150
|
1 //===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8 #include "clang/Tooling/Syntax/BuildTree.h"
|
173
|
9 #include "clang/AST/ASTFwd.h"
|
150
|
10 #include "clang/AST/Decl.h"
|
|
11 #include "clang/AST/DeclBase.h"
|
173
|
12 #include "clang/AST/DeclCXX.h"
|
|
13 #include "clang/AST/DeclarationName.h"
|
150
|
14 #include "clang/AST/RecursiveASTVisitor.h"
|
|
15 #include "clang/AST/Stmt.h"
|
173
|
16 #include "clang/AST/TypeLoc.h"
|
|
17 #include "clang/AST/TypeLocVisitor.h"
|
150
|
18 #include "clang/Basic/LLVM.h"
|
|
19 #include "clang/Basic/SourceLocation.h"
|
|
20 #include "clang/Basic/SourceManager.h"
|
173
|
21 #include "clang/Basic/Specifiers.h"
|
150
|
22 #include "clang/Basic/TokenKinds.h"
|
|
23 #include "clang/Lex/Lexer.h"
|
|
24 #include "clang/Tooling/Syntax/Nodes.h"
|
|
25 #include "clang/Tooling/Syntax/Tokens.h"
|
|
26 #include "clang/Tooling/Syntax/Tree.h"
|
|
27 #include "llvm/ADT/ArrayRef.h"
|
173
|
28 #include "llvm/ADT/DenseMap.h"
|
|
29 #include "llvm/ADT/PointerUnion.h"
|
150
|
30 #include "llvm/ADT/STLExtras.h"
|
173
|
31 #include "llvm/ADT/ScopeExit.h"
|
150
|
32 #include "llvm/ADT/SmallVector.h"
|
|
33 #include "llvm/Support/Allocator.h"
|
|
34 #include "llvm/Support/Casting.h"
|
|
35 #include "llvm/Support/Compiler.h"
|
|
36 #include "llvm/Support/FormatVariadic.h"
|
|
37 #include "llvm/Support/MemoryBuffer.h"
|
|
38 #include "llvm/Support/raw_ostream.h"
|
173
|
39 #include <cstddef>
|
150
|
40 #include <map>
|
|
41
|
|
42 using namespace clang;
|
|
43
|
|
44 LLVM_ATTRIBUTE_UNUSED
|
|
45 static bool isImplicitExpr(clang::Expr *E) { return E->IgnoreImplicit() != E; }
|
|
46
|
173
|
47 namespace {
|
|
48 /// Get start location of the Declarator from the TypeLoc.
|
|
49 /// E.g.:
|
|
50 /// loc of `(` in `int (a)`
|
|
51 /// loc of `*` in `int *(a)`
|
|
52 /// loc of the first `(` in `int (*a)(int)`
|
|
53 /// loc of the `*` in `int *(a)(int)`
|
|
54 /// loc of the first `*` in `const int *const *volatile a;`
|
|
55 ///
|
|
56 /// It is non-trivial to get the start location because TypeLocs are stored
|
|
57 /// inside out. In the example above `*volatile` is the TypeLoc returned
|
|
58 /// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
|
|
59 /// returns.
|
|
60 struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
|
|
61 SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
|
|
62 auto L = Visit(T.getInnerLoc());
|
|
63 if (L.isValid())
|
|
64 return L;
|
|
65 return T.getLParenLoc();
|
|
66 }
|
|
67
|
|
68 // Types spelled in the prefix part of the declarator.
|
|
69 SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
|
|
70 return HandlePointer(T);
|
|
71 }
|
|
72
|
|
73 SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
|
|
74 return HandlePointer(T);
|
|
75 }
|
|
76
|
|
77 SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
|
|
78 return HandlePointer(T);
|
|
79 }
|
|
80
|
|
81 SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
|
|
82 return HandlePointer(T);
|
|
83 }
|
|
84
|
|
85 SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
|
|
86 return HandlePointer(T);
|
|
87 }
|
|
88
|
|
89 // All other cases are not important, as they are either part of declaration
|
|
90 // specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
|
|
91 // existing declarators (e.g. QualifiedTypeLoc). They cannot start the
|
|
92 // declarator themselves, but their underlying type can.
|
|
93 SourceLocation VisitTypeLoc(TypeLoc T) {
|
|
94 auto N = T.getNextTypeLoc();
|
|
95 if (!N)
|
|
96 return SourceLocation();
|
|
97 return Visit(N);
|
|
98 }
|
|
99
|
|
100 SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
|
|
101 if (T.getTypePtr()->hasTrailingReturn())
|
|
102 return SourceLocation(); // avoid recursing into the suffix of declarator.
|
|
103 return VisitTypeLoc(T);
|
|
104 }
|
|
105
|
|
106 private:
|
|
107 template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
|
|
108 auto L = Visit(T.getPointeeLoc());
|
|
109 if (L.isValid())
|
|
110 return L;
|
|
111 return T.getLocalSourceRange().getBegin();
|
|
112 }
|
|
113 };
|
|
114 } // namespace
|
|
115
|
|
116 /// Gets the range of declarator as defined by the C++ grammar. E.g.
|
|
117 /// `int a;` -> range of `a`,
|
|
118 /// `int *a;` -> range of `*a`,
|
|
119 /// `int a[10];` -> range of `a[10]`,
|
|
120 /// `int a[1][2][3];` -> range of `a[1][2][3]`,
|
|
121 /// `int *a = nullptr` -> range of `*a = nullptr`.
|
|
122 /// FIMXE: \p Name must be a source range, e.g. for `operator+`.
|
|
123 static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
|
|
124 SourceLocation Name,
|
|
125 SourceRange Initializer) {
|
|
126 SourceLocation Start = GetStartLoc().Visit(T);
|
|
127 SourceLocation End = T.getSourceRange().getEnd();
|
|
128 assert(End.isValid());
|
|
129 if (Name.isValid()) {
|
|
130 if (Start.isInvalid())
|
|
131 Start = Name;
|
|
132 if (SM.isBeforeInTranslationUnit(End, Name))
|
|
133 End = Name;
|
|
134 }
|
|
135 if (Initializer.isValid()) {
|
|
136 auto InitializerEnd = Initializer.getEnd();
|
|
137 assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) || End == InitializerEnd);
|
|
138 End = InitializerEnd;
|
|
139 }
|
|
140 return SourceRange(Start, End);
|
|
141 }
|
|
142
|
|
143 namespace {
|
|
144 /// All AST hierarchy roots that can be represented as pointers.
|
|
145 using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
|
|
146 /// Maintains a mapping from AST to syntax tree nodes. This class will get more
|
|
147 /// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
|
|
148 /// FIXME: expose this as public API.
|
|
149 class ASTToSyntaxMapping {
|
|
150 public:
|
|
151 void add(ASTPtr From, syntax::Tree *To) {
|
|
152 assert(To != nullptr);
|
|
153 assert(!From.isNull());
|
|
154
|
|
155 bool Added = Nodes.insert({From, To}).second;
|
|
156 (void)Added;
|
|
157 assert(Added && "mapping added twice");
|
|
158 }
|
|
159
|
|
160 syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
|
|
161
|
|
162 private:
|
|
163 llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
|
|
164 };
|
|
165 } // namespace
|
|
166
|
150
|
167 /// A helper class for constructing the syntax tree while traversing a clang
|
|
168 /// AST.
|
|
169 ///
|
|
170 /// At each point of the traversal we maintain a list of pending nodes.
|
|
171 /// Initially all tokens are added as pending nodes. When processing a clang AST
|
|
172 /// node, the clients need to:
|
|
173 /// - create a corresponding syntax node,
|
|
174 /// - assign roles to all pending child nodes with 'markChild' and
|
|
175 /// 'markChildToken',
|
|
176 /// - replace the child nodes with the new syntax node in the pending list
|
|
177 /// with 'foldNode'.
|
|
178 ///
|
|
179 /// Note that all children are expected to be processed when building a node.
|
|
180 ///
|
|
181 /// Call finalize() to finish building the tree and consume the root node.
|
|
182 class syntax::TreeBuilder {
|
|
183 public:
|
|
184 TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
|
|
185 for (const auto &T : Arena.tokenBuffer().expandedTokens())
|
|
186 LocationToToken.insert({T.location().getRawEncoding(), &T});
|
|
187 }
|
|
188
|
|
189 llvm::BumpPtrAllocator &allocator() { return Arena.allocator(); }
|
173
|
190 const SourceManager &sourceManager() const { return Arena.sourceManager(); }
|
150
|
191
|
|
192 /// Populate children for \p New node, assuming it covers tokens from \p
|
|
193 /// Range.
|
173
|
194 void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
|
|
195 ASTPtr From) {
|
|
196 assert(New);
|
|
197 Pending.foldChildren(Arena, Range, New);
|
|
198 if (From)
|
|
199 Mapping.add(From, New);
|
|
200 }
|
|
201 void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
|
|
202 TypeLoc L) {
|
|
203 // FIXME: add mapping for TypeLocs
|
|
204 foldNode(Range, New, nullptr);
|
|
205 }
|
150
|
206
|
|
207 /// Notifies that we should not consume trailing semicolon when computing
|
|
208 /// token range of \p D.
|
173
|
209 void noticeDeclWithoutSemicolon(Decl *D);
|
150
|
210
|
|
211 /// Mark the \p Child node with a corresponding \p Role. All marked children
|
|
212 /// should be consumed by foldNode.
|
173
|
213 /// When called on expressions (clang::Expr is derived from clang::Stmt),
|
|
214 /// wraps expressions into expression statement.
|
150
|
215 void markStmtChild(Stmt *Child, NodeRole Role);
|
|
216 /// Should be called for expressions in non-statement position to avoid
|
|
217 /// wrapping into expression statement.
|
|
218 void markExprChild(Expr *Child, NodeRole Role);
|
|
219 /// Set role for a token starting at \p Loc.
|
|
220 void markChildToken(SourceLocation Loc, NodeRole R);
|
173
|
221 /// Set role for \p T.
|
|
222 void markChildToken(const syntax::Token *T, NodeRole R);
|
|
223
|
|
224 /// Set role for \p N.
|
|
225 void markChild(syntax::Node *N, NodeRole R);
|
|
226 /// Set role for the syntax node matching \p N.
|
|
227 void markChild(ASTPtr N, NodeRole R);
|
150
|
228
|
|
229 /// Finish building the tree and consume the root node.
|
|
230 syntax::TranslationUnit *finalize() && {
|
|
231 auto Tokens = Arena.tokenBuffer().expandedTokens();
|
|
232 assert(!Tokens.empty());
|
|
233 assert(Tokens.back().kind() == tok::eof);
|
|
234
|
|
235 // Build the root of the tree, consuming all the children.
|
|
236 Pending.foldChildren(Arena, Tokens.drop_back(),
|
|
237 new (Arena.allocator()) syntax::TranslationUnit);
|
|
238
|
|
239 auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
|
|
240 TU->assertInvariantsRecursive();
|
|
241 return TU;
|
|
242 }
|
|
243
|
173
|
244 /// Finds a token starting at \p L. The token must exist if \p L is valid.
|
|
245 const syntax::Token *findToken(SourceLocation L) const;
|
|
246
|
|
247 /// Finds the syntax tokens corresponding to the \p SourceRange.
|
|
248 llvm::ArrayRef<syntax::Token> getRange(SourceRange Range) const {
|
|
249 assert(Range.isValid());
|
|
250 return getRange(Range.getBegin(), Range.getEnd());
|
|
251 }
|
|
252
|
|
253 /// Finds the syntax tokens corresponding to the passed source locations.
|
150
|
254 /// \p First is the start position of the first token and \p Last is the start
|
|
255 /// position of the last token.
|
|
256 llvm::ArrayRef<syntax::Token> getRange(SourceLocation First,
|
|
257 SourceLocation Last) const {
|
|
258 assert(First.isValid());
|
|
259 assert(Last.isValid());
|
|
260 assert(First == Last ||
|
|
261 Arena.sourceManager().isBeforeInTranslationUnit(First, Last));
|
|
262 return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
|
|
263 }
|
173
|
264
|
|
265 llvm::ArrayRef<syntax::Token>
|
|
266 getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
|
|
267 auto Tokens = getRange(D->getSourceRange());
|
|
268 return maybeAppendSemicolon(Tokens, D);
|
150
|
269 }
|
173
|
270
|
|
271 /// Returns true if \p D is the last declarator in a chain and is thus
|
|
272 /// reponsible for creating SimpleDeclaration for the whole chain.
|
|
273 template <class T>
|
|
274 bool isResponsibleForCreatingDeclaration(const T *D) const {
|
|
275 static_assert((std::is_base_of<DeclaratorDecl, T>::value ||
|
|
276 std::is_base_of<TypedefNameDecl, T>::value),
|
|
277 "only DeclaratorDecl and TypedefNameDecl are supported.");
|
|
278
|
|
279 const Decl *Next = D->getNextDeclInContext();
|
|
280
|
|
281 // There's no next sibling, this one is responsible.
|
|
282 if (Next == nullptr) {
|
|
283 return true;
|
|
284 }
|
|
285 const auto *NextT = llvm::dyn_cast<T>(Next);
|
|
286
|
|
287 // Next sibling is not the same type, this one is responsible.
|
|
288 if (NextT == nullptr) {
|
|
289 return true;
|
|
290 }
|
|
291 // Next sibling doesn't begin at the same loc, it must be a different
|
|
292 // declaration, so this declarator is responsible.
|
|
293 if (NextT->getBeginLoc() != D->getBeginLoc()) {
|
|
294 return true;
|
|
295 }
|
|
296
|
|
297 // NextT is a member of the same declaration, and we need the last member to
|
|
298 // create declaration. This one is not responsible.
|
|
299 return false;
|
|
300 }
|
|
301
|
|
302 llvm::ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
|
|
303 llvm::ArrayRef<clang::syntax::Token> Tokens;
|
|
304 // We want to drop the template parameters for specializations.
|
|
305 if (const auto *S = llvm::dyn_cast<TagDecl>(D))
|
|
306 Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
|
|
307 else
|
|
308 Tokens = getRange(D->getSourceRange());
|
|
309 return maybeAppendSemicolon(Tokens, D);
|
|
310 }
|
|
311
|
150
|
312 llvm::ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
|
173
|
313 return getRange(E->getSourceRange());
|
150
|
314 }
|
173
|
315
|
150
|
316 /// Find the adjusted range for the statement, consuming the trailing
|
|
317 /// semicolon when needed.
|
|
318 llvm::ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
|
173
|
319 auto Tokens = getRange(S->getSourceRange());
|
150
|
320 if (isa<CompoundStmt>(S))
|
|
321 return Tokens;
|
|
322
|
|
323 // Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
|
|
324 // all statements that end with those. Consume this semicolon here.
|
|
325 if (Tokens.back().kind() == tok::semi)
|
|
326 return Tokens;
|
|
327 return withTrailingSemicolon(Tokens);
|
|
328 }
|
|
329
|
|
330 private:
|
|
331 llvm::ArrayRef<syntax::Token>
|
173
|
332 maybeAppendSemicolon(llvm::ArrayRef<syntax::Token> Tokens,
|
|
333 const Decl *D) const {
|
|
334 if (llvm::isa<NamespaceDecl>(D))
|
|
335 return Tokens;
|
|
336 if (DeclsWithoutSemicolons.count(D))
|
|
337 return Tokens;
|
|
338 // FIXME: do not consume trailing semicolon on function definitions.
|
|
339 // Most declarations own a semicolon in syntax trees, but not in clang AST.
|
|
340 return withTrailingSemicolon(Tokens);
|
|
341 }
|
|
342
|
|
343 llvm::ArrayRef<syntax::Token>
|
150
|
344 withTrailingSemicolon(llvm::ArrayRef<syntax::Token> Tokens) const {
|
|
345 assert(!Tokens.empty());
|
|
346 assert(Tokens.back().kind() != tok::eof);
|
173
|
347 // We never consume 'eof', so looking at the next token is ok.
|
150
|
348 if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
|
|
349 return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
|
|
350 return Tokens;
|
|
351 }
|
|
352
|
173
|
353 void setRole(syntax::Node *N, NodeRole R) {
|
|
354 assert(N->role() == NodeRole::Detached);
|
|
355 N->setRole(R);
|
|
356 }
|
150
|
357
|
|
358 /// A collection of trees covering the input tokens.
|
|
359 /// When created, each tree corresponds to a single token in the file.
|
|
360 /// Clients call 'foldChildren' to attach one or more subtrees to a parent
|
|
361 /// node and update the list of trees accordingly.
|
|
362 ///
|
|
363 /// Ensures that added nodes properly nest and cover the whole token stream.
|
|
364 struct Forest {
|
|
365 Forest(syntax::Arena &A) {
|
|
366 assert(!A.tokenBuffer().expandedTokens().empty());
|
|
367 assert(A.tokenBuffer().expandedTokens().back().kind() == tok::eof);
|
|
368 // Create all leaf nodes.
|
|
369 // Note that we do not have 'eof' in the tree.
|
|
370 for (auto &T : A.tokenBuffer().expandedTokens().drop_back()) {
|
|
371 auto *L = new (A.allocator()) syntax::Leaf(&T);
|
|
372 L->Original = true;
|
|
373 L->CanModify = A.tokenBuffer().spelledForExpanded(T).hasValue();
|
173
|
374 Trees.insert(Trees.end(), {&T, L});
|
150
|
375 }
|
|
376 }
|
|
377
|
|
378 void assignRole(llvm::ArrayRef<syntax::Token> Range,
|
|
379 syntax::NodeRole Role) {
|
|
380 assert(!Range.empty());
|
|
381 auto It = Trees.lower_bound(Range.begin());
|
|
382 assert(It != Trees.end() && "no node found");
|
|
383 assert(It->first == Range.begin() && "no child with the specified range");
|
|
384 assert((std::next(It) == Trees.end() ||
|
|
385 std::next(It)->first == Range.end()) &&
|
|
386 "no child with the specified range");
|
173
|
387 assert(It->second->role() == NodeRole::Detached &&
|
|
388 "re-assigning role for a child");
|
|
389 It->second->setRole(Role);
|
150
|
390 }
|
|
391
|
|
392 /// Add \p Node to the forest and attach child nodes based on \p Tokens.
|
|
393 void foldChildren(const syntax::Arena &A,
|
|
394 llvm::ArrayRef<syntax::Token> Tokens,
|
|
395 syntax::Tree *Node) {
|
173
|
396 // Attach children to `Node`.
|
|
397 assert(Node->firstChild() == nullptr && "node already has children");
|
|
398
|
|
399 auto *FirstToken = Tokens.begin();
|
|
400 auto BeginChildren = Trees.lower_bound(FirstToken);
|
150
|
401
|
173
|
402 assert((BeginChildren == Trees.end() ||
|
|
403 BeginChildren->first == FirstToken) &&
|
|
404 "fold crosses boundaries of existing subtrees");
|
|
405 auto EndChildren = Trees.lower_bound(Tokens.end());
|
|
406 assert(
|
|
407 (EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
|
|
408 "fold crosses boundaries of existing subtrees");
|
150
|
409
|
173
|
410 // We need to go in reverse order, because we can only prepend.
|
|
411 for (auto It = EndChildren; It != BeginChildren; --It) {
|
|
412 auto *C = std::prev(It)->second;
|
|
413 if (C->role() == NodeRole::Detached)
|
|
414 C->setRole(NodeRole::Unknown);
|
|
415 Node->prependChildLowLevel(C);
|
|
416 }
|
150
|
417
|
173
|
418 // Mark that this node came from the AST and is backed by the source code.
|
|
419 Node->Original = true;
|
|
420 Node->CanModify = A.tokenBuffer().spelledForExpanded(Tokens).hasValue();
|
|
421
|
|
422 Trees.erase(BeginChildren, EndChildren);
|
|
423 Trees.insert({FirstToken, Node});
|
150
|
424 }
|
|
425
|
|
426 // EXPECTS: all tokens were consumed and are owned by a single root node.
|
|
427 syntax::Node *finalize() && {
|
|
428 assert(Trees.size() == 1);
|
173
|
429 auto *Root = Trees.begin()->second;
|
150
|
430 Trees = {};
|
|
431 return Root;
|
|
432 }
|
|
433
|
|
434 std::string str(const syntax::Arena &A) const {
|
|
435 std::string R;
|
|
436 for (auto It = Trees.begin(); It != Trees.end(); ++It) {
|
|
437 unsigned CoveredTokens =
|
|
438 It != Trees.end()
|
|
439 ? (std::next(It)->first - It->first)
|
|
440 : A.tokenBuffer().expandedTokens().end() - It->first;
|
|
441
|
|
442 R += std::string(llvm::formatv(
|
173
|
443 "- '{0}' covers '{1}'+{2} tokens\n", It->second->kind(),
|
150
|
444 It->first->text(A.sourceManager()), CoveredTokens));
|
173
|
445 R += It->second->dump(A);
|
150
|
446 }
|
|
447 return R;
|
|
448 }
|
|
449
|
|
450 private:
|
|
451 /// Maps from the start token to a subtree starting at that token.
|
|
452 /// Keys in the map are pointers into the array of expanded tokens, so
|
|
453 /// pointer order corresponds to the order of preprocessor tokens.
|
173
|
454 std::map<const syntax::Token *, syntax::Node *> Trees;
|
150
|
455 };
|
|
456
|
|
457 /// For debugging purposes.
|
|
458 std::string str() { return Pending.str(Arena); }
|
|
459
|
|
460 syntax::Arena &Arena;
|
|
461 /// To quickly find tokens by their start location.
|
|
462 llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *>
|
|
463 LocationToToken;
|
|
464 Forest Pending;
|
|
465 llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
|
173
|
466 ASTToSyntaxMapping Mapping;
|
150
|
467 };
|
|
468
|
|
469 namespace {
|
|
470 class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
|
|
471 public:
|
|
472 explicit BuildTreeVisitor(ASTContext &Ctx, syntax::TreeBuilder &Builder)
|
|
473 : Builder(Builder), LangOpts(Ctx.getLangOpts()) {}
|
|
474
|
|
475 bool shouldTraversePostOrder() const { return true; }
|
|
476
|
173
|
477 bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
|
|
478 return processDeclaratorAndDeclaration(DD);
|
150
|
479 }
|
173
|
480
|
|
481 bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
|
|
482 return processDeclaratorAndDeclaration(TD);
|
150
|
483 }
|
|
484
|
|
485 bool VisitDecl(Decl *D) {
|
|
486 assert(!D->isImplicit());
|
173
|
487 Builder.foldNode(Builder.getDeclarationRange(D),
|
|
488 new (allocator()) syntax::UnknownDeclaration(), D);
|
|
489 return true;
|
|
490 }
|
|
491
|
|
492 // RAV does not call WalkUpFrom* on explicit instantiations, so we have to
|
|
493 // override Traverse.
|
|
494 // FIXME: make RAV call WalkUpFrom* instead.
|
|
495 bool
|
|
496 TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
|
|
497 if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
|
|
498 return false;
|
|
499 if (C->isExplicitSpecialization())
|
|
500 return true; // we are only interested in explicit instantiations.
|
|
501 auto *Declaration =
|
|
502 cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
|
|
503 foldExplicitTemplateInstantiation(
|
|
504 Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
|
|
505 Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
|
|
506 return true;
|
|
507 }
|
|
508
|
|
509 bool WalkUpFromTemplateDecl(TemplateDecl *S) {
|
|
510 foldTemplateDeclaration(
|
|
511 Builder.getDeclarationRange(S),
|
|
512 Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
|
|
513 Builder.getDeclarationRange(S->getTemplatedDecl()), S);
|
150
|
514 return true;
|
|
515 }
|
|
516
|
|
517 bool WalkUpFromTagDecl(TagDecl *C) {
|
|
518 // FIXME: build the ClassSpecifier node.
|
173
|
519 if (!C->isFreeStanding()) {
|
|
520 assert(C->getNumTemplateParameterLists() == 0);
|
150
|
521 return true;
|
|
522 }
|
173
|
523 handleFreeStandingTagDecl(C);
|
150
|
524 return true;
|
|
525 }
|
|
526
|
173
|
527 syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
|
|
528 assert(C->isFreeStanding());
|
|
529 // Class is a declaration specifier and needs a spanning declaration node.
|
|
530 auto DeclarationRange = Builder.getDeclarationRange(C);
|
|
531 syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
|
|
532 Builder.foldNode(DeclarationRange, Result, nullptr);
|
|
533
|
|
534 // Build TemplateDeclaration nodes if we had template parameters.
|
|
535 auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
|
|
536 const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
|
|
537 auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
|
|
538 Result =
|
|
539 foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
|
|
540 DeclarationRange = R;
|
|
541 };
|
|
542 if (auto *S = llvm::dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
|
|
543 ConsumeTemplateParameters(*S->getTemplateParameters());
|
|
544 for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
|
|
545 ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
|
|
546 return Result;
|
|
547 }
|
|
548
|
150
|
549 bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
|
173
|
550 // We do not want to call VisitDecl(), the declaration for translation
|
150
|
551 // unit is built by finalize().
|
|
552 return true;
|
|
553 }
|
|
554
|
|
555 bool WalkUpFromCompoundStmt(CompoundStmt *S) {
|
|
556 using NodeRole = syntax::NodeRole;
|
|
557
|
|
558 Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
|
|
559 for (auto *Child : S->body())
|
|
560 Builder.markStmtChild(Child, NodeRole::CompoundStatement_statement);
|
|
561 Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
|
|
562
|
|
563 Builder.foldNode(Builder.getStmtRange(S),
|
173
|
564 new (allocator()) syntax::CompoundStatement, S);
|
150
|
565 return true;
|
|
566 }
|
|
567
|
|
568 // Some statements are not yet handled by syntax trees.
|
|
569 bool WalkUpFromStmt(Stmt *S) {
|
|
570 Builder.foldNode(Builder.getStmtRange(S),
|
173
|
571 new (allocator()) syntax::UnknownStatement, S);
|
150
|
572 return true;
|
|
573 }
|
|
574
|
|
575 bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
|
|
576 // We override to traverse range initializer as VarDecl.
|
|
577 // RAV traverses it as a statement, we produce invalid node kinds in that
|
|
578 // case.
|
|
579 // FIXME: should do this in RAV instead?
|
|
580 if (S->getInit() && !TraverseStmt(S->getInit()))
|
|
581 return false;
|
|
582 if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
|
|
583 return false;
|
|
584 if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
|
|
585 return false;
|
|
586 if (S->getBody() && !TraverseStmt(S->getBody()))
|
|
587 return false;
|
|
588 return true;
|
|
589 }
|
|
590
|
|
591 bool TraverseStmt(Stmt *S) {
|
|
592 if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S)) {
|
|
593 // We want to consume the semicolon, make sure SimpleDeclaration does not.
|
|
594 for (auto *D : DS->decls())
|
173
|
595 Builder.noticeDeclWithoutSemicolon(D);
|
150
|
596 } else if (auto *E = llvm::dyn_cast_or_null<Expr>(S)) {
|
173
|
597 // Do not recurse into subexpressions.
|
|
598 // We do not have syntax trees for expressions yet, so we only want to see
|
150
|
599 // the first top-level expression.
|
|
600 return WalkUpFromExpr(E->IgnoreImplicit());
|
|
601 }
|
|
602 return RecursiveASTVisitor::TraverseStmt(S);
|
|
603 }
|
|
604
|
|
605 // Some expressions are not yet handled by syntax trees.
|
|
606 bool WalkUpFromExpr(Expr *E) {
|
|
607 assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
|
|
608 Builder.foldNode(Builder.getExprRange(E),
|
173
|
609 new (allocator()) syntax::UnknownExpression, E);
|
150
|
610 return true;
|
|
611 }
|
|
612
|
|
613 bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
|
173
|
614 auto Tokens = Builder.getDeclarationRange(S);
|
150
|
615 if (Tokens.front().kind() == tok::coloncolon) {
|
|
616 // Handle nested namespace definitions. Those start at '::' token, e.g.
|
|
617 // namespace a^::b {}
|
|
618 // FIXME: build corresponding nodes for the name of this namespace.
|
|
619 return true;
|
|
620 }
|
173
|
621 Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
|
|
622 return true;
|
|
623 }
|
|
624
|
|
625 bool TraverseParenTypeLoc(ParenTypeLoc L) {
|
|
626 // We reverse order of traversal to get the proper syntax structure.
|
|
627 if (!WalkUpFromParenTypeLoc(L))
|
|
628 return false;
|
|
629 return TraverseTypeLoc(L.getInnerLoc());
|
|
630 }
|
|
631
|
|
632 bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
|
|
633 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
|
|
634 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
|
|
635 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
|
|
636 new (allocator()) syntax::ParenDeclarator, L);
|
|
637 return true;
|
|
638 }
|
|
639
|
|
640 // Declarator chunks, they are produced by type locs and some clang::Decls.
|
|
641 bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
|
|
642 Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
|
|
643 Builder.markExprChild(L.getSizeExpr(),
|
|
644 syntax::NodeRole::ArraySubscript_sizeExpression);
|
|
645 Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
|
|
646 Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
|
|
647 new (allocator()) syntax::ArraySubscript, L);
|
|
648 return true;
|
|
649 }
|
|
650
|
|
651 bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
|
|
652 Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
|
|
653 for (auto *P : L.getParams()) {
|
|
654 Builder.markChild(P, syntax::NodeRole::ParametersAndQualifiers_parameter);
|
|
655 }
|
|
656 Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
|
|
657 Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
|
|
658 new (allocator()) syntax::ParametersAndQualifiers, L);
|
|
659 return true;
|
|
660 }
|
|
661
|
|
662 bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
|
|
663 if (!L.getTypePtr()->hasTrailingReturn())
|
|
664 return WalkUpFromFunctionTypeLoc(L);
|
|
665
|
|
666 auto *TrailingReturnTokens = BuildTrailingReturn(L);
|
|
667 // Finish building the node for parameters.
|
|
668 Builder.markChild(TrailingReturnTokens,
|
|
669 syntax::NodeRole::ParametersAndQualifiers_trailingReturn);
|
|
670 return WalkUpFromFunctionTypeLoc(L);
|
|
671 }
|
|
672
|
|
673 bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
|
|
674 auto SR = L.getLocalSourceRange();
|
|
675 Builder.foldNode(Builder.getRange(SR),
|
|
676 new (allocator()) syntax::MemberPointer, L);
|
150
|
677 return true;
|
|
678 }
|
|
679
|
|
680 // The code below is very regular, it could even be generated with some
|
|
681 // preprocessor magic. We merely assign roles to the corresponding children
|
|
682 // and fold resulting nodes.
|
|
683 bool WalkUpFromDeclStmt(DeclStmt *S) {
|
|
684 Builder.foldNode(Builder.getStmtRange(S),
|
173
|
685 new (allocator()) syntax::DeclarationStatement, S);
|
150
|
686 return true;
|
|
687 }
|
|
688
|
|
689 bool WalkUpFromNullStmt(NullStmt *S) {
|
|
690 Builder.foldNode(Builder.getStmtRange(S),
|
173
|
691 new (allocator()) syntax::EmptyStatement, S);
|
150
|
692 return true;
|
|
693 }
|
|
694
|
|
695 bool WalkUpFromSwitchStmt(SwitchStmt *S) {
|
|
696 Builder.markChildToken(S->getSwitchLoc(),
|
|
697 syntax::NodeRole::IntroducerKeyword);
|
|
698 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
699 Builder.foldNode(Builder.getStmtRange(S),
|
173
|
700 new (allocator()) syntax::SwitchStatement, S);
|
150
|
701 return true;
|
|
702 }
|
|
703
|
|
704 bool WalkUpFromCaseStmt(CaseStmt *S) {
|
|
705 Builder.markChildToken(S->getKeywordLoc(),
|
|
706 syntax::NodeRole::IntroducerKeyword);
|
|
707 Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseStatement_value);
|
|
708 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
|
|
709 Builder.foldNode(Builder.getStmtRange(S),
|
173
|
710 new (allocator()) syntax::CaseStatement, S);
|
150
|
711 return true;
|
|
712 }
|
|
713
|
|
714 bool WalkUpFromDefaultStmt(DefaultStmt *S) {
|
|
715 Builder.markChildToken(S->getKeywordLoc(),
|
|
716 syntax::NodeRole::IntroducerKeyword);
|
|
717 Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
|
|
718 Builder.foldNode(Builder.getStmtRange(S),
|
173
|
719 new (allocator()) syntax::DefaultStatement, S);
|
150
|
720 return true;
|
|
721 }
|
|
722
|
|
723 bool WalkUpFromIfStmt(IfStmt *S) {
|
|
724 Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
|
|
725 Builder.markStmtChild(S->getThen(),
|
|
726 syntax::NodeRole::IfStatement_thenStatement);
|
|
727 Builder.markChildToken(S->getElseLoc(),
|
|
728 syntax::NodeRole::IfStatement_elseKeyword);
|
|
729 Builder.markStmtChild(S->getElse(),
|
|
730 syntax::NodeRole::IfStatement_elseStatement);
|
|
731 Builder.foldNode(Builder.getStmtRange(S),
|
173
|
732 new (allocator()) syntax::IfStatement, S);
|
150
|
733 return true;
|
|
734 }
|
|
735
|
|
736 bool WalkUpFromForStmt(ForStmt *S) {
|
|
737 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
|
|
738 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
739 Builder.foldNode(Builder.getStmtRange(S),
|
173
|
740 new (allocator()) syntax::ForStatement, S);
|
150
|
741 return true;
|
|
742 }
|
|
743
|
|
744 bool WalkUpFromWhileStmt(WhileStmt *S) {
|
|
745 Builder.markChildToken(S->getWhileLoc(),
|
|
746 syntax::NodeRole::IntroducerKeyword);
|
|
747 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
748 Builder.foldNode(Builder.getStmtRange(S),
|
173
|
749 new (allocator()) syntax::WhileStatement, S);
|
150
|
750 return true;
|
|
751 }
|
|
752
|
|
753 bool WalkUpFromContinueStmt(ContinueStmt *S) {
|
|
754 Builder.markChildToken(S->getContinueLoc(),
|
|
755 syntax::NodeRole::IntroducerKeyword);
|
|
756 Builder.foldNode(Builder.getStmtRange(S),
|
173
|
757 new (allocator()) syntax::ContinueStatement, S);
|
150
|
758 return true;
|
|
759 }
|
|
760
|
|
761 bool WalkUpFromBreakStmt(BreakStmt *S) {
|
|
762 Builder.markChildToken(S->getBreakLoc(),
|
|
763 syntax::NodeRole::IntroducerKeyword);
|
|
764 Builder.foldNode(Builder.getStmtRange(S),
|
173
|
765 new (allocator()) syntax::BreakStatement, S);
|
150
|
766 return true;
|
|
767 }
|
|
768
|
|
769 bool WalkUpFromReturnStmt(ReturnStmt *S) {
|
|
770 Builder.markChildToken(S->getReturnLoc(),
|
|
771 syntax::NodeRole::IntroducerKeyword);
|
|
772 Builder.markExprChild(S->getRetValue(),
|
|
773 syntax::NodeRole::ReturnStatement_value);
|
|
774 Builder.foldNode(Builder.getStmtRange(S),
|
173
|
775 new (allocator()) syntax::ReturnStatement, S);
|
150
|
776 return true;
|
|
777 }
|
|
778
|
|
779 bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
|
|
780 Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
|
|
781 Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
782 Builder.foldNode(Builder.getStmtRange(S),
|
173
|
783 new (allocator()) syntax::RangeBasedForStatement, S);
|
150
|
784 return true;
|
|
785 }
|
|
786
|
|
787 bool WalkUpFromEmptyDecl(EmptyDecl *S) {
|
173
|
788 Builder.foldNode(Builder.getDeclarationRange(S),
|
|
789 new (allocator()) syntax::EmptyDeclaration, S);
|
150
|
790 return true;
|
|
791 }
|
|
792
|
|
793 bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
|
|
794 Builder.markExprChild(S->getAssertExpr(),
|
|
795 syntax::NodeRole::StaticAssertDeclaration_condition);
|
|
796 Builder.markExprChild(S->getMessage(),
|
|
797 syntax::NodeRole::StaticAssertDeclaration_message);
|
173
|
798 Builder.foldNode(Builder.getDeclarationRange(S),
|
|
799 new (allocator()) syntax::StaticAssertDeclaration, S);
|
150
|
800 return true;
|
|
801 }
|
|
802
|
|
803 bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
|
173
|
804 Builder.foldNode(Builder.getDeclarationRange(S),
|
|
805 new (allocator()) syntax::LinkageSpecificationDeclaration,
|
|
806 S);
|
150
|
807 return true;
|
|
808 }
|
|
809
|
|
810 bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
|
173
|
811 Builder.foldNode(Builder.getDeclarationRange(S),
|
|
812 new (allocator()) syntax::NamespaceAliasDefinition, S);
|
150
|
813 return true;
|
|
814 }
|
|
815
|
|
816 bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
|
173
|
817 Builder.foldNode(Builder.getDeclarationRange(S),
|
|
818 new (allocator()) syntax::UsingNamespaceDirective, S);
|
150
|
819 return true;
|
|
820 }
|
|
821
|
|
822 bool WalkUpFromUsingDecl(UsingDecl *S) {
|
173
|
823 Builder.foldNode(Builder.getDeclarationRange(S),
|
|
824 new (allocator()) syntax::UsingDeclaration, S);
|
150
|
825 return true;
|
|
826 }
|
|
827
|
|
828 bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
|
173
|
829 Builder.foldNode(Builder.getDeclarationRange(S),
|
|
830 new (allocator()) syntax::UsingDeclaration, S);
|
150
|
831 return true;
|
|
832 }
|
|
833
|
|
834 bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
|
173
|
835 Builder.foldNode(Builder.getDeclarationRange(S),
|
|
836 new (allocator()) syntax::UsingDeclaration, S);
|
150
|
837 return true;
|
|
838 }
|
|
839
|
|
840 bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
|
173
|
841 Builder.foldNode(Builder.getDeclarationRange(S),
|
|
842 new (allocator()) syntax::TypeAliasDeclaration, S);
|
150
|
843 return true;
|
|
844 }
|
|
845
|
|
846 private:
|
173
|
847 template <class T> SourceLocation getQualifiedNameStart(T *D) {
|
|
848 static_assert((std::is_base_of<DeclaratorDecl, T>::value ||
|
|
849 std::is_base_of<TypedefNameDecl, T>::value),
|
|
850 "only DeclaratorDecl and TypedefNameDecl are supported.");
|
|
851
|
|
852 auto DN = D->getDeclName();
|
|
853 bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
|
|
854 if (IsAnonymous)
|
|
855 return SourceLocation();
|
|
856
|
|
857 if (const auto *DD = llvm::dyn_cast<DeclaratorDecl>(D)) {
|
|
858 if (DD->getQualifierLoc()) {
|
|
859 return DD->getQualifierLoc().getBeginLoc();
|
|
860 }
|
|
861 }
|
|
862
|
|
863 return D->getLocation();
|
|
864 }
|
|
865
|
|
866 SourceRange getInitializerRange(Decl *D) {
|
|
867 if (auto *V = llvm::dyn_cast<VarDecl>(D)) {
|
|
868 auto *I = V->getInit();
|
|
869 // Initializers in range-based-for are not part of the declarator
|
|
870 if (I && !V->isCXXForRangeDecl())
|
|
871 return I->getSourceRange();
|
|
872 }
|
|
873
|
|
874 return SourceRange();
|
|
875 }
|
|
876
|
|
877 /// Folds SimpleDeclarator node (if present) and in case this is the last
|
|
878 /// declarator in the chain it also folds SimpleDeclaration node.
|
|
879 template <class T> bool processDeclaratorAndDeclaration(T *D) {
|
|
880 SourceRange Initializer = getInitializerRange(D);
|
|
881 auto Range = getDeclaratorRange(Builder.sourceManager(),
|
|
882 D->getTypeSourceInfo()->getTypeLoc(),
|
|
883 getQualifiedNameStart(D), Initializer);
|
|
884
|
|
885 // There doesn't have to be a declarator (e.g. `void foo(int)` only has
|
|
886 // declaration, but no declarator).
|
|
887 if (Range.getBegin().isValid()) {
|
|
888 auto *N = new (allocator()) syntax::SimpleDeclarator;
|
|
889 Builder.foldNode(Builder.getRange(Range), N, nullptr);
|
|
890 Builder.markChild(N, syntax::NodeRole::SimpleDeclaration_declarator);
|
|
891 }
|
|
892
|
|
893 if (Builder.isResponsibleForCreatingDeclaration(D)) {
|
|
894 Builder.foldNode(Builder.getDeclarationRange(D),
|
|
895 new (allocator()) syntax::SimpleDeclaration, D);
|
|
896 }
|
|
897 return true;
|
|
898 }
|
|
899
|
|
900 /// Returns the range of the built node.
|
|
901 syntax::TrailingReturnType *BuildTrailingReturn(FunctionProtoTypeLoc L) {
|
|
902 assert(L.getTypePtr()->hasTrailingReturn());
|
|
903
|
|
904 auto ReturnedType = L.getReturnLoc();
|
|
905 // Build node for the declarator, if any.
|
|
906 auto ReturnDeclaratorRange =
|
|
907 getDeclaratorRange(this->Builder.sourceManager(), ReturnedType,
|
|
908 /*Name=*/SourceLocation(),
|
|
909 /*Initializer=*/SourceLocation());
|
|
910 syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
|
|
911 if (ReturnDeclaratorRange.isValid()) {
|
|
912 ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
|
|
913 Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
|
|
914 ReturnDeclarator, nullptr);
|
|
915 }
|
|
916
|
|
917 // Build node for trailing return type.
|
|
918 auto Return = Builder.getRange(ReturnedType.getSourceRange());
|
|
919 const auto *Arrow = Return.begin() - 1;
|
|
920 assert(Arrow->kind() == tok::arrow);
|
|
921 auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
|
|
922 Builder.markChildToken(Arrow, syntax::NodeRole::TrailingReturnType_arrow);
|
|
923 if (ReturnDeclarator)
|
|
924 Builder.markChild(ReturnDeclarator,
|
|
925 syntax::NodeRole::TrailingReturnType_declarator);
|
|
926 auto *R = new (allocator()) syntax::TrailingReturnType;
|
|
927 Builder.foldNode(Tokens, R, L);
|
|
928 return R;
|
|
929 }
|
|
930
|
|
931 void foldExplicitTemplateInstantiation(
|
|
932 ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
|
|
933 const syntax::Token *TemplateKW,
|
|
934 syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
|
|
935 assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
|
|
936 assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
|
|
937 Builder.markChildToken(
|
|
938 ExternKW,
|
|
939 syntax::NodeRole::ExplicitTemplateInstantiation_externKeyword);
|
|
940 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
|
|
941 Builder.markChild(
|
|
942 InnerDeclaration,
|
|
943 syntax::NodeRole::ExplicitTemplateInstantiation_declaration);
|
|
944 Builder.foldNode(
|
|
945 Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
|
|
946 }
|
|
947
|
|
948 syntax::TemplateDeclaration *foldTemplateDeclaration(
|
|
949 ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
|
|
950 ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
|
|
951 assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
|
|
952 Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
|
|
953
|
|
954 auto *N = new (allocator()) syntax::TemplateDeclaration;
|
|
955 Builder.foldNode(Range, N, From);
|
|
956 Builder.markChild(N, syntax::NodeRole::TemplateDeclaration_declaration);
|
|
957 return N;
|
|
958 }
|
|
959
|
150
|
960 /// A small helper to save some typing.
|
|
961 llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
|
|
962
|
|
963 syntax::TreeBuilder &Builder;
|
|
964 const LangOptions &LangOpts;
|
|
965 };
|
|
966 } // namespace
|
|
967
|
173
|
968 void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
|
150
|
969 DeclsWithoutSemicolons.insert(D);
|
|
970 }
|
|
971
|
|
972 void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
|
|
973 if (Loc.isInvalid())
|
|
974 return;
|
|
975 Pending.assignRole(*findToken(Loc), Role);
|
|
976 }
|
|
977
|
173
|
978 void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
|
|
979 if (!T)
|
|
980 return;
|
|
981 Pending.assignRole(*T, R);
|
|
982 }
|
|
983
|
|
984 void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
|
|
985 assert(N);
|
|
986 setRole(N, R);
|
|
987 }
|
|
988
|
|
989 void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
|
|
990 auto *SN = Mapping.find(N);
|
|
991 assert(SN != nullptr);
|
|
992 setRole(SN, R);
|
|
993 }
|
|
994
|
150
|
995 void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
|
|
996 if (!Child)
|
|
997 return;
|
|
998
|
173
|
999 syntax::Tree *ChildNode = Mapping.find(Child);
|
|
1000 assert(ChildNode != nullptr);
|
|
1001
|
150
|
1002 // This is an expression in a statement position, consume the trailing
|
|
1003 // semicolon and form an 'ExpressionStatement' node.
|
173
|
1004 if (isa<Expr>(Child)) {
|
|
1005 setRole(ChildNode, NodeRole::ExpressionStatement_expression);
|
|
1006 ChildNode = new (allocator()) syntax::ExpressionStatement;
|
|
1007 // (!) 'getStmtRange()' ensures this covers a trailing semicolon.
|
|
1008 Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
|
150
|
1009 }
|
173
|
1010 setRole(ChildNode, Role);
|
150
|
1011 }
|
|
1012
|
|
1013 void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
|
|
1014 if (!Child)
|
|
1015 return;
|
173
|
1016 Child = Child->IgnoreImplicit();
|
150
|
1017
|
173
|
1018 syntax::Tree *ChildNode = Mapping.find(Child);
|
|
1019 assert(ChildNode != nullptr);
|
|
1020 setRole(ChildNode, Role);
|
150
|
1021 }
|
|
1022
|
|
1023 const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
|
173
|
1024 if (L.isInvalid())
|
|
1025 return nullptr;
|
150
|
1026 auto It = LocationToToken.find(L.getRawEncoding());
|
|
1027 assert(It != LocationToToken.end());
|
|
1028 return It->second;
|
|
1029 }
|
|
1030
|
|
1031 syntax::TranslationUnit *
|
|
1032 syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
|
|
1033 TreeBuilder Builder(A);
|
|
1034 BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
|
|
1035 return std::move(Builder).finalize();
|
|
1036 }
|