121
|
1 //==- SystemZInstrDFP.td - Floating-point SystemZ instructions -*- tblgen-*-==//
|
|
2 //
|
|
3 // The LLVM Compiler Infrastructure
|
|
4 //
|
|
5 // This file is distributed under the University of Illinois Open Source
|
|
6 // License. See LICENSE.TXT for details.
|
|
7 //
|
|
8 //===----------------------------------------------------------------------===//
|
|
9 //
|
|
10 // The instructions in this file implement SystemZ decimal floating-point
|
|
11 // arithmetic. These instructions are inot currently used for code generation,
|
|
12 // are provided for use with the assembler and disassembler only. If LLVM
|
|
13 // ever supports decimal floating-point types (_Decimal64 etc.), they can
|
|
14 // also be used for code generation for those types.
|
|
15 //
|
|
16 //===----------------------------------------------------------------------===//
|
|
17
|
|
18 //===----------------------------------------------------------------------===//
|
|
19 // Move instructions
|
|
20 //===----------------------------------------------------------------------===//
|
|
21
|
|
22 // Load and test.
|
|
23 let Defs = [CC] in {
|
|
24 def LTDTR : UnaryRRE<"ltdtr", 0xB3D6, null_frag, FP64, FP64>;
|
|
25 def LTXTR : UnaryRRE<"ltxtr", 0xB3DE, null_frag, FP128, FP128>;
|
|
26 }
|
|
27
|
|
28
|
|
29 //===----------------------------------------------------------------------===//
|
|
30 // Conversion instructions
|
|
31 //===----------------------------------------------------------------------===//
|
|
32
|
|
33 // Convert floating-point values to narrower representations. The destination
|
|
34 // of LDXTR is a 128-bit value, but only the first register of the pair is used.
|
|
35 def LEDTR : TernaryRRFe<"ledtr", 0xB3D5, FP32, FP64>;
|
|
36 def LDXTR : TernaryRRFe<"ldxtr", 0xB3DD, FP128, FP128>;
|
|
37
|
|
38 // Extend floating-point values to wider representations.
|
|
39 def LDETR : BinaryRRFd<"ldetr", 0xB3D4, FP64, FP32>;
|
|
40 def LXDTR : BinaryRRFd<"lxdtr", 0xB3DC, FP128, FP64>;
|
|
41
|
|
42 // Convert a signed integer value to a floating-point one.
|
|
43 def CDGTR : UnaryRRE<"cdgtr", 0xB3F1, null_frag, FP64, GR64>;
|
|
44 def CXGTR : UnaryRRE<"cxgtr", 0xB3F9, null_frag, FP128, GR64>;
|
|
45 let Predicates = [FeatureFPExtension] in {
|
|
46 def CDGTRA : TernaryRRFe<"cdgtra", 0xB3F1, FP64, GR64>;
|
|
47 def CXGTRA : TernaryRRFe<"cxgtra", 0xB3F9, FP128, GR64>;
|
|
48 def CDFTR : TernaryRRFe<"cdftr", 0xB951, FP64, GR32>;
|
|
49 def CXFTR : TernaryRRFe<"cxftr", 0xB959, FP128, GR32>;
|
|
50 }
|
|
51
|
|
52 // Convert an unsigned integer value to a floating-point one.
|
|
53 let Predicates = [FeatureFPExtension] in {
|
|
54 def CDLGTR : TernaryRRFe<"cdlgtr", 0xB952, FP64, GR64>;
|
|
55 def CXLGTR : TernaryRRFe<"cxlgtr", 0xB95A, FP128, GR64>;
|
|
56 def CDLFTR : TernaryRRFe<"cdlftr", 0xB953, FP64, GR32>;
|
|
57 def CXLFTR : TernaryRRFe<"cxlftr", 0xB95B, FP128, GR32>;
|
|
58 }
|
|
59
|
|
60 // Convert a floating-point value to a signed integer value.
|
|
61 let Defs = [CC] in {
|
|
62 def CGDTR : BinaryRRFe<"cgdtr", 0xB3E1, GR64, FP64>;
|
|
63 def CGXTR : BinaryRRFe<"cgxtr", 0xB3E9, GR64, FP128>;
|
|
64 let Predicates = [FeatureFPExtension] in {
|
|
65 def CGDTRA : TernaryRRFe<"cgdtra", 0xB3E1, GR64, FP64>;
|
|
66 def CGXTRA : TernaryRRFe<"cgxtra", 0xB3E9, GR64, FP128>;
|
|
67 def CFDTR : TernaryRRFe<"cfdtr", 0xB941, GR32, FP64>;
|
|
68 def CFXTR : TernaryRRFe<"cfxtr", 0xB949, GR32, FP128>;
|
|
69 }
|
|
70 }
|
|
71
|
|
72 // Convert a floating-point value to an unsigned integer value.
|
|
73 let Defs = [CC] in {
|
|
74 let Predicates = [FeatureFPExtension] in {
|
|
75 def CLGDTR : TernaryRRFe<"clgdtr", 0xB942, GR64, FP64>;
|
|
76 def CLGXTR : TernaryRRFe<"clgxtr", 0xB94A, GR64, FP128>;
|
|
77 def CLFDTR : TernaryRRFe<"clfdtr", 0xB943, GR32, FP64>;
|
|
78 def CLFXTR : TernaryRRFe<"clfxtr", 0xB94B, GR32, FP128>;
|
|
79 }
|
|
80 }
|
|
81
|
|
82 // Convert a packed value to a floating-point one.
|
|
83 def CDSTR : UnaryRRE<"cdstr", 0xB3F3, null_frag, FP64, GR64>;
|
|
84 def CXSTR : UnaryRRE<"cxstr", 0xB3FB, null_frag, FP128, GR128>;
|
|
85 def CDUTR : UnaryRRE<"cdutr", 0xB3F2, null_frag, FP64, GR64>;
|
|
86 def CXUTR : UnaryRRE<"cxutr", 0xB3FA, null_frag, FP128, GR128>;
|
|
87
|
|
88 // Convert a floating-point value to a packed value.
|
|
89 def CSDTR : BinaryRRFd<"csdtr", 0xB3E3, GR64, FP64>;
|
|
90 def CSXTR : BinaryRRFd<"csxtr", 0xB3EB, GR128, FP128>;
|
|
91 def CUDTR : UnaryRRE<"cudtr", 0xB3E2, null_frag, GR64, FP64>;
|
|
92 def CUXTR : UnaryRRE<"cuxtr", 0xB3EA, null_frag, GR128, FP128>;
|
|
93
|
|
94 // Convert from/to memory values in the zoned format.
|
|
95 let Predicates = [FeatureDFPZonedConversion] in {
|
|
96 def CDZT : BinaryRSL<"cdzt", 0xEDAA, FP64>;
|
|
97 def CXZT : BinaryRSL<"cxzt", 0xEDAB, FP128>;
|
|
98 def CZDT : StoreBinaryRSL<"czdt", 0xEDA8, FP64>;
|
|
99 def CZXT : StoreBinaryRSL<"czxt", 0xEDA9, FP128>;
|
|
100 }
|
|
101
|
|
102 // Convert from/to memory values in the packed format.
|
|
103 let Predicates = [FeatureDFPPackedConversion] in {
|
|
104 def CDPT : BinaryRSL<"cdpt", 0xEDAE, FP64>;
|
|
105 def CXPT : BinaryRSL<"cxpt", 0xEDAF, FP128>;
|
|
106 def CPDT : StoreBinaryRSL<"cpdt", 0xEDAC, FP64>;
|
|
107 def CPXT : StoreBinaryRSL<"cpxt", 0xEDAD, FP128>;
|
|
108 }
|
|
109
|
|
110 // Perform floating-point operation.
|
|
111 let Defs = [CC, R1L, F0Q], Uses = [R0L, F4Q] in
|
|
112 def PFPO : SideEffectInherentE<"pfpo", 0x010A>;
|
|
113
|
|
114
|
|
115 //===----------------------------------------------------------------------===//
|
|
116 // Unary arithmetic
|
|
117 //===----------------------------------------------------------------------===//
|
|
118
|
|
119 // Round to an integer, with the second operand (M3) specifying the rounding
|
|
120 // mode. M4 can be set to 4 to suppress detection of inexact conditions.
|
|
121 def FIDTR : TernaryRRFe<"fidtr", 0xB3D7, FP64, FP64>;
|
|
122 def FIXTR : TernaryRRFe<"fixtr", 0xB3DF, FP128, FP128>;
|
|
123
|
|
124 // Extract biased exponent.
|
|
125 def EEDTR : UnaryRRE<"eedtr", 0xB3E5, null_frag, FP64, FP64>;
|
|
126 def EEXTR : UnaryRRE<"eextr", 0xB3ED, null_frag, FP128, FP128>;
|
|
127
|
|
128 // Extract significance.
|
|
129 def ESDTR : UnaryRRE<"esdtr", 0xB3E7, null_frag, FP64, FP64>;
|
|
130 def ESXTR : UnaryRRE<"esxtr", 0xB3EF, null_frag, FP128, FP128>;
|
|
131
|
|
132
|
|
133 //===----------------------------------------------------------------------===//
|
|
134 // Binary arithmetic
|
|
135 //===----------------------------------------------------------------------===//
|
|
136
|
|
137 // Addition.
|
|
138 let Defs = [CC] in {
|
|
139 let isCommutable = 1 in {
|
|
140 def ADTR : BinaryRRFa<"adtr", 0xB3D2, null_frag, FP64, FP64, FP64>;
|
|
141 def AXTR : BinaryRRFa<"axtr", 0xB3DA, null_frag, FP128, FP128, FP128>;
|
|
142 }
|
|
143 let Predicates = [FeatureFPExtension] in {
|
|
144 def ADTRA : TernaryRRFa<"adtra", 0xB3D2, FP64, FP64, FP64>;
|
|
145 def AXTRA : TernaryRRFa<"axtra", 0xB3DA, FP128, FP128, FP128>;
|
|
146 }
|
|
147 }
|
|
148
|
|
149 // Subtraction.
|
|
150 let Defs = [CC] in {
|
|
151 def SDTR : BinaryRRFa<"sdtr", 0xB3D3, null_frag, FP64, FP64, FP64>;
|
|
152 def SXTR : BinaryRRFa<"sxtr", 0xB3DB, null_frag, FP128, FP128, FP128>;
|
|
153 let Predicates = [FeatureFPExtension] in {
|
|
154 def SDTRA : TernaryRRFa<"sdtra", 0xB3D3, FP64, FP64, FP64>;
|
|
155 def SXTRA : TernaryRRFa<"sxtra", 0xB3DB, FP128, FP128, FP128>;
|
|
156 }
|
|
157 }
|
|
158
|
|
159 // Multiplication.
|
|
160 let isCommutable = 1 in {
|
|
161 def MDTR : BinaryRRFa<"mdtr", 0xB3D0, null_frag, FP64, FP64, FP64>;
|
|
162 def MXTR : BinaryRRFa<"mxtr", 0xB3D8, null_frag, FP128, FP128, FP128>;
|
|
163 }
|
|
164 let Predicates = [FeatureFPExtension] in {
|
|
165 def MDTRA : TernaryRRFa<"mdtra", 0xB3D0, FP64, FP64, FP64>;
|
|
166 def MXTRA : TernaryRRFa<"mxtra", 0xB3D8, FP128, FP128, FP128>;
|
|
167 }
|
|
168
|
|
169 // Division.
|
|
170 def DDTR : BinaryRRFa<"ddtr", 0xB3D1, null_frag, FP64, FP64, FP64>;
|
|
171 def DXTR : BinaryRRFa<"dxtr", 0xB3D9, null_frag, FP128, FP128, FP128>;
|
|
172 let Predicates = [FeatureFPExtension] in {
|
|
173 def DDTRA : TernaryRRFa<"ddtra", 0xB3D1, FP64, FP64, FP64>;
|
|
174 def DXTRA : TernaryRRFa<"dxtra", 0xB3D9, FP128, FP128, FP128>;
|
|
175 }
|
|
176
|
|
177 // Quantize.
|
|
178 def QADTR : TernaryRRFb<"qadtr", 0xB3F5, FP64, FP64, FP64>;
|
|
179 def QAXTR : TernaryRRFb<"qaxtr", 0xB3FD, FP128, FP128, FP128>;
|
|
180
|
|
181 // Reround.
|
|
182 def RRDTR : TernaryRRFb<"rrdtr", 0xB3F7, FP64, FP64, FP64>;
|
|
183 def RRXTR : TernaryRRFb<"rrxtr", 0xB3FF, FP128, FP128, FP128>;
|
|
184
|
|
185 // Shift significand left/right.
|
|
186 def SLDT : BinaryRXF<"sldt", 0xED40, null_frag, FP64, FP64, null_frag, 0>;
|
|
187 def SLXT : BinaryRXF<"slxt", 0xED48, null_frag, FP128, FP128, null_frag, 0>;
|
|
188 def SRDT : BinaryRXF<"srdt", 0xED41, null_frag, FP64, FP64, null_frag, 0>;
|
|
189 def SRXT : BinaryRXF<"srxt", 0xED49, null_frag, FP128, FP128, null_frag, 0>;
|
|
190
|
|
191 // Insert biased exponent.
|
|
192 def IEDTR : BinaryRRFb<"iedtr", 0xB3F6, null_frag, FP64, FP64, FP64>;
|
|
193 def IEXTR : BinaryRRFb<"iextr", 0xB3FE, null_frag, FP128, FP128, FP128>;
|
|
194
|
|
195
|
|
196 //===----------------------------------------------------------------------===//
|
|
197 // Comparisons
|
|
198 //===----------------------------------------------------------------------===//
|
|
199
|
|
200 // Compare.
|
|
201 let Defs = [CC] in {
|
|
202 def CDTR : CompareRRE<"cdtr", 0xB3E4, null_frag, FP64, FP64>;
|
|
203 def CXTR : CompareRRE<"cxtr", 0xB3EC, null_frag, FP128, FP128>;
|
|
204 }
|
|
205
|
|
206 // Compare and signal.
|
|
207 let Defs = [CC] in {
|
|
208 def KDTR : CompareRRE<"kdtr", 0xB3E0, null_frag, FP64, FP64>;
|
|
209 def KXTR : CompareRRE<"kxtr", 0xB3E8, null_frag, FP128, FP128>;
|
|
210 }
|
|
211
|
|
212 // Compare biased exponent.
|
|
213 let Defs = [CC] in {
|
|
214 def CEDTR : CompareRRE<"cedtr", 0xB3F4, null_frag, FP64, FP64>;
|
|
215 def CEXTR : CompareRRE<"cextr", 0xB3FC, null_frag, FP128, FP128>;
|
|
216 }
|
|
217
|
|
218 // Test Data Class.
|
|
219 let Defs = [CC] in {
|
|
220 def TDCET : TestRXE<"tdcet", 0xED50, null_frag, FP32>;
|
|
221 def TDCDT : TestRXE<"tdcdt", 0xED54, null_frag, FP64>;
|
|
222 def TDCXT : TestRXE<"tdcxt", 0xED58, null_frag, FP128>;
|
|
223 }
|
|
224
|
|
225 // Test Data Group.
|
|
226 let Defs = [CC] in {
|
|
227 def TDGET : TestRXE<"tdget", 0xED51, null_frag, FP32>;
|
|
228 def TDGDT : TestRXE<"tdgdt", 0xED55, null_frag, FP64>;
|
|
229 def TDGXT : TestRXE<"tdgxt", 0xED59, null_frag, FP128>;
|
|
230 }
|
|
231
|