150
|
1 //===- BitTracker.h ---------------------------------------------*- C++ -*-===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8
|
|
9 #ifndef LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
|
|
10 #define LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
|
|
11
|
|
12 #include "llvm/ADT/DenseSet.h"
|
|
13 #include "llvm/ADT/SetVector.h"
|
|
14 #include "llvm/ADT/SmallVector.h"
|
|
15 #include "llvm/CodeGen/MachineInstr.h"
|
|
16 #include "llvm/CodeGen/MachineOperand.h"
|
|
17 #include <cassert>
|
|
18 #include <cstdint>
|
|
19 #include <map>
|
|
20 #include <queue>
|
|
21 #include <set>
|
|
22 #include <utility>
|
|
23
|
|
24 namespace llvm {
|
|
25
|
|
26 class BitVector;
|
|
27 class ConstantInt;
|
|
28 class MachineRegisterInfo;
|
|
29 class MachineBasicBlock;
|
|
30 class MachineFunction;
|
|
31 class raw_ostream;
|
|
32 class TargetRegisterClass;
|
|
33 class TargetRegisterInfo;
|
|
34
|
|
35 struct BitTracker {
|
|
36 struct BitRef;
|
|
37 struct RegisterRef;
|
|
38 struct BitValue;
|
|
39 struct BitMask;
|
|
40 struct RegisterCell;
|
|
41 struct MachineEvaluator;
|
|
42
|
|
43 using BranchTargetList = SetVector<const MachineBasicBlock *>;
|
|
44 using CellMapType = std::map<unsigned, RegisterCell>;
|
|
45
|
|
46 BitTracker(const MachineEvaluator &E, MachineFunction &F);
|
|
47 ~BitTracker();
|
|
48
|
|
49 void run();
|
|
50 void trace(bool On = false) { Trace = On; }
|
|
51 bool has(unsigned Reg) const;
|
|
52 const RegisterCell &lookup(unsigned Reg) const;
|
|
53 RegisterCell get(RegisterRef RR) const;
|
|
54 void put(RegisterRef RR, const RegisterCell &RC);
|
|
55 void subst(RegisterRef OldRR, RegisterRef NewRR);
|
|
56 bool reached(const MachineBasicBlock *B) const;
|
|
57 void visit(const MachineInstr &MI);
|
|
58
|
|
59 void print_cells(raw_ostream &OS) const;
|
|
60
|
|
61 private:
|
|
62 void visitPHI(const MachineInstr &PI);
|
|
63 void visitNonBranch(const MachineInstr &MI);
|
|
64 void visitBranchesFrom(const MachineInstr &BI);
|
207
|
65 void visitUsesOf(Register Reg);
|
150
|
66
|
|
67 using CFGEdge = std::pair<int, int>;
|
|
68 using EdgeSetType = std::set<CFGEdge>;
|
|
69 using InstrSetType = std::set<const MachineInstr *>;
|
|
70 using EdgeQueueType = std::queue<CFGEdge>;
|
|
71
|
|
72 // Priority queue of instructions using modified registers, ordered by
|
|
73 // their relative position in a basic block.
|
|
74 struct UseQueueType {
|
|
75 UseQueueType() : Uses(Dist) {}
|
|
76
|
|
77 unsigned size() const {
|
|
78 return Uses.size();
|
|
79 }
|
|
80 bool empty() const {
|
|
81 return size() == 0;
|
|
82 }
|
|
83 MachineInstr *front() const {
|
|
84 return Uses.top();
|
|
85 }
|
|
86 void push(MachineInstr *MI) {
|
|
87 if (Set.insert(MI).second)
|
|
88 Uses.push(MI);
|
|
89 }
|
|
90 void pop() {
|
|
91 Set.erase(front());
|
|
92 Uses.pop();
|
|
93 }
|
|
94 void reset() {
|
|
95 Dist.clear();
|
|
96 }
|
|
97 private:
|
|
98 struct Cmp {
|
|
99 Cmp(DenseMap<const MachineInstr*,unsigned> &Map) : Dist(Map) {}
|
|
100 bool operator()(const MachineInstr *MI, const MachineInstr *MJ) const;
|
|
101 DenseMap<const MachineInstr*,unsigned> &Dist;
|
|
102 };
|
|
103 std::priority_queue<MachineInstr*, std::vector<MachineInstr*>, Cmp> Uses;
|
|
104 DenseSet<const MachineInstr*> Set; // Set to avoid adding duplicate entries.
|
|
105 DenseMap<const MachineInstr*,unsigned> Dist;
|
|
106 };
|
|
107
|
|
108 void reset();
|
|
109 void runEdgeQueue(BitVector &BlockScanned);
|
|
110 void runUseQueue();
|
|
111
|
|
112 const MachineEvaluator &ME;
|
|
113 MachineFunction &MF;
|
|
114 MachineRegisterInfo &MRI;
|
|
115 CellMapType ⤅
|
|
116
|
|
117 EdgeSetType EdgeExec; // Executable flow graph edges.
|
|
118 InstrSetType InstrExec; // Executable instructions.
|
|
119 UseQueueType UseQ; // Work queue of register uses.
|
|
120 EdgeQueueType FlowQ; // Work queue of CFG edges.
|
|
121 DenseSet<unsigned> ReachedBB; // Cache of reached blocks.
|
|
122 bool Trace; // Enable tracing for debugging.
|
|
123 };
|
|
124
|
|
125 // Abstraction of a reference to bit at position Pos from a register Reg.
|
|
126 struct BitTracker::BitRef {
|
|
127 BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}
|
|
128
|
|
129 bool operator== (const BitRef &BR) const {
|
|
130 // If Reg is 0, disregard Pos.
|
|
131 return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
|
|
132 }
|
|
133
|
207
|
134 Register Reg;
|
150
|
135 uint16_t Pos;
|
|
136 };
|
|
137
|
|
138 // Abstraction of a register reference in MachineOperand. It contains the
|
|
139 // register number and the subregister index.
|
207
|
140 // FIXME: Consolidate duplicate definitions of RegisterRef
|
150
|
141 struct BitTracker::RegisterRef {
|
207
|
142 RegisterRef(Register R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
|
150
|
143 RegisterRef(const MachineOperand &MO)
|
|
144 : Reg(MO.getReg()), Sub(MO.getSubReg()) {}
|
|
145
|
207
|
146 Register Reg;
|
|
147 unsigned Sub;
|
150
|
148 };
|
|
149
|
|
150 // Value that a single bit can take. This is outside of the context of
|
|
151 // any register, it is more of an abstraction of the two-element set of
|
|
152 // possible bit values. One extension here is the "Ref" type, which
|
|
153 // indicates that this bit takes the same value as the bit described by
|
|
154 // RefInfo.
|
|
155 struct BitTracker::BitValue {
|
|
156 enum ValueType {
|
|
157 Top, // Bit not yet defined.
|
|
158 Zero, // Bit = 0.
|
|
159 One, // Bit = 1.
|
|
160 Ref // Bit value same as the one described in RefI.
|
|
161 // Conceptually, there is no explicit "bottom" value: the lattice's
|
|
162 // bottom will be expressed as a "ref to itself", which, in the context
|
|
163 // of registers, could be read as "this value of this bit is defined by
|
|
164 // this bit".
|
|
165 // The ordering is:
|
|
166 // x <= Top,
|
|
167 // Self <= x, where "Self" is "ref to itself".
|
|
168 // This makes the value lattice different for each virtual register
|
|
169 // (even for each bit in the same virtual register), since the "bottom"
|
|
170 // for one register will be a simple "ref" for another register.
|
|
171 // Since we do not store the "Self" bit and register number, the meet
|
|
172 // operation will need to take it as a parameter.
|
|
173 //
|
|
174 // In practice there is a special case for values that are not associa-
|
|
175 // ted with any specific virtual register. An example would be a value
|
|
176 // corresponding to a bit of a physical register, or an intermediate
|
|
177 // value obtained in some computation (such as instruction evaluation).
|
|
178 // Such cases are identical to the usual Ref type, but the register
|
|
179 // number is 0. In such case the Pos field of the reference is ignored.
|
|
180 //
|
|
181 // What is worthy of notice is that in value V (that is a "ref"), as long
|
|
182 // as the RefI.Reg is not 0, it may actually be the same register as the
|
|
183 // one in which V will be contained. If the RefI.Pos refers to the posi-
|
|
184 // tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
|
|
185 // otherwise V is taken to be identical to the referenced bit of the
|
|
186 // same register.
|
|
187 // If RefI.Reg is 0, however, such a reference to the same register is
|
|
188 // not possible. Any value V that is a "ref", and whose RefI.Reg is 0
|
|
189 // is treated as "bottom".
|
|
190 };
|
|
191 ValueType Type;
|
|
192 BitRef RefI;
|
|
193
|
|
194 BitValue(ValueType T = Top) : Type(T) {}
|
|
195 BitValue(bool B) : Type(B ? One : Zero) {}
|
|
196 BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}
|
|
197
|
|
198 bool operator== (const BitValue &V) const {
|
|
199 if (Type != V.Type)
|
|
200 return false;
|
|
201 if (Type == Ref && !(RefI == V.RefI))
|
|
202 return false;
|
|
203 return true;
|
|
204 }
|
|
205 bool operator!= (const BitValue &V) const {
|
|
206 return !operator==(V);
|
|
207 }
|
|
208
|
|
209 bool is(unsigned T) const {
|
|
210 assert(T == 0 || T == 1);
|
|
211 return T == 0 ? Type == Zero
|
|
212 : (T == 1 ? Type == One : false);
|
|
213 }
|
|
214
|
|
215 // The "meet" operation is the "." operation in a semilattice (L, ., T, B):
|
|
216 // (1) x.x = x
|
|
217 // (2) x.y = y.x
|
|
218 // (3) x.(y.z) = (x.y).z
|
|
219 // (4) x.T = x (i.e. T = "top")
|
|
220 // (5) x.B = B (i.e. B = "bottom")
|
|
221 //
|
|
222 // This "meet" function will update the value of the "*this" object with
|
|
223 // the newly calculated one, and return "true" if the value of *this has
|
|
224 // changed, and "false" otherwise.
|
|
225 // To prove that it satisfies the conditions (1)-(5), it is sufficient
|
|
226 // to show that a relation
|
|
227 // x <= y <=> x.y = x
|
|
228 // defines a partial order (i.e. that "meet" is same as "infimum").
|
|
229 bool meet(const BitValue &V, const BitRef &Self) {
|
|
230 // First, check the cases where there is nothing to be done.
|
|
231 if (Type == Ref && RefI == Self) // Bottom.meet(V) = Bottom (i.e. This)
|
|
232 return false;
|
|
233 if (V.Type == Top) // This.meet(Top) = This
|
|
234 return false;
|
|
235 if (*this == V) // This.meet(This) = This
|
|
236 return false;
|
|
237
|
|
238 // At this point, we know that the value of "this" will change.
|
|
239 // If it is Top, it will become the same as V, otherwise it will
|
|
240 // become "bottom" (i.e. Self).
|
|
241 if (Type == Top) {
|
|
242 Type = V.Type;
|
|
243 RefI = V.RefI; // This may be irrelevant, but copy anyway.
|
|
244 return true;
|
|
245 }
|
|
246 // Become "bottom".
|
|
247 Type = Ref;
|
|
248 RefI = Self;
|
|
249 return true;
|
|
250 }
|
|
251
|
|
252 // Create a reference to the bit value V.
|
|
253 static BitValue ref(const BitValue &V);
|
|
254 // Create a "self".
|
|
255 static BitValue self(const BitRef &Self = BitRef());
|
|
256
|
|
257 bool num() const {
|
|
258 return Type == Zero || Type == One;
|
|
259 }
|
|
260
|
|
261 operator bool() const {
|
|
262 assert(Type == Zero || Type == One);
|
|
263 return Type == One;
|
|
264 }
|
|
265
|
|
266 friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV);
|
|
267 };
|
|
268
|
|
269 // This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
|
|
270 inline BitTracker::BitValue
|
|
271 BitTracker::BitValue::ref(const BitValue &V) {
|
|
272 if (V.Type != Ref)
|
|
273 return BitValue(V.Type);
|
|
274 if (V.RefI.Reg != 0)
|
|
275 return BitValue(V.RefI.Reg, V.RefI.Pos);
|
|
276 return self();
|
|
277 }
|
|
278
|
|
279 inline BitTracker::BitValue
|
|
280 BitTracker::BitValue::self(const BitRef &Self) {
|
|
281 return BitValue(Self.Reg, Self.Pos);
|
|
282 }
|
|
283
|
|
284 // A sequence of bits starting from index B up to and including index E.
|
|
285 // If E < B, the mask represents two sections: [0..E] and [B..W) where
|
|
286 // W is the width of the register.
|
|
287 struct BitTracker::BitMask {
|
|
288 BitMask() = default;
|
|
289 BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}
|
|
290
|
|
291 uint16_t first() const { return B; }
|
|
292 uint16_t last() const { return E; }
|
|
293
|
|
294 private:
|
|
295 uint16_t B = 0;
|
|
296 uint16_t E = 0;
|
|
297 };
|
|
298
|
|
299 // Representation of a register: a list of BitValues.
|
|
300 struct BitTracker::RegisterCell {
|
|
301 RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}
|
|
302
|
|
303 uint16_t width() const {
|
|
304 return Bits.size();
|
|
305 }
|
|
306
|
|
307 const BitValue &operator[](uint16_t BitN) const {
|
|
308 assert(BitN < Bits.size());
|
|
309 return Bits[BitN];
|
|
310 }
|
|
311 BitValue &operator[](uint16_t BitN) {
|
|
312 assert(BitN < Bits.size());
|
|
313 return Bits[BitN];
|
|
314 }
|
|
315
|
207
|
316 bool meet(const RegisterCell &RC, Register SelfR);
|
150
|
317 RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
|
|
318 RegisterCell extract(const BitMask &M) const; // Returns a new cell.
|
|
319 RegisterCell &rol(uint16_t Sh); // Rotate left.
|
|
320 RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
|
|
321 RegisterCell &cat(const RegisterCell &RC); // Concatenate.
|
|
322 uint16_t cl(bool B) const;
|
|
323 uint16_t ct(bool B) const;
|
|
324
|
|
325 bool operator== (const RegisterCell &RC) const;
|
|
326 bool operator!= (const RegisterCell &RC) const {
|
|
327 return !operator==(RC);
|
|
328 }
|
|
329
|
|
330 // Replace the ref-to-reg-0 bit values with the given register.
|
|
331 RegisterCell ®ify(unsigned R);
|
|
332
|
|
333 // Generate a "ref" cell for the corresponding register. In the resulting
|
|
334 // cell each bit will be described as being the same as the corresponding
|
|
335 // bit in register Reg (i.e. the cell is "defined" by register Reg).
|
|
336 static RegisterCell self(unsigned Reg, uint16_t Width);
|
|
337 // Generate a "top" cell of given size.
|
|
338 static RegisterCell top(uint16_t Width);
|
|
339 // Generate a cell that is a "ref" to another cell.
|
|
340 static RegisterCell ref(const RegisterCell &C);
|
|
341
|
|
342 private:
|
|
343 // The DefaultBitN is here only to avoid frequent reallocation of the
|
|
344 // memory in the vector.
|
|
345 static const unsigned DefaultBitN = 32;
|
|
346 using BitValueList = SmallVector<BitValue, DefaultBitN>;
|
|
347 BitValueList Bits;
|
|
348
|
|
349 friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC);
|
|
350 };
|
|
351
|
|
352 inline bool BitTracker::has(unsigned Reg) const {
|
|
353 return Map.find(Reg) != Map.end();
|
|
354 }
|
|
355
|
|
356 inline const BitTracker::RegisterCell&
|
|
357 BitTracker::lookup(unsigned Reg) const {
|
|
358 CellMapType::const_iterator F = Map.find(Reg);
|
|
359 assert(F != Map.end());
|
|
360 return F->second;
|
|
361 }
|
|
362
|
|
363 inline BitTracker::RegisterCell
|
|
364 BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
|
|
365 RegisterCell RC(Width);
|
|
366 for (uint16_t i = 0; i < Width; ++i)
|
|
367 RC.Bits[i] = BitValue::self(BitRef(Reg, i));
|
|
368 return RC;
|
|
369 }
|
|
370
|
|
371 inline BitTracker::RegisterCell
|
|
372 BitTracker::RegisterCell::top(uint16_t Width) {
|
|
373 RegisterCell RC(Width);
|
|
374 for (uint16_t i = 0; i < Width; ++i)
|
|
375 RC.Bits[i] = BitValue(BitValue::Top);
|
|
376 return RC;
|
|
377 }
|
|
378
|
|
379 inline BitTracker::RegisterCell
|
|
380 BitTracker::RegisterCell::ref(const RegisterCell &C) {
|
|
381 uint16_t W = C.width();
|
|
382 RegisterCell RC(W);
|
|
383 for (unsigned i = 0; i < W; ++i)
|
|
384 RC[i] = BitValue::ref(C[i]);
|
|
385 return RC;
|
|
386 }
|
|
387
|
|
388 // A class to evaluate target's instructions and update the cell maps.
|
|
389 // This is used internally by the bit tracker. A target that wants to
|
|
390 // utilize this should implement the evaluation functions (noted below)
|
|
391 // in a subclass of this class.
|
|
392 struct BitTracker::MachineEvaluator {
|
|
393 MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M)
|
|
394 : TRI(T), MRI(M) {}
|
|
395 virtual ~MachineEvaluator() = default;
|
|
396
|
|
397 uint16_t getRegBitWidth(const RegisterRef &RR) const;
|
|
398
|
|
399 RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
|
|
400 void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;
|
|
401
|
|
402 // A result of any operation should use refs to the source cells, not
|
|
403 // the cells directly. This function is a convenience wrapper to quickly
|
|
404 // generate a ref for a cell corresponding to a register reference.
|
|
405 RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
|
|
406 RegisterCell RC = getCell(RR, M);
|
|
407 return RegisterCell::ref(RC);
|
|
408 }
|
|
409
|
|
410 // Helper functions.
|
|
411 // Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
|
|
412 bool isInt(const RegisterCell &A) const;
|
|
413 // Convert cell to an immediate value.
|
|
414 uint64_t toInt(const RegisterCell &A) const;
|
|
415
|
|
416 // Generate cell from an immediate value.
|
|
417 RegisterCell eIMM(int64_t V, uint16_t W) const;
|
|
418 RegisterCell eIMM(const ConstantInt *CI) const;
|
|
419
|
|
420 // Arithmetic.
|
|
421 RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
|
|
422 RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
|
|
423 RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
|
|
424 RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;
|
|
425
|
|
426 // Shifts.
|
|
427 RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
|
|
428 RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
|
|
429 RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;
|
|
430
|
|
431 // Logical.
|
|
432 RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
|
|
433 RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
|
|
434 RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
|
|
435 RegisterCell eNOT(const RegisterCell &A1) const;
|
|
436
|
|
437 // Set bit, clear bit.
|
|
438 RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
|
|
439 RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;
|
|
440
|
|
441 // Count leading/trailing bits (zeros/ones).
|
|
442 RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
|
|
443 RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;
|
|
444
|
|
445 // Sign/zero extension.
|
|
446 RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
|
|
447 RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;
|
|
448
|
|
449 // Extract/insert
|
|
450 // XTR R,b,e: extract bits from A1 starting at bit b, ending at e-1.
|
|
451 // INS R,S,b: take R and replace bits starting from b with S.
|
|
452 RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
|
|
453 RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
|
|
454 uint16_t AtN) const;
|
|
455
|
|
456 // User-provided functions for individual targets:
|
|
457
|
|
458 // Return a sub-register mask that indicates which bits in Reg belong
|
|
459 // to the subregister Sub. These bits are assumed to be contiguous in
|
|
460 // the super-register, and have the same ordering in the sub-register
|
|
461 // as in the super-register. It is valid to call this function with
|
|
462 // Sub == 0, in this case, the function should return a mask that spans
|
|
463 // the entire register Reg (which is what the default implementation
|
|
464 // does).
|
207
|
465 virtual BitMask mask(Register Reg, unsigned Sub) const;
|
150
|
466 // Indicate whether a given register class should be tracked.
|
|
467 virtual bool track(const TargetRegisterClass *RC) const { return true; }
|
|
468 // Evaluate a non-branching machine instruction, given the cell map with
|
|
469 // the input values. Place the results in the Outputs map. Return "true"
|
|
470 // if evaluation succeeded, "false" otherwise.
|
|
471 virtual bool evaluate(const MachineInstr &MI, const CellMapType &Inputs,
|
|
472 CellMapType &Outputs) const;
|
|
473 // Evaluate a branch, given the cell map with the input values. Fill out
|
|
474 // a list of all possible branch targets and indicate (through a flag)
|
|
475 // whether the branch could fall-through. Return "true" if this information
|
|
476 // has been successfully computed, "false" otherwise.
|
|
477 virtual bool evaluate(const MachineInstr &BI, const CellMapType &Inputs,
|
|
478 BranchTargetList &Targets, bool &FallsThru) const = 0;
|
|
479 // Given a register class RC, return a register class that should be assumed
|
|
480 // when a register from class RC is used with a subregister of index Idx.
|
|
481 virtual const TargetRegisterClass&
|
|
482 composeWithSubRegIndex(const TargetRegisterClass &RC, unsigned Idx) const {
|
|
483 if (Idx == 0)
|
|
484 return RC;
|
|
485 llvm_unreachable("Unimplemented composeWithSubRegIndex");
|
|
486 }
|
|
487 // Return the size in bits of the physical register Reg.
|
207
|
488 virtual uint16_t getPhysRegBitWidth(MCRegister Reg) const;
|
150
|
489
|
|
490 const TargetRegisterInfo &TRI;
|
|
491 MachineRegisterInfo &MRI;
|
|
492 };
|
|
493
|
|
494 } // end namespace llvm
|
|
495
|
|
496 #endif // LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
|