTree += N->SizeOfSubTree;
|
|
274 }
|
|
275 }
|
|
276
|
|
277 static inline void computeNodeID(BasicBlock *B,
|
|
278 BasicBlock::TopologyNode BasicBlock::*TN) {
|
|
279 BasicBlock::TopologyNode *N = &(B->*TN);
|
|
280 if (N->Parent) {
|
|
281 BasicBlock::TopologyNode *P = &(N->Parent->*TN);
|
|
282 N->NodeID += P->NodeID; // Fix NodeIDs relative to starting node.
|
|
283 }
|
|
284 }
|
|
285
|
|
286 // Normalizes a CFG. Normalization has a few major components:
|
|
287 // 1) Removing unreachable blocks.
|
|
288 // 2) Computing dominators and post-dominators
|
|
289 // 3) Topologically sorting the blocks into the "Blocks" array.
|
|
290 void SCFG::computeNormalForm() {
|
|
291 // Topologically sort the blocks starting from the entry block.
|
|
292 unsigned NumUnreachableBlocks = Entry->topologicalSort(Blocks, Blocks.size());
|
|
293 if (NumUnreachableBlocks > 0) {
|
|
294 // If there were unreachable blocks shift everything down, and delete them.
|
|
295 for (unsigned I = NumUnreachableBlocks, E = Blocks.size(); I < E; ++I) {
|
|
296 unsigned NI = I - NumUnreachableBlocks;
|
|
297 Blocks[NI] = Blocks[I];
|
|
298 Blocks[NI]->BlockID = NI;
|
|
299 // FIXME: clean up predecessor pointers to unreachable blocks?
|
|
300 }
|
|
301 Blocks.drop(NumUnreachableBlocks);
|
|
302 }
|
|
303
|
|
304 // Compute dominators.
|
|
305 for (auto *Block : Blocks)
|
|
306 Block->computeDominator();
|
|
307
|
|
308 // Once dominators have been computed, the final sort may be performed.
|
|
309 unsigned NumBlocks = Exit->topologicalFinalSort(Blocks, 0);
|
|
310 assert(static_cast<size_t>(NumBlocks) == Blocks.size());
|
|
311 (void) NumBlocks;
|
|
312
|
|
313 // Renumber the instructions now that we have a final sort.
|
|
314 renumberInstrs();
|
|
315
|
|
316 // Compute post-dominators and compute the sizes of each node in the
|
|
317 // dominator tree.
|
|
318 for (auto *Block : Blocks.reverse()) {
|
|
319 Block->computePostDominator();
|
|
320 computeNodeSize(Block, &BasicBlock::DominatorNode);
|
|
321 }
|
|
322 // Compute the sizes of each node in the post-dominator tree and assign IDs in
|
|
323 // the dominator tree.
|
|
324 for (auto *Block : Blocks) {
|
|
325 computeNodeID(Block, &BasicBlock::DominatorNode);
|
|
326 computeNodeSize(Block, &BasicBlock::PostDominatorNode);
|
|
327 }
|
|
328 // Assign IDs in the post-dominator tree.
|
|
329 for (auto *Block : Blocks.reverse()) {
|
|
330 computeNodeID(Block, &BasicBlock::PostDominatorNode);
|
|
331 }
|
|
332 }
|