150
|
1 /*
|
|
2 * kmp_str.cpp -- String manipulation routines.
|
|
3 */
|
|
4
|
|
5 //===----------------------------------------------------------------------===//
|
|
6 //
|
|
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
8 // See https://llvm.org/LICENSE.txt for license information.
|
|
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
10 //
|
|
11 //===----------------------------------------------------------------------===//
|
|
12
|
|
13 #include "kmp_str.h"
|
|
14
|
|
15 #include <stdarg.h> // va_*
|
|
16 #include <stdio.h> // vsnprintf()
|
|
17 #include <stdlib.h> // malloc(), realloc()
|
|
18
|
|
19 #include "kmp.h"
|
|
20 #include "kmp_i18n.h"
|
|
21
|
|
22 /* String buffer.
|
|
23
|
|
24 Usage:
|
|
25
|
|
26 // Declare buffer and initialize it.
|
|
27 kmp_str_buf_t buffer;
|
|
28 __kmp_str_buf_init( & buffer );
|
|
29
|
|
30 // Print to buffer.
|
|
31 __kmp_str_buf_print(& buffer, "Error in file \"%s\" line %d\n", "foo.c", 12);
|
|
32 __kmp_str_buf_print(& buffer, " <%s>\n", line);
|
|
33
|
|
34 // Use buffer contents. buffer.str is a pointer to data, buffer.used is a
|
|
35 // number of printed characters (not including terminating zero).
|
|
36 write( fd, buffer.str, buffer.used );
|
|
37
|
|
38 // Free buffer.
|
|
39 __kmp_str_buf_free( & buffer );
|
|
40
|
|
41 // Alternatively, you can detach allocated memory from buffer:
|
|
42 __kmp_str_buf_detach( & buffer );
|
|
43 return buffer.str; // That memory should be freed eventually.
|
|
44
|
|
45 Notes:
|
|
46
|
|
47 * Buffer users may use buffer.str and buffer.used. Users should not change
|
|
48 any fields of buffer directly.
|
|
49 * buffer.str is never NULL. If buffer is empty, buffer.str points to empty
|
|
50 string ("").
|
|
51 * For performance reasons, buffer uses stack memory (buffer.bulk) first. If
|
|
52 stack memory is exhausted, buffer allocates memory on heap by malloc(), and
|
|
53 reallocates it by realloc() as amount of used memory grows.
|
|
54 * Buffer doubles amount of allocated memory each time it is exhausted.
|
|
55 */
|
|
56
|
|
57 // TODO: __kmp_str_buf_print() can use thread local memory allocator.
|
|
58
|
|
59 #define KMP_STR_BUF_INVARIANT(b) \
|
|
60 { \
|
|
61 KMP_DEBUG_ASSERT((b)->str != NULL); \
|
|
62 KMP_DEBUG_ASSERT((b)->size >= sizeof((b)->bulk)); \
|
|
63 KMP_DEBUG_ASSERT((b)->size % sizeof((b)->bulk) == 0); \
|
|
64 KMP_DEBUG_ASSERT((unsigned)(b)->used < (b)->size); \
|
|
65 KMP_DEBUG_ASSERT( \
|
|
66 (b)->size == sizeof((b)->bulk) ? (b)->str == &(b)->bulk[0] : 1); \
|
|
67 KMP_DEBUG_ASSERT((b)->size > sizeof((b)->bulk) ? (b)->str != &(b)->bulk[0] \
|
|
68 : 1); \
|
|
69 }
|
|
70
|
|
71 void __kmp_str_buf_clear(kmp_str_buf_t *buffer) {
|
|
72 KMP_STR_BUF_INVARIANT(buffer);
|
|
73 if (buffer->used > 0) {
|
|
74 buffer->used = 0;
|
|
75 buffer->str[0] = 0;
|
|
76 }
|
|
77 KMP_STR_BUF_INVARIANT(buffer);
|
|
78 } // __kmp_str_buf_clear
|
|
79
|
|
80 void __kmp_str_buf_reserve(kmp_str_buf_t *buffer, int size) {
|
|
81 KMP_STR_BUF_INVARIANT(buffer);
|
|
82 KMP_DEBUG_ASSERT(size >= 0);
|
|
83
|
|
84 if (buffer->size < (unsigned int)size) {
|
|
85 // Calculate buffer size.
|
|
86 do {
|
|
87 buffer->size *= 2;
|
|
88 } while (buffer->size < (unsigned int)size);
|
|
89
|
|
90 // Enlarge buffer.
|
|
91 if (buffer->str == &buffer->bulk[0]) {
|
|
92 buffer->str = (char *)KMP_INTERNAL_MALLOC(buffer->size);
|
|
93 if (buffer->str == NULL) {
|
|
94 KMP_FATAL(MemoryAllocFailed);
|
|
95 }
|
|
96 KMP_MEMCPY_S(buffer->str, buffer->size, buffer->bulk, buffer->used + 1);
|
|
97 } else {
|
|
98 buffer->str = (char *)KMP_INTERNAL_REALLOC(buffer->str, buffer->size);
|
|
99 if (buffer->str == NULL) {
|
|
100 KMP_FATAL(MemoryAllocFailed);
|
|
101 }
|
|
102 }
|
|
103 }
|
|
104
|
|
105 KMP_DEBUG_ASSERT(buffer->size > 0);
|
|
106 KMP_DEBUG_ASSERT(buffer->size >= (unsigned)size);
|
|
107 KMP_STR_BUF_INVARIANT(buffer);
|
|
108 } // __kmp_str_buf_reserve
|
|
109
|
|
110 void __kmp_str_buf_detach(kmp_str_buf_t *buffer) {
|
|
111 KMP_STR_BUF_INVARIANT(buffer);
|
|
112
|
|
113 // If internal bulk is used, allocate memory and copy it.
|
|
114 if (buffer->size <= sizeof(buffer->bulk)) {
|
|
115 buffer->str = (char *)KMP_INTERNAL_MALLOC(buffer->size);
|
|
116 if (buffer->str == NULL) {
|
|
117 KMP_FATAL(MemoryAllocFailed);
|
|
118 }
|
|
119 KMP_MEMCPY_S(buffer->str, buffer->size, buffer->bulk, buffer->used + 1);
|
|
120 }
|
|
121 } // __kmp_str_buf_detach
|
|
122
|
|
123 void __kmp_str_buf_free(kmp_str_buf_t *buffer) {
|
|
124 KMP_STR_BUF_INVARIANT(buffer);
|
|
125 if (buffer->size > sizeof(buffer->bulk)) {
|
|
126 KMP_INTERNAL_FREE(buffer->str);
|
|
127 }
|
|
128 buffer->str = buffer->bulk;
|
|
129 buffer->size = sizeof(buffer->bulk);
|
|
130 buffer->used = 0;
|
|
131 KMP_STR_BUF_INVARIANT(buffer);
|
|
132 } // __kmp_str_buf_free
|
|
133
|
|
134 void __kmp_str_buf_cat(kmp_str_buf_t *buffer, char const *str, int len) {
|
|
135 KMP_STR_BUF_INVARIANT(buffer);
|
|
136 KMP_DEBUG_ASSERT(str != NULL);
|
|
137 KMP_DEBUG_ASSERT(len >= 0);
|
|
138 __kmp_str_buf_reserve(buffer, buffer->used + len + 1);
|
|
139 KMP_MEMCPY(buffer->str + buffer->used, str, len);
|
|
140 buffer->str[buffer->used + len] = 0;
|
|
141 buffer->used += len;
|
|
142 KMP_STR_BUF_INVARIANT(buffer);
|
|
143 } // __kmp_str_buf_cat
|
|
144
|
|
145 void __kmp_str_buf_catbuf(kmp_str_buf_t *dest, const kmp_str_buf_t *src) {
|
|
146 KMP_DEBUG_ASSERT(dest);
|
|
147 KMP_DEBUG_ASSERT(src);
|
|
148 KMP_STR_BUF_INVARIANT(dest);
|
|
149 KMP_STR_BUF_INVARIANT(src);
|
|
150 if (!src->str || !src->used)
|
|
151 return;
|
|
152 __kmp_str_buf_reserve(dest, dest->used + src->used + 1);
|
|
153 KMP_MEMCPY(dest->str + dest->used, src->str, src->used);
|
|
154 dest->str[dest->used + src->used] = 0;
|
|
155 dest->used += src->used;
|
|
156 KMP_STR_BUF_INVARIANT(dest);
|
|
157 } // __kmp_str_buf_catbuf
|
|
158
|
|
159 // Return the number of characters written
|
|
160 int __kmp_str_buf_vprint(kmp_str_buf_t *buffer, char const *format,
|
|
161 va_list args) {
|
|
162 int rc;
|
|
163 KMP_STR_BUF_INVARIANT(buffer);
|
|
164
|
|
165 for (;;) {
|
|
166 int const free = buffer->size - buffer->used;
|
|
167 int size;
|
|
168
|
|
169 // Try to format string.
|
|
170 {
|
|
171 /* On Linux* OS Intel(R) 64, vsnprintf() modifies args argument, so vsnprintf()
|
|
172 crashes if it is called for the second time with the same args. To prevent
|
|
173 the crash, we have to pass a fresh intact copy of args to vsnprintf() on each
|
|
174 iteration.
|
|
175
|
|
176 Unfortunately, standard va_copy() macro is not available on Windows* OS.
|
|
177 However, it seems vsnprintf() does not modify args argument on Windows* OS.
|
|
178 */
|
|
179
|
|
180 #if !KMP_OS_WINDOWS
|
|
181 va_list _args;
|
|
182 va_copy(_args, args); // Make copy of args.
|
|
183 #define args _args // Substitute args with its copy, _args.
|
|
184 #endif // KMP_OS_WINDOWS
|
|
185 rc = KMP_VSNPRINTF(buffer->str + buffer->used, free, format, args);
|
|
186 #if !KMP_OS_WINDOWS
|
|
187 #undef args // Remove substitution.
|
|
188 va_end(_args);
|
|
189 #endif // KMP_OS_WINDOWS
|
|
190 }
|
|
191
|
|
192 // No errors, string has been formatted.
|
|
193 if (rc >= 0 && rc < free) {
|
|
194 buffer->used += rc;
|
|
195 break;
|
|
196 }
|
|
197
|
|
198 // Error occurred, buffer is too small.
|
|
199 if (rc >= 0) {
|
|
200 // C99-conforming implementation of vsnprintf returns required buffer size
|
|
201 size = buffer->used + rc + 1;
|
|
202 } else {
|
|
203 // Older implementations just return -1. Double buffer size.
|
|
204 size = buffer->size * 2;
|
|
205 }
|
|
206
|
|
207 // Enlarge buffer.
|
|
208 __kmp_str_buf_reserve(buffer, size);
|
|
209
|
|
210 // And try again.
|
|
211 }
|
|
212
|
|
213 KMP_DEBUG_ASSERT(buffer->size > 0);
|
|
214 KMP_STR_BUF_INVARIANT(buffer);
|
|
215 return rc;
|
|
216 } // __kmp_str_buf_vprint
|
|
217
|
|
218 // Return the number of characters written
|
|
219 int __kmp_str_buf_print(kmp_str_buf_t *buffer, char const *format, ...) {
|
|
220 int rc;
|
|
221 va_list args;
|
|
222 va_start(args, format);
|
|
223 rc = __kmp_str_buf_vprint(buffer, format, args);
|
|
224 va_end(args);
|
|
225 return rc;
|
|
226 } // __kmp_str_buf_print
|
|
227
|
|
228 /* The function prints specified size to buffer. Size is expressed using biggest
|
|
229 possible unit, for example 1024 is printed as "1k". */
|
|
230 void __kmp_str_buf_print_size(kmp_str_buf_t *buf, size_t size) {
|
|
231 char const *names[] = {"", "k", "M", "G", "T", "P", "E", "Z", "Y"};
|
|
232 int const units = sizeof(names) / sizeof(char const *);
|
|
233 int u = 0;
|
|
234 if (size > 0) {
|
|
235 while ((size % 1024 == 0) && (u + 1 < units)) {
|
|
236 size = size / 1024;
|
|
237 ++u;
|
|
238 }
|
|
239 }
|
|
240
|
|
241 __kmp_str_buf_print(buf, "%" KMP_SIZE_T_SPEC "%s", size, names[u]);
|
|
242 } // __kmp_str_buf_print_size
|
|
243
|
|
244 void __kmp_str_fname_init(kmp_str_fname_t *fname, char const *path) {
|
|
245 fname->path = NULL;
|
|
246 fname->dir = NULL;
|
|
247 fname->base = NULL;
|
|
248
|
|
249 if (path != NULL) {
|
|
250 char *slash = NULL; // Pointer to the last character of dir.
|
|
251 char *base = NULL; // Pointer to the beginning of basename.
|
|
252 fname->path = __kmp_str_format("%s", path);
|
|
253 // Original code used strdup() function to copy a string, but on Windows* OS
|
|
254 // Intel(R) 64 it causes assertion id debug heap, so I had to replace
|
|
255 // strdup with __kmp_str_format().
|
|
256 if (KMP_OS_WINDOWS) {
|
|
257 __kmp_str_replace(fname->path, '\\', '/');
|
|
258 }
|
|
259 fname->dir = __kmp_str_format("%s", fname->path);
|
|
260 slash = strrchr(fname->dir, '/');
|
|
261 if (KMP_OS_WINDOWS &&
|
|
262 slash == NULL) { // On Windows* OS, if slash not found,
|
|
263 char first = TOLOWER(fname->dir[0]); // look for drive.
|
|
264 if ('a' <= first && first <= 'z' && fname->dir[1] == ':') {
|
|
265 slash = &fname->dir[1];
|
|
266 }
|
|
267 }
|
|
268 base = (slash == NULL ? fname->dir : slash + 1);
|
|
269 fname->base = __kmp_str_format("%s", base); // Copy basename
|
|
270 *base = 0; // and truncate dir.
|
|
271 }
|
|
272
|
|
273 } // kmp_str_fname_init
|
|
274
|
|
275 void __kmp_str_fname_free(kmp_str_fname_t *fname) {
|
|
276 __kmp_str_free(&fname->path);
|
|
277 __kmp_str_free(&fname->dir);
|
|
278 __kmp_str_free(&fname->base);
|
|
279 } // kmp_str_fname_free
|
|
280
|
|
281 int __kmp_str_fname_match(kmp_str_fname_t const *fname, char const *pattern) {
|
|
282 int dir_match = 1;
|
|
283 int base_match = 1;
|
|
284
|
|
285 if (pattern != NULL) {
|
|
286 kmp_str_fname_t ptrn;
|
|
287 __kmp_str_fname_init(&ptrn, pattern);
|
|
288 dir_match = strcmp(ptrn.dir, "*/") == 0 ||
|
|
289 (fname->dir != NULL && __kmp_str_eqf(fname->dir, ptrn.dir));
|
|
290 base_match = strcmp(ptrn.base, "*") == 0 ||
|
|
291 (fname->base != NULL && __kmp_str_eqf(fname->base, ptrn.base));
|
|
292 __kmp_str_fname_free(&ptrn);
|
|
293 }
|
|
294
|
|
295 return dir_match && base_match;
|
|
296 } // __kmp_str_fname_match
|
|
297
|
|
298 kmp_str_loc_t __kmp_str_loc_init(char const *psource, int init_fname) {
|
|
299 kmp_str_loc_t loc;
|
|
300
|
|
301 loc._bulk = NULL;
|
|
302 loc.file = NULL;
|
|
303 loc.func = NULL;
|
|
304 loc.line = 0;
|
|
305 loc.col = 0;
|
|
306
|
|
307 if (psource != NULL) {
|
|
308 char *str = NULL;
|
|
309 char *dummy = NULL;
|
|
310 char *line = NULL;
|
|
311 char *col = NULL;
|
|
312
|
|
313 // Copy psource to keep it intact.
|
|
314 loc._bulk = __kmp_str_format("%s", psource);
|
|
315
|
|
316 // Parse psource string: ";file;func;line;col;;"
|
|
317 str = loc._bulk;
|
|
318 __kmp_str_split(str, ';', &dummy, &str);
|
|
319 __kmp_str_split(str, ';', &loc.file, &str);
|
|
320 __kmp_str_split(str, ';', &loc.func, &str);
|
|
321 __kmp_str_split(str, ';', &line, &str);
|
|
322 __kmp_str_split(str, ';', &col, &str);
|
|
323
|
|
324 // Convert line and col into numberic values.
|
|
325 if (line != NULL) {
|
|
326 loc.line = atoi(line);
|
|
327 if (loc.line < 0) {
|
|
328 loc.line = 0;
|
|
329 }
|
|
330 }
|
|
331 if (col != NULL) {
|
|
332 loc.col = atoi(col);
|
|
333 if (loc.col < 0) {
|
|
334 loc.col = 0;
|
|
335 }
|
|
336 }
|
|
337 }
|
|
338
|
|
339 __kmp_str_fname_init(&loc.fname, init_fname ? loc.file : NULL);
|
|
340
|
|
341 return loc;
|
|
342 } // kmp_str_loc_init
|
|
343
|
|
344 void __kmp_str_loc_free(kmp_str_loc_t *loc) {
|
|
345 __kmp_str_fname_free(&loc->fname);
|
|
346 __kmp_str_free(&(loc->_bulk));
|
|
347 loc->file = NULL;
|
|
348 loc->func = NULL;
|
|
349 } // kmp_str_loc_free
|
|
350
|
|
351 /* This function is intended to compare file names. On Windows* OS file names
|
|
352 are case-insensitive, so functions performs case-insensitive comparison. On
|
|
353 Linux* OS it performs case-sensitive comparison. Note: The function returns
|
|
354 *true* if strings are *equal*. */
|
|
355 int __kmp_str_eqf( // True, if strings are equal, false otherwise.
|
|
356 char const *lhs, // First string.
|
|
357 char const *rhs // Second string.
|
|
358 ) {
|
|
359 int result;
|
|
360 #if KMP_OS_WINDOWS
|
|
361 result = (_stricmp(lhs, rhs) == 0);
|
|
362 #else
|
|
363 result = (strcmp(lhs, rhs) == 0);
|
|
364 #endif
|
|
365 return result;
|
|
366 } // __kmp_str_eqf
|
|
367
|
|
368 /* This function is like sprintf, but it *allocates* new buffer, which must be
|
|
369 freed eventually by __kmp_str_free(). The function is very convenient for
|
|
370 constructing strings, it successfully replaces strdup(), strcat(), it frees
|
|
371 programmer from buffer allocations and helps to avoid buffer overflows.
|
|
372 Examples:
|
|
373
|
|
374 str = __kmp_str_format("%s", orig); //strdup() doesn't care about buffer size
|
|
375 __kmp_str_free( & str );
|
|
376 str = __kmp_str_format( "%s%s", orig1, orig2 ); // strcat(), doesn't care
|
|
377 // about buffer size.
|
|
378 __kmp_str_free( & str );
|
|
379 str = __kmp_str_format( "%s/%s.txt", path, file ); // constructing string.
|
|
380 __kmp_str_free( & str );
|
|
381
|
|
382 Performance note:
|
|
383 This function allocates memory with malloc() calls, so do not call it from
|
|
384 performance-critical code. In performance-critical code consider using
|
|
385 kmp_str_buf_t instead, since it uses stack-allocated buffer for short
|
|
386 strings.
|
|
387
|
|
388 Why does this function use malloc()?
|
|
389 1. __kmp_allocate() returns cache-aligned memory allocated with malloc().
|
|
390 There are no reasons in using __kmp_allocate() for strings due to extra
|
|
391 overhead while cache-aligned memory is not necessary.
|
|
392 2. __kmp_thread_malloc() cannot be used because it requires pointer to thread
|
|
393 structure. We need to perform string operations during library startup
|
|
394 (for example, in __kmp_register_library_startup()) when no thread
|
|
395 structures are allocated yet.
|
|
396 So standard malloc() is the only available option.
|
|
397 */
|
|
398
|
|
399 char *__kmp_str_format( // Allocated string.
|
|
400 char const *format, // Format string.
|
|
401 ... // Other parameters.
|
|
402 ) {
|
|
403 va_list args;
|
|
404 int size = 512;
|
|
405 char *buffer = NULL;
|
|
406 int rc;
|
|
407
|
|
408 // Allocate buffer.
|
|
409 buffer = (char *)KMP_INTERNAL_MALLOC(size);
|
|
410 if (buffer == NULL) {
|
|
411 KMP_FATAL(MemoryAllocFailed);
|
|
412 }
|
|
413
|
|
414 for (;;) {
|
|
415 // Try to format string.
|
|
416 va_start(args, format);
|
|
417 rc = KMP_VSNPRINTF(buffer, size, format, args);
|
|
418 va_end(args);
|
|
419
|
|
420 // No errors, string has been formatted.
|
|
421 if (rc >= 0 && rc < size) {
|
|
422 break;
|
|
423 }
|
|
424
|
|
425 // Error occurred, buffer is too small.
|
|
426 if (rc >= 0) {
|
|
427 // C99-conforming implementation of vsnprintf returns required buffer
|
|
428 // size.
|
|
429 size = rc + 1;
|
|
430 } else {
|
|
431 // Older implementations just return -1.
|
|
432 size = size * 2;
|
|
433 }
|
|
434
|
|
435 // Enlarge buffer and try again.
|
|
436 buffer = (char *)KMP_INTERNAL_REALLOC(buffer, size);
|
|
437 if (buffer == NULL) {
|
|
438 KMP_FATAL(MemoryAllocFailed);
|
|
439 }
|
|
440 }
|
|
441
|
|
442 return buffer;
|
|
443 } // func __kmp_str_format
|
|
444
|
|
445 void __kmp_str_free(char **str) {
|
|
446 KMP_DEBUG_ASSERT(str != NULL);
|
|
447 KMP_INTERNAL_FREE(*str);
|
|
448 *str = NULL;
|
|
449 } // func __kmp_str_free
|
|
450
|
|
451 /* If len is zero, returns true iff target and data have exact case-insensitive
|
|
452 match. If len is negative, returns true iff target is a case-insensitive
|
|
453 substring of data. If len is positive, returns true iff target is a
|
|
454 case-insensitive substring of data or vice versa, and neither is shorter than
|
|
455 len. */
|
|
456 int __kmp_str_match(char const *target, int len, char const *data) {
|
|
457 int i;
|
|
458 if (target == NULL || data == NULL) {
|
|
459 return FALSE;
|
|
460 }
|
|
461 for (i = 0; target[i] && data[i]; ++i) {
|
|
462 if (TOLOWER(target[i]) != TOLOWER(data[i])) {
|
|
463 return FALSE;
|
|
464 }
|
|
465 }
|
|
466 return ((len > 0) ? i >= len : (!target[i] && (len || !data[i])));
|
|
467 } // __kmp_str_match
|
|
468
|
|
469 int __kmp_str_match_false(char const *data) {
|
|
470 int result =
|
|
471 __kmp_str_match("false", 1, data) || __kmp_str_match("off", 2, data) ||
|
|
472 __kmp_str_match("0", 1, data) || __kmp_str_match(".false.", 2, data) ||
|
|
473 __kmp_str_match(".f.", 2, data) || __kmp_str_match("no", 1, data) ||
|
|
474 __kmp_str_match("disabled", 0, data);
|
|
475 return result;
|
|
476 } // __kmp_str_match_false
|
|
477
|
|
478 int __kmp_str_match_true(char const *data) {
|
|
479 int result =
|
|
480 __kmp_str_match("true", 1, data) || __kmp_str_match("on", 2, data) ||
|
|
481 __kmp_str_match("1", 1, data) || __kmp_str_match(".true.", 2, data) ||
|
|
482 __kmp_str_match(".t.", 2, data) || __kmp_str_match("yes", 1, data) ||
|
|
483 __kmp_str_match("enabled", 0, data);
|
|
484 return result;
|
|
485 } // __kmp_str_match_true
|
|
486
|
|
487 void __kmp_str_replace(char *str, char search_for, char replace_with) {
|
|
488 char *found = NULL;
|
|
489
|
|
490 found = strchr(str, search_for);
|
|
491 while (found) {
|
|
492 *found = replace_with;
|
|
493 found = strchr(found + 1, search_for);
|
|
494 }
|
|
495 } // __kmp_str_replace
|
|
496
|
|
497 void __kmp_str_split(char *str, // I: String to split.
|
|
498 char delim, // I: Character to split on.
|
|
499 char **head, // O: Pointer to head (may be NULL).
|
|
500 char **tail // O: Pointer to tail (may be NULL).
|
|
501 ) {
|
|
502 char *h = str;
|
|
503 char *t = NULL;
|
|
504 if (str != NULL) {
|
|
505 char *ptr = strchr(str, delim);
|
|
506 if (ptr != NULL) {
|
|
507 *ptr = 0;
|
|
508 t = ptr + 1;
|
|
509 }
|
|
510 }
|
|
511 if (head != NULL) {
|
|
512 *head = h;
|
|
513 }
|
|
514 if (tail != NULL) {
|
|
515 *tail = t;
|
|
516 }
|
|
517 } // __kmp_str_split
|
|
518
|
|
519 /* strtok_r() is not available on Windows* OS. This function reimplements
|
|
520 strtok_r(). */
|
|
521 char *__kmp_str_token(
|
|
522 char *str, // String to split into tokens. Note: String *is* modified!
|
|
523 char const *delim, // Delimiters.
|
|
524 char **buf // Internal buffer.
|
|
525 ) {
|
|
526 char *token = NULL;
|
|
527 #if KMP_OS_WINDOWS
|
|
528 // On Windows* OS there is no strtok_r() function. Let us implement it.
|
|
529 if (str != NULL) {
|
|
530 *buf = str; // First call, initialize buf.
|
|
531 }
|
|
532 *buf += strspn(*buf, delim); // Skip leading delimiters.
|
|
533 if (**buf != 0) { // Rest of the string is not yet empty.
|
|
534 token = *buf; // Use it as result.
|
|
535 *buf += strcspn(*buf, delim); // Skip non-delimiters.
|
|
536 if (**buf != 0) { // Rest of the string is not yet empty.
|
|
537 **buf = 0; // Terminate token here.
|
|
538 *buf += 1; // Advance buf to start with the next token next time.
|
|
539 }
|
|
540 }
|
|
541 #else
|
|
542 // On Linux* OS and OS X*, strtok_r() is available. Let us use it.
|
|
543 token = strtok_r(str, delim, buf);
|
|
544 #endif
|
|
545 return token;
|
|
546 } // __kmp_str_token
|
|
547
|
|
548 int __kmp_str_to_int(char const *str, char sentinel) {
|
|
549 int result, factor;
|
|
550 char const *t;
|
|
551
|
|
552 result = 0;
|
|
553
|
|
554 for (t = str; *t != '\0'; ++t) {
|
|
555 if (*t < '0' || *t > '9')
|
|
556 break;
|
|
557 result = (result * 10) + (*t - '0');
|
|
558 }
|
|
559
|
|
560 switch (*t) {
|
|
561 case '\0': /* the current default for no suffix is bytes */
|
|
562 factor = 1;
|
|
563 break;
|
|
564 case 'b':
|
|
565 case 'B': /* bytes */
|
|
566 ++t;
|
|
567 factor = 1;
|
|
568 break;
|
|
569 case 'k':
|
|
570 case 'K': /* kilo-bytes */
|
|
571 ++t;
|
|
572 factor = 1024;
|
|
573 break;
|
|
574 case 'm':
|
|
575 case 'M': /* mega-bytes */
|
|
576 ++t;
|
|
577 factor = (1024 * 1024);
|
|
578 break;
|
|
579 default:
|
|
580 if (*t != sentinel)
|
|
581 return (-1);
|
|
582 t = "";
|
|
583 factor = 1;
|
|
584 }
|
|
585
|
|
586 if (result > (INT_MAX / factor))
|
|
587 result = INT_MAX;
|
|
588 else
|
|
589 result *= factor;
|
|
590
|
|
591 return (*t != 0 ? 0 : result);
|
|
592 } // __kmp_str_to_int
|
|
593
|
|
594 /* The routine parses input string. It is expected it is a unsigned integer with
|
|
595 optional unit. Units are: "b" for bytes, "kb" or just "k" for kilobytes, "mb"
|
|
596 or "m" for megabytes, ..., "yb" or "y" for yottabytes. :-) Unit name is
|
|
597 case-insensitive. The routine returns 0 if everything is ok, or error code:
|
|
598 -1 in case of overflow, -2 in case of unknown unit. *size is set to parsed
|
|
599 value. In case of overflow *size is set to KMP_SIZE_T_MAX, in case of unknown
|
|
600 unit *size is set to zero. */
|
|
601 void __kmp_str_to_size( // R: Error code.
|
|
602 char const *str, // I: String of characters, unsigned number and unit ("b",
|
|
603 // "kb", etc).
|
|
604 size_t *out, // O: Parsed number.
|
|
605 size_t dfactor, // I: The factor if none of the letters specified.
|
|
606 char const **error // O: Null if everything is ok, error message otherwise.
|
|
607 ) {
|
|
608
|
|
609 size_t value = 0;
|
|
610 size_t factor = 0;
|
|
611 int overflow = 0;
|
|
612 int i = 0;
|
|
613 int digit;
|
|
614
|
|
615 KMP_DEBUG_ASSERT(str != NULL);
|
|
616
|
|
617 // Skip spaces.
|
|
618 while (str[i] == ' ' || str[i] == '\t') {
|
|
619 ++i;
|
|
620 }
|
|
621
|
|
622 // Parse number.
|
|
623 if (str[i] < '0' || str[i] > '9') {
|
|
624 *error = KMP_I18N_STR(NotANumber);
|
|
625 return;
|
|
626 }
|
|
627 do {
|
|
628 digit = str[i] - '0';
|
|
629 overflow = overflow || (value > (KMP_SIZE_T_MAX - digit) / 10);
|
|
630 value = (value * 10) + digit;
|
|
631 ++i;
|
|
632 } while (str[i] >= '0' && str[i] <= '9');
|
|
633
|
|
634 // Skip spaces.
|
|
635 while (str[i] == ' ' || str[i] == '\t') {
|
|
636 ++i;
|
|
637 }
|
|
638
|
|
639 // Parse unit.
|
|
640 #define _case(ch, exp) \
|
|
641 case ch: \
|
|
642 case ch - ('a' - 'A'): { \
|
|
643 size_t shift = (exp)*10; \
|
|
644 ++i; \
|
|
645 if (shift < sizeof(size_t) * 8) { \
|
|
646 factor = (size_t)(1) << shift; \
|
|
647 } else { \
|
|
648 overflow = 1; \
|
|
649 } \
|
|
650 } break;
|
|
651 switch (str[i]) {
|
|
652 _case('k', 1); // Kilo
|
|
653 _case('m', 2); // Mega
|
|
654 _case('g', 3); // Giga
|
|
655 _case('t', 4); // Tera
|
|
656 _case('p', 5); // Peta
|
|
657 _case('e', 6); // Exa
|
|
658 _case('z', 7); // Zetta
|
|
659 _case('y', 8); // Yotta
|
|
660 // Oops. No more units...
|
|
661 }
|
|
662 #undef _case
|
|
663 if (str[i] == 'b' || str[i] == 'B') { // Skip optional "b".
|
|
664 if (factor == 0) {
|
|
665 factor = 1;
|
|
666 }
|
|
667 ++i;
|
|
668 }
|
|
669 if (!(str[i] == ' ' || str[i] == '\t' || str[i] == 0)) { // Bad unit
|
|
670 *error = KMP_I18N_STR(BadUnit);
|
|
671 return;
|
|
672 }
|
|
673
|
|
674 if (factor == 0) {
|
|
675 factor = dfactor;
|
|
676 }
|
|
677
|
|
678 // Apply factor.
|
|
679 overflow = overflow || (value > (KMP_SIZE_T_MAX / factor));
|
|
680 value *= factor;
|
|
681
|
|
682 // Skip spaces.
|
|
683 while (str[i] == ' ' || str[i] == '\t') {
|
|
684 ++i;
|
|
685 }
|
|
686
|
|
687 if (str[i] != 0) {
|
|
688 *error = KMP_I18N_STR(IllegalCharacters);
|
|
689 return;
|
|
690 }
|
|
691
|
|
692 if (overflow) {
|
|
693 *error = KMP_I18N_STR(ValueTooLarge);
|
|
694 *out = KMP_SIZE_T_MAX;
|
|
695 return;
|
|
696 }
|
|
697
|
|
698 *error = NULL;
|
|
699 *out = value;
|
|
700 } // __kmp_str_to_size
|
|
701
|
|
702 void __kmp_str_to_uint( // R: Error code.
|
|
703 char const *str, // I: String of characters, unsigned number.
|
|
704 kmp_uint64 *out, // O: Parsed number.
|
|
705 char const **error // O: Null if everything is ok, error message otherwise.
|
|
706 ) {
|
|
707 size_t value = 0;
|
|
708 int overflow = 0;
|
|
709 int i = 0;
|
|
710 int digit;
|
|
711
|
|
712 KMP_DEBUG_ASSERT(str != NULL);
|
|
713
|
|
714 // Skip spaces.
|
|
715 while (str[i] == ' ' || str[i] == '\t') {
|
|
716 ++i;
|
|
717 }
|
|
718
|
|
719 // Parse number.
|
|
720 if (str[i] < '0' || str[i] > '9') {
|
|
721 *error = KMP_I18N_STR(NotANumber);
|
|
722 return;
|
|
723 }
|
|
724 do {
|
|
725 digit = str[i] - '0';
|
|
726 overflow = overflow || (value > (KMP_SIZE_T_MAX - digit) / 10);
|
|
727 value = (value * 10) + digit;
|
|
728 ++i;
|
|
729 } while (str[i] >= '0' && str[i] <= '9');
|
|
730
|
|
731 // Skip spaces.
|
|
732 while (str[i] == ' ' || str[i] == '\t') {
|
|
733 ++i;
|
|
734 }
|
|
735
|
|
736 if (str[i] != 0) {
|
|
737 *error = KMP_I18N_STR(IllegalCharacters);
|
|
738 return;
|
|
739 }
|
|
740
|
|
741 if (overflow) {
|
|
742 *error = KMP_I18N_STR(ValueTooLarge);
|
|
743 *out = (kmp_uint64)-1;
|
|
744 return;
|
|
745 }
|
|
746
|
|
747 *error = NULL;
|
|
748 *out = value;
|
|
749 } // __kmp_str_to_unit
|
|
750
|
|
751 // end of file //
|