150
|
1 ============================================================
|
|
2 Kaleidoscope: Extending the Language: User-defined Operators
|
|
3 ============================================================
|
|
4
|
|
5 .. contents::
|
|
6 :local:
|
|
7
|
|
8 Chapter 6 Introduction
|
|
9 ======================
|
|
10
|
|
11 Welcome to Chapter 6 of the "`Implementing a language with
|
|
12 LLVM <index.html>`_" tutorial. At this point in our tutorial, we now
|
|
13 have a fully functional language that is fairly minimal, but also
|
|
14 useful. There is still one big problem with it, however. Our language
|
|
15 doesn't have many useful operators (like division, logical negation, or
|
|
16 even any comparisons besides less-than).
|
|
17
|
|
18 This chapter of the tutorial takes a wild digression into adding
|
|
19 user-defined operators to the simple and beautiful Kaleidoscope
|
|
20 language. This digression now gives us a simple and ugly language in
|
|
21 some ways, but also a powerful one at the same time. One of the great
|
|
22 things about creating your own language is that you get to decide what
|
|
23 is good or bad. In this tutorial we'll assume that it is okay to use
|
|
24 this as a way to show some interesting parsing techniques.
|
|
25
|
|
26 At the end of this tutorial, we'll run through an example Kaleidoscope
|
|
27 application that `renders the Mandelbrot set <#kicking-the-tires>`_. This gives an
|
|
28 example of what you can build with Kaleidoscope and its feature set.
|
|
29
|
|
30 User-defined Operators: the Idea
|
|
31 ================================
|
|
32
|
|
33 The "operator overloading" that we will add to Kaleidoscope is more
|
|
34 general than in languages like C++. In C++, you are only allowed to
|
|
35 redefine existing operators: you can't programmatically change the
|
|
36 grammar, introduce new operators, change precedence levels, etc. In this
|
|
37 chapter, we will add this capability to Kaleidoscope, which will let the
|
|
38 user round out the set of operators that are supported.
|
|
39
|
|
40 The point of going into user-defined operators in a tutorial like this
|
|
41 is to show the power and flexibility of using a hand-written parser.
|
|
42 Thus far, the parser we have been implementing uses recursive descent
|
|
43 for most parts of the grammar and operator precedence parsing for the
|
|
44 expressions. See `Chapter 2 <LangImpl02.html>`_ for details. By
|
|
45 using operator precedence parsing, it is very easy to allow
|
|
46 the programmer to introduce new operators into the grammar: the grammar
|
|
47 is dynamically extensible as the JIT runs.
|
|
48
|
|
49 The two specific features we'll add are programmable unary operators
|
|
50 (right now, Kaleidoscope has no unary operators at all) as well as
|
|
51 binary operators. An example of this is:
|
|
52
|
|
53 ::
|
|
54
|
|
55 # Logical unary not.
|
|
56 def unary!(v)
|
|
57 if v then
|
|
58 0
|
|
59 else
|
|
60 1;
|
|
61
|
|
62 # Define > with the same precedence as <.
|
|
63 def binary> 10 (LHS RHS)
|
|
64 RHS < LHS;
|
|
65
|
|
66 # Binary "logical or", (note that it does not "short circuit")
|
|
67 def binary| 5 (LHS RHS)
|
|
68 if LHS then
|
|
69 1
|
|
70 else if RHS then
|
|
71 1
|
|
72 else
|
|
73 0;
|
|
74
|
|
75 # Define = with slightly lower precedence than relationals.
|
|
76 def binary= 9 (LHS RHS)
|
|
77 !(LHS < RHS | LHS > RHS);
|
|
78
|
|
79 Many languages aspire to being able to implement their standard runtime
|
|
80 library in the language itself. In Kaleidoscope, we can implement
|
|
81 significant parts of the language in the library!
|
|
82
|
|
83 We will break down implementation of these features into two parts:
|
|
84 implementing support for user-defined binary operators and adding unary
|
|
85 operators.
|
|
86
|
|
87 User-defined Binary Operators
|
|
88 =============================
|
|
89
|
|
90 Adding support for user-defined binary operators is pretty simple with
|
|
91 our current framework. We'll first add support for the unary/binary
|
|
92 keywords:
|
|
93
|
|
94 .. code-block:: c++
|
|
95
|
|
96 enum Token {
|
|
97 ...
|
|
98 // operators
|
|
99 tok_binary = -11,
|
|
100 tok_unary = -12
|
|
101 };
|
|
102 ...
|
|
103 static int gettok() {
|
|
104 ...
|
|
105 if (IdentifierStr == "for")
|
|
106 return tok_for;
|
|
107 if (IdentifierStr == "in")
|
|
108 return tok_in;
|
|
109 if (IdentifierStr == "binary")
|
|
110 return tok_binary;
|
|
111 if (IdentifierStr == "unary")
|
|
112 return tok_unary;
|
|
113 return tok_identifier;
|
|
114
|
|
115 This just adds lexer support for the unary and binary keywords, like we
|
173
|
116 did in `previous chapters <LangImpl05.html#lexer-extensions-for-if-then-else>`_. One nice thing
|
150
|
117 about our current AST, is that we represent binary operators with full
|
|
118 generalisation by using their ASCII code as the opcode. For our extended
|
|
119 operators, we'll use this same representation, so we don't need any new
|
|
120 AST or parser support.
|
|
121
|
|
122 On the other hand, we have to be able to represent the definitions of
|
|
123 these new operators, in the "def binary\| 5" part of the function
|
|
124 definition. In our grammar so far, the "name" for the function
|
|
125 definition is parsed as the "prototype" production and into the
|
|
126 ``PrototypeAST`` AST node. To represent our new user-defined operators
|
|
127 as prototypes, we have to extend the ``PrototypeAST`` AST node like
|
|
128 this:
|
|
129
|
|
130 .. code-block:: c++
|
|
131
|
|
132 /// PrototypeAST - This class represents the "prototype" for a function,
|
|
133 /// which captures its argument names as well as if it is an operator.
|
|
134 class PrototypeAST {
|
|
135 std::string Name;
|
|
136 std::vector<std::string> Args;
|
|
137 bool IsOperator;
|
|
138 unsigned Precedence; // Precedence if a binary op.
|
|
139
|
|
140 public:
|
252
|
141 PrototypeAST(const std::string &Name, std::vector<std::string> Args,
|
150
|
142 bool IsOperator = false, unsigned Prec = 0)
|
252
|
143 : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
|
150
|
144 Precedence(Prec) {}
|
|
145
|
|
146 Function *codegen();
|
|
147 const std::string &getName() const { return Name; }
|
|
148
|
|
149 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
|
|
150 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
|
|
151
|
|
152 char getOperatorName() const {
|
|
153 assert(isUnaryOp() || isBinaryOp());
|
|
154 return Name[Name.size() - 1];
|
|
155 }
|
|
156
|
|
157 unsigned getBinaryPrecedence() const { return Precedence; }
|
|
158 };
|
|
159
|
|
160 Basically, in addition to knowing a name for the prototype, we now keep
|
|
161 track of whether it was an operator, and if it was, what precedence
|
|
162 level the operator is at. The precedence is only used for binary
|
|
163 operators (as you'll see below, it just doesn't apply for unary
|
|
164 operators). Now that we have a way to represent the prototype for a
|
|
165 user-defined operator, we need to parse it:
|
|
166
|
|
167 .. code-block:: c++
|
|
168
|
|
169 /// prototype
|
|
170 /// ::= id '(' id* ')'
|
|
171 /// ::= binary LETTER number? (id, id)
|
|
172 static std::unique_ptr<PrototypeAST> ParsePrototype() {
|
|
173 std::string FnName;
|
|
174
|
|
175 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
|
|
176 unsigned BinaryPrecedence = 30;
|
|
177
|
|
178 switch (CurTok) {
|
|
179 default:
|
|
180 return LogErrorP("Expected function name in prototype");
|
|
181 case tok_identifier:
|
|
182 FnName = IdentifierStr;
|
|
183 Kind = 0;
|
|
184 getNextToken();
|
|
185 break;
|
|
186 case tok_binary:
|
|
187 getNextToken();
|
|
188 if (!isascii(CurTok))
|
|
189 return LogErrorP("Expected binary operator");
|
|
190 FnName = "binary";
|
|
191 FnName += (char)CurTok;
|
|
192 Kind = 2;
|
|
193 getNextToken();
|
|
194
|
|
195 // Read the precedence if present.
|
|
196 if (CurTok == tok_number) {
|
|
197 if (NumVal < 1 || NumVal > 100)
|
|
198 return LogErrorP("Invalid precedence: must be 1..100");
|
|
199 BinaryPrecedence = (unsigned)NumVal;
|
|
200 getNextToken();
|
|
201 }
|
|
202 break;
|
|
203 }
|
|
204
|
|
205 if (CurTok != '(')
|
|
206 return LogErrorP("Expected '(' in prototype");
|
|
207
|
|
208 std::vector<std::string> ArgNames;
|
|
209 while (getNextToken() == tok_identifier)
|
|
210 ArgNames.push_back(IdentifierStr);
|
|
211 if (CurTok != ')')
|
|
212 return LogErrorP("Expected ')' in prototype");
|
|
213
|
|
214 // success.
|
|
215 getNextToken(); // eat ')'.
|
|
216
|
|
217 // Verify right number of names for operator.
|
|
218 if (Kind && ArgNames.size() != Kind)
|
|
219 return LogErrorP("Invalid number of operands for operator");
|
|
220
|
|
221 return std::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
|
|
222 BinaryPrecedence);
|
|
223 }
|
|
224
|
|
225 This is all fairly straightforward parsing code, and we have already
|
|
226 seen a lot of similar code in the past. One interesting part about the
|
|
227 code above is the couple lines that set up ``FnName`` for binary
|
|
228 operators. This builds names like "binary@" for a newly defined "@"
|
|
229 operator. It then takes advantage of the fact that symbol names in the
|
|
230 LLVM symbol table are allowed to have any character in them, including
|
|
231 embedded nul characters.
|
|
232
|
|
233 The next interesting thing to add, is codegen support for these binary
|
|
234 operators. Given our current structure, this is a simple addition of a
|
|
235 default case for our existing binary operator node:
|
|
236
|
|
237 .. code-block:: c++
|
|
238
|
|
239 Value *BinaryExprAST::codegen() {
|
|
240 Value *L = LHS->codegen();
|
|
241 Value *R = RHS->codegen();
|
|
242 if (!L || !R)
|
|
243 return nullptr;
|
|
244
|
|
245 switch (Op) {
|
|
246 case '+':
|
252
|
247 return Builder->CreateFAdd(L, R, "addtmp");
|
150
|
248 case '-':
|
252
|
249 return Builder->CreateFSub(L, R, "subtmp");
|
150
|
250 case '*':
|
252
|
251 return Builder->CreateFMul(L, R, "multmp");
|
150
|
252 case '<':
|
252
|
253 L = Builder->CreateFCmpULT(L, R, "cmptmp");
|
150
|
254 // Convert bool 0/1 to double 0.0 or 1.0
|
252
|
255 return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext),
|
150
|
256 "booltmp");
|
|
257 default:
|
|
258 break;
|
|
259 }
|
|
260
|
|
261 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
|
|
262 // a call to it.
|
|
263 Function *F = getFunction(std::string("binary") + Op);
|
|
264 assert(F && "binary operator not found!");
|
|
265
|
|
266 Value *Ops[2] = { L, R };
|
252
|
267 return Builder->CreateCall(F, Ops, "binop");
|
150
|
268 }
|
|
269
|
|
270 As you can see above, the new code is actually really simple. It just
|
|
271 does a lookup for the appropriate operator in the symbol table and
|
|
272 generates a function call to it. Since user-defined operators are just
|
|
273 built as normal functions (because the "prototype" boils down to a
|
|
274 function with the right name) everything falls into place.
|
|
275
|
|
276 The final piece of code we are missing, is a bit of top-level magic:
|
|
277
|
|
278 .. code-block:: c++
|
|
279
|
|
280 Function *FunctionAST::codegen() {
|
|
281 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
|
|
282 // reference to it for use below.
|
|
283 auto &P = *Proto;
|
|
284 FunctionProtos[Proto->getName()] = std::move(Proto);
|
|
285 Function *TheFunction = getFunction(P.getName());
|
|
286 if (!TheFunction)
|
|
287 return nullptr;
|
|
288
|
|
289 // If this is an operator, install it.
|
|
290 if (P.isBinaryOp())
|
|
291 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
|
|
292
|
|
293 // Create a new basic block to start insertion into.
|
252
|
294 BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
|
150
|
295 ...
|
|
296
|
|
297 Basically, before codegening a function, if it is a user-defined
|
|
298 operator, we register it in the precedence table. This allows the binary
|
|
299 operator parsing logic we already have in place to handle it. Since we
|
|
300 are working on a fully-general operator precedence parser, this is all
|
|
301 we need to do to "extend the grammar".
|
|
302
|
|
303 Now we have useful user-defined binary operators. This builds a lot on
|
|
304 the previous framework we built for other operators. Adding unary
|
|
305 operators is a bit more challenging, because we don't have any framework
|
|
306 for it yet - let's see what it takes.
|
|
307
|
|
308 User-defined Unary Operators
|
|
309 ============================
|
|
310
|
|
311 Since we don't currently support unary operators in the Kaleidoscope
|
|
312 language, we'll need to add everything to support them. Above, we added
|
|
313 simple support for the 'unary' keyword to the lexer. In addition to
|
|
314 that, we need an AST node:
|
|
315
|
|
316 .. code-block:: c++
|
|
317
|
|
318 /// UnaryExprAST - Expression class for a unary operator.
|
|
319 class UnaryExprAST : public ExprAST {
|
|
320 char Opcode;
|
|
321 std::unique_ptr<ExprAST> Operand;
|
|
322
|
|
323 public:
|
|
324 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
|
|
325 : Opcode(Opcode), Operand(std::move(Operand)) {}
|
|
326
|
|
327 Value *codegen() override;
|
|
328 };
|
|
329
|
|
330 This AST node is very simple and obvious by now. It directly mirrors the
|
|
331 binary operator AST node, except that it only has one child. With this,
|
|
332 we need to add the parsing logic. Parsing a unary operator is pretty
|
|
333 simple: we'll add a new function to do it:
|
|
334
|
|
335 .. code-block:: c++
|
|
336
|
|
337 /// unary
|
|
338 /// ::= primary
|
|
339 /// ::= '!' unary
|
|
340 static std::unique_ptr<ExprAST> ParseUnary() {
|
|
341 // If the current token is not an operator, it must be a primary expr.
|
|
342 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
|
|
343 return ParsePrimary();
|
|
344
|
|
345 // If this is a unary operator, read it.
|
|
346 int Opc = CurTok;
|
|
347 getNextToken();
|
|
348 if (auto Operand = ParseUnary())
|
|
349 return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
|
|
350 return nullptr;
|
|
351 }
|
|
352
|
|
353 The grammar we add is pretty straightforward here. If we see a unary
|
|
354 operator when parsing a primary operator, we eat the operator as a
|
|
355 prefix and parse the remaining piece as another unary operator. This
|
|
356 allows us to handle multiple unary operators (e.g. "!!x"). Note that
|
|
357 unary operators can't have ambiguous parses like binary operators can,
|
|
358 so there is no need for precedence information.
|
|
359
|
|
360 The problem with this function, is that we need to call ParseUnary from
|
|
361 somewhere. To do this, we change previous callers of ParsePrimary to
|
|
362 call ParseUnary instead:
|
|
363
|
|
364 .. code-block:: c++
|
|
365
|
|
366 /// binoprhs
|
|
367 /// ::= ('+' unary)*
|
|
368 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
|
|
369 std::unique_ptr<ExprAST> LHS) {
|
|
370 ...
|
|
371 // Parse the unary expression after the binary operator.
|
|
372 auto RHS = ParseUnary();
|
|
373 if (!RHS)
|
|
374 return nullptr;
|
|
375 ...
|
|
376 }
|
|
377 /// expression
|
|
378 /// ::= unary binoprhs
|
|
379 ///
|
|
380 static std::unique_ptr<ExprAST> ParseExpression() {
|
|
381 auto LHS = ParseUnary();
|
|
382 if (!LHS)
|
|
383 return nullptr;
|
|
384
|
|
385 return ParseBinOpRHS(0, std::move(LHS));
|
|
386 }
|
|
387
|
|
388 With these two simple changes, we are now able to parse unary operators
|
|
389 and build the AST for them. Next up, we need to add parser support for
|
|
390 prototypes, to parse the unary operator prototype. We extend the binary
|
|
391 operator code above with:
|
|
392
|
|
393 .. code-block:: c++
|
|
394
|
|
395 /// prototype
|
|
396 /// ::= id '(' id* ')'
|
|
397 /// ::= binary LETTER number? (id, id)
|
|
398 /// ::= unary LETTER (id)
|
|
399 static std::unique_ptr<PrototypeAST> ParsePrototype() {
|
|
400 std::string FnName;
|
|
401
|
|
402 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
|
|
403 unsigned BinaryPrecedence = 30;
|
|
404
|
|
405 switch (CurTok) {
|
|
406 default:
|
|
407 return LogErrorP("Expected function name in prototype");
|
|
408 case tok_identifier:
|
|
409 FnName = IdentifierStr;
|
|
410 Kind = 0;
|
|
411 getNextToken();
|
|
412 break;
|
|
413 case tok_unary:
|
|
414 getNextToken();
|
|
415 if (!isascii(CurTok))
|
|
416 return LogErrorP("Expected unary operator");
|
|
417 FnName = "unary";
|
|
418 FnName += (char)CurTok;
|
|
419 Kind = 1;
|
|
420 getNextToken();
|
|
421 break;
|
|
422 case tok_binary:
|
|
423 ...
|
|
424
|
|
425 As with binary operators, we name unary operators with a name that
|
|
426 includes the operator character. This assists us at code generation
|
|
427 time. Speaking of, the final piece we need to add is codegen support for
|
|
428 unary operators. It looks like this:
|
|
429
|
|
430 .. code-block:: c++
|
|
431
|
|
432 Value *UnaryExprAST::codegen() {
|
|
433 Value *OperandV = Operand->codegen();
|
|
434 if (!OperandV)
|
|
435 return nullptr;
|
|
436
|
|
437 Function *F = getFunction(std::string("unary") + Opcode);
|
|
438 if (!F)
|
|
439 return LogErrorV("Unknown unary operator");
|
|
440
|
252
|
441 return Builder->CreateCall(F, OperandV, "unop");
|
150
|
442 }
|
|
443
|
|
444 This code is similar to, but simpler than, the code for binary
|
|
445 operators. It is simpler primarily because it doesn't need to handle any
|
|
446 predefined operators.
|
|
447
|
|
448 Kicking the Tires
|
|
449 =================
|
|
450
|
|
451 It is somewhat hard to believe, but with a few simple extensions we've
|
|
452 covered in the last chapters, we have grown a real-ish language. With
|
|
453 this, we can do a lot of interesting things, including I/O, math, and a
|
|
454 bunch of other things. For example, we can now add a nice sequencing
|
|
455 operator (printd is defined to print out the specified value and a
|
|
456 newline):
|
|
457
|
|
458 ::
|
|
459
|
|
460 ready> extern printd(x);
|
|
461 Read extern:
|
|
462 declare double @printd(double)
|
|
463
|
|
464 ready> def binary : 1 (x y) 0; # Low-precedence operator that ignores operands.
|
|
465 ...
|
|
466 ready> printd(123) : printd(456) : printd(789);
|
|
467 123.000000
|
|
468 456.000000
|
|
469 789.000000
|
|
470 Evaluated to 0.000000
|
|
471
|
|
472 We can also define a bunch of other "primitive" operations, such as:
|
|
473
|
|
474 ::
|
|
475
|
|
476 # Logical unary not.
|
|
477 def unary!(v)
|
|
478 if v then
|
|
479 0
|
|
480 else
|
|
481 1;
|
|
482
|
|
483 # Unary negate.
|
|
484 def unary-(v)
|
|
485 0-v;
|
|
486
|
|
487 # Define > with the same precedence as <.
|
|
488 def binary> 10 (LHS RHS)
|
|
489 RHS < LHS;
|
|
490
|
|
491 # Binary logical or, which does not short circuit.
|
|
492 def binary| 5 (LHS RHS)
|
|
493 if LHS then
|
|
494 1
|
|
495 else if RHS then
|
|
496 1
|
|
497 else
|
|
498 0;
|
|
499
|
|
500 # Binary logical and, which does not short circuit.
|
|
501 def binary& 6 (LHS RHS)
|
|
502 if !LHS then
|
|
503 0
|
|
504 else
|
|
505 !!RHS;
|
|
506
|
|
507 # Define = with slightly lower precedence than relationals.
|
|
508 def binary = 9 (LHS RHS)
|
|
509 !(LHS < RHS | LHS > RHS);
|
|
510
|
|
511 # Define ':' for sequencing: as a low-precedence operator that ignores operands
|
|
512 # and just returns the RHS.
|
|
513 def binary : 1 (x y) y;
|
|
514
|
|
515 Given the previous if/then/else support, we can also define interesting
|
|
516 functions for I/O. For example, the following prints out a character
|
|
517 whose "density" reflects the value passed in: the lower the value, the
|
|
518 denser the character:
|
|
519
|
|
520 ::
|
|
521
|
|
522 ready> extern putchard(char);
|
|
523 ...
|
|
524 ready> def printdensity(d)
|
|
525 if d > 8 then
|
|
526 putchard(32) # ' '
|
|
527 else if d > 4 then
|
|
528 putchard(46) # '.'
|
|
529 else if d > 2 then
|
|
530 putchard(43) # '+'
|
|
531 else
|
|
532 putchard(42); # '*'
|
|
533 ...
|
|
534 ready> printdensity(1): printdensity(2): printdensity(3):
|
|
535 printdensity(4): printdensity(5): printdensity(9):
|
|
536 putchard(10);
|
|
537 **++.
|
|
538 Evaluated to 0.000000
|
|
539
|
|
540 Based on these simple primitive operations, we can start to define more
|
|
541 interesting things. For example, here's a little function that determines
|
|
542 the number of iterations it takes for a certain function in the complex
|
|
543 plane to diverge:
|
|
544
|
|
545 ::
|
|
546
|
|
547 # Determine whether the specific location diverges.
|
|
548 # Solve for z = z^2 + c in the complex plane.
|
|
549 def mandelconverger(real imag iters creal cimag)
|
|
550 if iters > 255 | (real*real + imag*imag > 4) then
|
|
551 iters
|
|
552 else
|
|
553 mandelconverger(real*real - imag*imag + creal,
|
|
554 2*real*imag + cimag,
|
|
555 iters+1, creal, cimag);
|
|
556
|
|
557 # Return the number of iterations required for the iteration to escape
|
|
558 def mandelconverge(real imag)
|
|
559 mandelconverger(real, imag, 0, real, imag);
|
|
560
|
|
561 This "``z = z2 + c``" function is a beautiful little creature that is
|
|
562 the basis for computation of the `Mandelbrot
|
|
563 Set <http://en.wikipedia.org/wiki/Mandelbrot_set>`_. Our
|
|
564 ``mandelconverge`` function returns the number of iterations that it
|
|
565 takes for a complex orbit to escape, saturating to 255. This is not a
|
|
566 very useful function by itself, but if you plot its value over a
|
|
567 two-dimensional plane, you can see the Mandelbrot set. Given that we are
|
|
568 limited to using putchard here, our amazing graphical output is limited,
|
|
569 but we can whip together something using the density plotter above:
|
|
570
|
|
571 ::
|
|
572
|
|
573 # Compute and plot the mandelbrot set with the specified 2 dimensional range
|
|
574 # info.
|
|
575 def mandelhelp(xmin xmax xstep ymin ymax ystep)
|
|
576 for y = ymin, y < ymax, ystep in (
|
|
577 (for x = xmin, x < xmax, xstep in
|
|
578 printdensity(mandelconverge(x,y)))
|
|
579 : putchard(10)
|
|
580 )
|
|
581
|
|
582 # mandel - This is a convenient helper function for plotting the mandelbrot set
|
|
583 # from the specified position with the specified Magnification.
|
|
584 def mandel(realstart imagstart realmag imagmag)
|
|
585 mandelhelp(realstart, realstart+realmag*78, realmag,
|
|
586 imagstart, imagstart+imagmag*40, imagmag);
|
|
587
|
|
588 Given this, we can try plotting out the mandelbrot set! Lets try it out:
|
|
589
|
|
590 ::
|
|
591
|
|
592 ready> mandel(-2.3, -1.3, 0.05, 0.07);
|
|
593 *******************************+++++++++++*************************************
|
|
594 *************************+++++++++++++++++++++++*******************************
|
|
595 **********************+++++++++++++++++++++++++++++****************************
|
|
596 *******************+++++++++++++++++++++.. ...++++++++*************************
|
|
597 *****************++++++++++++++++++++++.... ...+++++++++***********************
|
|
598 ***************+++++++++++++++++++++++..... ...+++++++++*********************
|
|
599 **************+++++++++++++++++++++++.... ....+++++++++********************
|
|
600 *************++++++++++++++++++++++...... .....++++++++*******************
|
|
601 ************+++++++++++++++++++++....... .......+++++++******************
|
|
602 ***********+++++++++++++++++++.... ... .+++++++*****************
|
|
603 **********+++++++++++++++++....... .+++++++****************
|
|
604 *********++++++++++++++........... ...+++++++***************
|
|
605 ********++++++++++++............ ...++++++++**************
|
|
606 ********++++++++++... .......... .++++++++**************
|
|
607 *******+++++++++..... .+++++++++*************
|
|
608 *******++++++++...... ..+++++++++*************
|
|
609 *******++++++....... ..+++++++++*************
|
|
610 *******+++++...... ..+++++++++*************
|
|
611 *******.... .... ...+++++++++*************
|
|
612 *******.... . ...+++++++++*************
|
|
613 *******+++++...... ...+++++++++*************
|
|
614 *******++++++....... ..+++++++++*************
|
|
615 *******++++++++...... .+++++++++*************
|
|
616 *******+++++++++..... ..+++++++++*************
|
|
617 ********++++++++++... .......... .++++++++**************
|
|
618 ********++++++++++++............ ...++++++++**************
|
|
619 *********++++++++++++++.......... ...+++++++***************
|
|
620 **********++++++++++++++++........ .+++++++****************
|
|
621 **********++++++++++++++++++++.... ... ..+++++++****************
|
|
622 ***********++++++++++++++++++++++....... .......++++++++*****************
|
|
623 ************+++++++++++++++++++++++...... ......++++++++******************
|
|
624 **************+++++++++++++++++++++++.... ....++++++++********************
|
|
625 ***************+++++++++++++++++++++++..... ...+++++++++*********************
|
|
626 *****************++++++++++++++++++++++.... ...++++++++***********************
|
|
627 *******************+++++++++++++++++++++......++++++++*************************
|
|
628 *********************++++++++++++++++++++++.++++++++***************************
|
|
629 *************************+++++++++++++++++++++++*******************************
|
|
630 ******************************+++++++++++++************************************
|
|
631 *******************************************************************************
|
|
632 *******************************************************************************
|
|
633 *******************************************************************************
|
|
634 Evaluated to 0.000000
|
|
635 ready> mandel(-2, -1, 0.02, 0.04);
|
|
636 **************************+++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
637 ***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
638 *********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.
|
|
639 *******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...
|
|
640 *****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
|
|
641 ***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........
|
|
642 **************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........
|
|
643 ************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............
|
|
644 ***********++++++++++++++++++++++++++++++++++++++++++++++++++........ .
|
|
645 **********++++++++++++++++++++++++++++++++++++++++++++++.............
|
|
646 ********+++++++++++++++++++++++++++++++++++++++++++..................
|
|
647 *******+++++++++++++++++++++++++++++++++++++++.......................
|
|
648 ******+++++++++++++++++++++++++++++++++++...........................
|
|
649 *****++++++++++++++++++++++++++++++++............................
|
|
650 *****++++++++++++++++++++++++++++...............................
|
|
651 ****++++++++++++++++++++++++++...... .........................
|
|
652 ***++++++++++++++++++++++++......... ...... ...........
|
|
653 ***++++++++++++++++++++++............
|
|
654 **+++++++++++++++++++++..............
|
|
655 **+++++++++++++++++++................
|
|
656 *++++++++++++++++++.................
|
|
657 *++++++++++++++++............ ...
|
|
658 *++++++++++++++..............
|
|
659 *+++....++++................
|
|
660 *.......... ...........
|
|
661 *
|
|
662 *.......... ...........
|
|
663 *+++....++++................
|
|
664 *++++++++++++++..............
|
|
665 *++++++++++++++++............ ...
|
|
666 *++++++++++++++++++.................
|
|
667 **+++++++++++++++++++................
|
|
668 **+++++++++++++++++++++..............
|
|
669 ***++++++++++++++++++++++............
|
|
670 ***++++++++++++++++++++++++......... ...... ...........
|
|
671 ****++++++++++++++++++++++++++...... .........................
|
|
672 *****++++++++++++++++++++++++++++...............................
|
|
673 *****++++++++++++++++++++++++++++++++............................
|
|
674 ******+++++++++++++++++++++++++++++++++++...........................
|
|
675 *******+++++++++++++++++++++++++++++++++++++++.......................
|
|
676 ********+++++++++++++++++++++++++++++++++++++++++++..................
|
|
677 Evaluated to 0.000000
|
|
678 ready> mandel(-0.9, -1.4, 0.02, 0.03);
|
|
679 *******************************************************************************
|
|
680 *******************************************************************************
|
|
681 *******************************************************************************
|
|
682 **********+++++++++++++++++++++************************************************
|
|
683 *+++++++++++++++++++++++++++++++++++++++***************************************
|
|
684 +++++++++++++++++++++++++++++++++++++++++++++**********************************
|
|
685 ++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
|
|
686 ++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
|
|
687 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
|
|
688 +++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
|
|
689 +++++++++++++++++++++++++++++++.... ......+++++++++++++++++++****************
|
|
690 +++++++++++++++++++++++++++++....... ........+++++++++++++++++++**************
|
|
691 ++++++++++++++++++++++++++++........ ........++++++++++++++++++++************
|
|
692 +++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++**********
|
|
693 ++++++++++++++++++++++++++........... ....++++++++++++++++++++++********
|
|
694 ++++++++++++++++++++++++............. .......++++++++++++++++++++++******
|
|
695 +++++++++++++++++++++++............. ........+++++++++++++++++++++++****
|
|
696 ++++++++++++++++++++++........... ..........++++++++++++++++++++++***
|
|
697 ++++++++++++++++++++........... .........++++++++++++++++++++++*
|
|
698 ++++++++++++++++++............ ...........++++++++++++++++++++
|
|
699 ++++++++++++++++............... .............++++++++++++++++++
|
|
700 ++++++++++++++................. ...............++++++++++++++++
|
|
701 ++++++++++++.................. .................++++++++++++++
|
|
702 +++++++++.................. .................+++++++++++++
|
|
703 ++++++........ . ......... ..++++++++++++
|
|
704 ++............ ...... ....++++++++++
|
|
705 .............. ...++++++++++
|
|
706 .............. ....+++++++++
|
|
707 .............. .....++++++++
|
|
708 ............. ......++++++++
|
|
709 ........... .......++++++++
|
|
710 ......... ........+++++++
|
|
711 ......... ........+++++++
|
|
712 ......... ....+++++++
|
|
713 ........ ...+++++++
|
|
714 ....... ...+++++++
|
|
715 ....+++++++
|
|
716 .....+++++++
|
|
717 ....+++++++
|
|
718 ....+++++++
|
|
719 ....+++++++
|
|
720 Evaluated to 0.000000
|
|
721 ready> ^D
|
|
722
|
|
723 At this point, you may be starting to realize that Kaleidoscope is a
|
|
724 real and powerful language. It may not be self-similar :), but it can be
|
|
725 used to plot things that are!
|
|
726
|
|
727 With this, we conclude the "adding user-defined operators" chapter of
|
|
728 the tutorial. We have successfully augmented our language, adding the
|
|
729 ability to extend the language in the library, and we have shown how
|
|
730 this can be used to build a simple but interesting end-user application
|
|
731 in Kaleidoscope. At this point, Kaleidoscope can build a variety of
|
|
732 applications that are functional and can call functions with
|
|
733 side-effects, but it can't actually define and mutate a variable itself.
|
|
734
|
|
735 Strikingly, variable mutation is an important feature of some languages,
|
|
736 and it is not at all obvious how to `add support for mutable
|
|
737 variables <LangImpl07.html>`_ without having to add an "SSA construction"
|
|
738 phase to your front-end. In the next chapter, we will describe how you
|
|
739 can add variable mutation without building SSA in your front-end.
|
|
740
|
|
741 Full Code Listing
|
|
742 =================
|
|
743
|
|
744 Here is the complete code listing for our running example, enhanced with
|
|
745 the support for user-defined operators. To build this example, use:
|
|
746
|
|
747 .. code-block:: bash
|
|
748
|
|
749 # Compile
|
221
|
750 clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orcjit native` -O3 -o toy
|
150
|
751 # Run
|
|
752 ./toy
|
|
753
|
|
754 On some platforms, you will need to specify -rdynamic or
|
|
755 -Wl,--export-dynamic when linking. This ensures that symbols defined in
|
|
756 the main executable are exported to the dynamic linker and so are
|
|
757 available for symbol resolution at run time. This is not needed if you
|
|
758 compile your support code into a shared library, although doing that
|
|
759 will cause problems on Windows.
|
|
760
|
|
761 Here is the code:
|
|
762
|
|
763 .. literalinclude:: ../../../examples/Kaleidoscope/Chapter6/toy.cpp
|
|
764 :language: c++
|
|
765
|
|
766 `Next: Extending the language: mutable variables / SSA
|
|
767 construction <LangImpl07.html>`_
|
|
768
|