150
|
1 //===- HexagonExpandCondsets.cpp ------------------------------------------===//
|
|
2 //
|
|
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
4 // See https://llvm.org/LICENSE.txt for license information.
|
|
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
6 //
|
|
7 //===----------------------------------------------------------------------===//
|
|
8
|
|
9 // Replace mux instructions with the corresponding legal instructions.
|
|
10 // It is meant to work post-SSA, but still on virtual registers. It was
|
|
11 // originally placed between register coalescing and machine instruction
|
|
12 // scheduler.
|
|
13 // In this place in the optimization sequence, live interval analysis had
|
|
14 // been performed, and the live intervals should be preserved. A large part
|
|
15 // of the code deals with preserving the liveness information.
|
|
16 //
|
|
17 // Liveness tracking aside, the main functionality of this pass is divided
|
|
18 // into two steps. The first step is to replace an instruction
|
|
19 // %0 = C2_mux %1, %2, %3
|
|
20 // with a pair of conditional transfers
|
|
21 // %0 = A2_tfrt %1, %2
|
|
22 // %0 = A2_tfrf %1, %3
|
|
23 // It is the intention that the execution of this pass could be terminated
|
|
24 // after this step, and the code generated would be functionally correct.
|
|
25 //
|
|
26 // If the uses of the source values %1 and %2 are kills, and their
|
|
27 // definitions are predicable, then in the second step, the conditional
|
|
28 // transfers will then be rewritten as predicated instructions. E.g.
|
|
29 // %0 = A2_or %1, %2
|
|
30 // %3 = A2_tfrt %99, killed %0
|
|
31 // will be rewritten as
|
|
32 // %3 = A2_port %99, %1, %2
|
|
33 //
|
|
34 // This replacement has two variants: "up" and "down". Consider this case:
|
|
35 // %0 = A2_or %1, %2
|
|
36 // ... [intervening instructions] ...
|
|
37 // %3 = A2_tfrt %99, killed %0
|
|
38 // variant "up":
|
|
39 // %3 = A2_port %99, %1, %2
|
|
40 // ... [intervening instructions, %0->vreg3] ...
|
|
41 // [deleted]
|
|
42 // variant "down":
|
|
43 // [deleted]
|
|
44 // ... [intervening instructions] ...
|
|
45 // %3 = A2_port %99, %1, %2
|
|
46 //
|
|
47 // Both, one or none of these variants may be valid, and checks are made
|
|
48 // to rule out inapplicable variants.
|
|
49 //
|
|
50 // As an additional optimization, before either of the two steps above is
|
|
51 // executed, the pass attempts to coalesce the target register with one of
|
|
52 // the source registers, e.g. given an instruction
|
|
53 // %3 = C2_mux %0, %1, %2
|
|
54 // %3 will be coalesced with either %1 or %2. If this succeeds,
|
|
55 // the instruction would then be (for example)
|
|
56 // %3 = C2_mux %0, %3, %2
|
|
57 // and, under certain circumstances, this could result in only one predicated
|
|
58 // instruction:
|
|
59 // %3 = A2_tfrf %0, %2
|
|
60 //
|
|
61
|
|
62 // Splitting a definition of a register into two predicated transfers
|
|
63 // creates a complication in liveness tracking. Live interval computation
|
|
64 // will see both instructions as actual definitions, and will mark the
|
|
65 // first one as dead. The definition is not actually dead, and this
|
|
66 // situation will need to be fixed. For example:
|
|
67 // dead %1 = A2_tfrt ... ; marked as dead
|
|
68 // %1 = A2_tfrf ...
|
|
69 //
|
|
70 // Since any of the individual predicated transfers may end up getting
|
|
71 // removed (in case it is an identity copy), some pre-existing def may
|
|
72 // be marked as dead after live interval recomputation:
|
|
73 // dead %1 = ... ; marked as dead
|
|
74 // ...
|
|
75 // %1 = A2_tfrf ... ; if A2_tfrt is removed
|
|
76 // This case happens if %1 was used as a source in A2_tfrt, which means
|
|
77 // that is it actually live at the A2_tfrf, and so the now dead definition
|
|
78 // of %1 will need to be updated to non-dead at some point.
|
|
79 //
|
|
80 // This issue could be remedied by adding implicit uses to the predicated
|
|
81 // transfers, but this will create a problem with subsequent predication,
|
|
82 // since the transfers will no longer be possible to reorder. To avoid
|
|
83 // that, the initial splitting will not add any implicit uses. These
|
|
84 // implicit uses will be added later, after predication. The extra price,
|
|
85 // however, is that finding the locations where the implicit uses need
|
|
86 // to be added, and updating the live ranges will be more involved.
|
|
87
|
|
88 #include "HexagonInstrInfo.h"
|
|
89 #include "HexagonRegisterInfo.h"
|
|
90 #include "llvm/ADT/DenseMap.h"
|
|
91 #include "llvm/ADT/SetVector.h"
|
|
92 #include "llvm/ADT/SmallVector.h"
|
|
93 #include "llvm/ADT/StringRef.h"
|
|
94 #include "llvm/CodeGen/LiveInterval.h"
|
|
95 #include "llvm/CodeGen/LiveIntervals.h"
|
|
96 #include "llvm/CodeGen/MachineBasicBlock.h"
|
|
97 #include "llvm/CodeGen/MachineDominators.h"
|
|
98 #include "llvm/CodeGen/MachineFunction.h"
|
|
99 #include "llvm/CodeGen/MachineFunctionPass.h"
|
|
100 #include "llvm/CodeGen/MachineInstr.h"
|
|
101 #include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
102 #include "llvm/CodeGen/MachineOperand.h"
|
|
103 #include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
104 #include "llvm/CodeGen/SlotIndexes.h"
|
|
105 #include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
106 #include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
107 #include "llvm/IR/DebugLoc.h"
|
|
108 #include "llvm/IR/Function.h"
|
|
109 #include "llvm/InitializePasses.h"
|
|
110 #include "llvm/MC/LaneBitmask.h"
|
|
111 #include "llvm/Pass.h"
|
|
112 #include "llvm/Support/CommandLine.h"
|
|
113 #include "llvm/Support/Debug.h"
|
|
114 #include "llvm/Support/ErrorHandling.h"
|
|
115 #include "llvm/Support/raw_ostream.h"
|
|
116 #include <cassert>
|
|
117 #include <iterator>
|
|
118 #include <set>
|
|
119 #include <utility>
|
|
120
|
|
121 #define DEBUG_TYPE "expand-condsets"
|
|
122
|
|
123 using namespace llvm;
|
|
124
|
|
125 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
|
|
126 cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
|
|
127 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
|
|
128 cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
|
|
129
|
|
130 namespace llvm {
|
|
131
|
|
132 void initializeHexagonExpandCondsetsPass(PassRegistry&);
|
|
133 FunctionPass *createHexagonExpandCondsets();
|
|
134
|
|
135 } // end namespace llvm
|
|
136
|
|
137 namespace {
|
|
138
|
|
139 class HexagonExpandCondsets : public MachineFunctionPass {
|
|
140 public:
|
|
141 static char ID;
|
|
142
|
|
143 HexagonExpandCondsets() : MachineFunctionPass(ID) {
|
|
144 if (OptCoaLimit.getPosition())
|
|
145 CoaLimitActive = true, CoaLimit = OptCoaLimit;
|
|
146 if (OptTfrLimit.getPosition())
|
|
147 TfrLimitActive = true, TfrLimit = OptTfrLimit;
|
|
148 initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
|
|
149 }
|
|
150
|
|
151 StringRef getPassName() const override { return "Hexagon Expand Condsets"; }
|
|
152
|
|
153 void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
154 AU.addRequired<LiveIntervals>();
|
|
155 AU.addPreserved<LiveIntervals>();
|
|
156 AU.addPreserved<SlotIndexes>();
|
|
157 AU.addRequired<MachineDominatorTree>();
|
|
158 AU.addPreserved<MachineDominatorTree>();
|
|
159 MachineFunctionPass::getAnalysisUsage(AU);
|
|
160 }
|
|
161
|
|
162 bool runOnMachineFunction(MachineFunction &MF) override;
|
|
163
|
|
164 private:
|
|
165 const HexagonInstrInfo *HII = nullptr;
|
|
166 const TargetRegisterInfo *TRI = nullptr;
|
|
167 MachineDominatorTree *MDT;
|
|
168 MachineRegisterInfo *MRI = nullptr;
|
|
169 LiveIntervals *LIS = nullptr;
|
|
170 bool CoaLimitActive = false;
|
|
171 bool TfrLimitActive = false;
|
|
172 unsigned CoaLimit;
|
|
173 unsigned TfrLimit;
|
|
174 unsigned CoaCounter = 0;
|
|
175 unsigned TfrCounter = 0;
|
|
176
|
221
|
177 // FIXME: Consolidate duplicate definitions of RegisterRef
|
150
|
178 struct RegisterRef {
|
|
179 RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
|
|
180 Sub(Op.getSubReg()) {}
|
|
181 RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
|
|
182
|
|
183 bool operator== (RegisterRef RR) const {
|
|
184 return Reg == RR.Reg && Sub == RR.Sub;
|
|
185 }
|
|
186 bool operator!= (RegisterRef RR) const { return !operator==(RR); }
|
|
187 bool operator< (RegisterRef RR) const {
|
|
188 return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
|
|
189 }
|
|
190
|
221
|
191 Register Reg;
|
|
192 unsigned Sub;
|
150
|
193 };
|
|
194
|
|
195 using ReferenceMap = DenseMap<unsigned, unsigned>;
|
|
196 enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
|
|
197 enum { Exec_Then = 0x10, Exec_Else = 0x20 };
|
|
198
|
|
199 unsigned getMaskForSub(unsigned Sub);
|
|
200 bool isCondset(const MachineInstr &MI);
|
221
|
201 LaneBitmask getLaneMask(Register Reg, unsigned Sub);
|
150
|
202
|
|
203 void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
|
|
204 bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
|
|
205
|
221
|
206 void updateDeadsInRange(Register Reg, LaneBitmask LM, LiveRange &Range);
|
|
207 void updateKillFlags(Register Reg);
|
|
208 void updateDeadFlags(Register Reg);
|
|
209 void recalculateLiveInterval(Register Reg);
|
150
|
210 void removeInstr(MachineInstr &MI);
|
236
|
211 void updateLiveness(const std::set<Register> &RegSet, bool Recalc,
|
221
|
212 bool UpdateKills, bool UpdateDeads);
|
236
|
213 void distributeLiveIntervals(const std::set<Register> &Regs);
|
150
|
214
|
|
215 unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
|
|
216 MachineInstr *genCondTfrFor(MachineOperand &SrcOp,
|
|
217 MachineBasicBlock::iterator At, unsigned DstR,
|
|
218 unsigned DstSR, const MachineOperand &PredOp, bool PredSense,
|
|
219 bool ReadUndef, bool ImpUse);
|
221
|
220 bool split(MachineInstr &MI, std::set<Register> &UpdRegs);
|
150
|
221
|
|
222 bool isPredicable(MachineInstr *MI);
|
|
223 MachineInstr *getReachingDefForPred(RegisterRef RD,
|
|
224 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
|
|
225 bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses);
|
|
226 bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown);
|
|
227 void predicateAt(const MachineOperand &DefOp, MachineInstr &MI,
|
|
228 MachineBasicBlock::iterator Where,
|
|
229 const MachineOperand &PredOp, bool Cond,
|
221
|
230 std::set<Register> &UpdRegs);
|
150
|
231 void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
|
|
232 bool Cond, MachineBasicBlock::iterator First,
|
|
233 MachineBasicBlock::iterator Last);
|
221
|
234 bool predicate(MachineInstr &TfrI, bool Cond, std::set<Register> &UpdRegs);
|
|
235 bool predicateInBlock(MachineBasicBlock &B, std::set<Register> &UpdRegs);
|
150
|
236
|
|
237 bool isIntReg(RegisterRef RR, unsigned &BW);
|
|
238 bool isIntraBlocks(LiveInterval &LI);
|
|
239 bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
|
221
|
240 bool coalesceSegments(const SmallVectorImpl<MachineInstr *> &Condsets,
|
|
241 std::set<Register> &UpdRegs);
|
150
|
242 };
|
|
243
|
|
244 } // end anonymous namespace
|
|
245
|
|
246 char HexagonExpandCondsets::ID = 0;
|
|
247
|
|
248 namespace llvm {
|
|
249
|
|
250 char &HexagonExpandCondsetsID = HexagonExpandCondsets::ID;
|
|
251
|
|
252 } // end namespace llvm
|
|
253
|
|
254 INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets",
|
|
255 "Hexagon Expand Condsets", false, false)
|
|
256 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
|
257 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
|
|
258 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
|
|
259 INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets",
|
|
260 "Hexagon Expand Condsets", false, false)
|
|
261
|
|
262 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
|
|
263 switch (Sub) {
|
|
264 case Hexagon::isub_lo:
|
|
265 case Hexagon::vsub_lo:
|
|
266 return Sub_Low;
|
|
267 case Hexagon::isub_hi:
|
|
268 case Hexagon::vsub_hi:
|
|
269 return Sub_High;
|
|
270 case Hexagon::NoSubRegister:
|
|
271 return Sub_None;
|
|
272 }
|
|
273 llvm_unreachable("Invalid subregister");
|
|
274 }
|
|
275
|
|
276 bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) {
|
|
277 unsigned Opc = MI.getOpcode();
|
|
278 switch (Opc) {
|
|
279 case Hexagon::C2_mux:
|
|
280 case Hexagon::C2_muxii:
|
|
281 case Hexagon::C2_muxir:
|
|
282 case Hexagon::C2_muxri:
|
|
283 case Hexagon::PS_pselect:
|
|
284 return true;
|
|
285 break;
|
|
286 }
|
|
287 return false;
|
|
288 }
|
|
289
|
221
|
290 LaneBitmask HexagonExpandCondsets::getLaneMask(Register Reg, unsigned Sub) {
|
|
291 assert(Reg.isVirtual());
|
150
|
292 return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
|
|
293 : MRI->getMaxLaneMaskForVReg(Reg);
|
|
294 }
|
|
295
|
|
296 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
|
|
297 unsigned Exec) {
|
|
298 unsigned Mask = getMaskForSub(RR.Sub) | Exec;
|
|
299 ReferenceMap::iterator F = Map.find(RR.Reg);
|
|
300 if (F == Map.end())
|
|
301 Map.insert(std::make_pair(RR.Reg, Mask));
|
|
302 else
|
|
303 F->second |= Mask;
|
|
304 }
|
|
305
|
|
306 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
|
|
307 unsigned Exec) {
|
|
308 ReferenceMap::iterator F = Map.find(RR.Reg);
|
|
309 if (F == Map.end())
|
|
310 return false;
|
|
311 unsigned Mask = getMaskForSub(RR.Sub) | Exec;
|
|
312 if (Mask & F->second)
|
|
313 return true;
|
|
314 return false;
|
|
315 }
|
|
316
|
221
|
317 void HexagonExpandCondsets::updateKillFlags(Register Reg) {
|
150
|
318 auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void {
|
|
319 // Set the <kill> flag on a use of Reg whose lane mask is contained in LM.
|
|
320 MachineInstr *MI = LIS->getInstructionFromIndex(K);
|
|
321 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
322 MachineOperand &Op = MI->getOperand(i);
|
|
323 if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg ||
|
|
324 MI->isRegTiedToDefOperand(i))
|
|
325 continue;
|
|
326 LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg());
|
|
327 if ((SLM & LM) == SLM) {
|
|
328 // Only set the kill flag on the first encountered use of Reg in this
|
|
329 // instruction.
|
|
330 Op.setIsKill(true);
|
|
331 break;
|
|
332 }
|
|
333 }
|
|
334 };
|
|
335
|
|
336 LiveInterval &LI = LIS->getInterval(Reg);
|
|
337 for (auto I = LI.begin(), E = LI.end(); I != E; ++I) {
|
|
338 if (!I->end.isRegister())
|
|
339 continue;
|
|
340 // Do not mark the end of the segment as <kill>, if the next segment
|
|
341 // starts with a predicated instruction.
|
|
342 auto NextI = std::next(I);
|
|
343 if (NextI != E && NextI->start.isRegister()) {
|
|
344 MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start);
|
|
345 if (HII->isPredicated(*DefI))
|
|
346 continue;
|
|
347 }
|
|
348 bool WholeReg = true;
|
|
349 if (LI.hasSubRanges()) {
|
|
350 auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool {
|
|
351 LiveRange::iterator F = S.find(I->end);
|
|
352 return F != S.end() && I->end == F->end;
|
|
353 };
|
|
354 // Check if all subranges end at I->end. If so, make sure to kill
|
|
355 // the whole register.
|
|
356 for (LiveInterval::SubRange &S : LI.subranges()) {
|
|
357 if (EndsAtI(S))
|
|
358 KillAt(I->end, S.LaneMask);
|
|
359 else
|
|
360 WholeReg = false;
|
|
361 }
|
|
362 }
|
|
363 if (WholeReg)
|
|
364 KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg));
|
|
365 }
|
|
366 }
|
|
367
|
221
|
368 void HexagonExpandCondsets::updateDeadsInRange(Register Reg, LaneBitmask LM,
|
|
369 LiveRange &Range) {
|
|
370 assert(Reg.isVirtual());
|
150
|
371 if (Range.empty())
|
|
372 return;
|
|
373
|
|
374 // Return two booleans: { def-modifes-reg, def-covers-reg }.
|
|
375 auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> {
|
|
376 if (!Op.isReg() || !Op.isDef())
|
|
377 return { false, false };
|
|
378 Register DR = Op.getReg(), DSR = Op.getSubReg();
|
221
|
379 if (!DR.isVirtual() || DR != Reg)
|
150
|
380 return { false, false };
|
|
381 LaneBitmask SLM = getLaneMask(DR, DSR);
|
|
382 LaneBitmask A = SLM & LM;
|
|
383 return { A.any(), A == SLM };
|
|
384 };
|
|
385
|
|
386 // The splitting step will create pairs of predicated definitions without
|
|
387 // any implicit uses (since implicit uses would interfere with predication).
|
|
388 // This can cause the reaching defs to become dead after live range
|
|
389 // recomputation, even though they are not really dead.
|
|
390 // We need to identify predicated defs that need implicit uses, and
|
|
391 // dead defs that are not really dead, and correct both problems.
|
|
392
|
|
393 auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs,
|
|
394 MachineBasicBlock *Dest) -> bool {
|
236
|
395 for (MachineBasicBlock *D : Defs) {
|
150
|
396 if (D != Dest && MDT->dominates(D, Dest))
|
|
397 return true;
|
236
|
398 }
|
150
|
399 MachineBasicBlock *Entry = &Dest->getParent()->front();
|
|
400 SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end());
|
|
401 for (unsigned i = 0; i < Work.size(); ++i) {
|
|
402 MachineBasicBlock *B = Work[i];
|
|
403 if (Defs.count(B))
|
|
404 continue;
|
|
405 if (B == Entry)
|
|
406 return false;
|
|
407 for (auto *P : B->predecessors())
|
|
408 Work.insert(P);
|
|
409 }
|
|
410 return true;
|
|
411 };
|
|
412
|
|
413 // First, try to extend live range within individual basic blocks. This
|
|
414 // will leave us only with dead defs that do not reach any predicated
|
|
415 // defs in the same block.
|
|
416 SetVector<MachineBasicBlock*> Defs;
|
|
417 SmallVector<SlotIndex,4> PredDefs;
|
|
418 for (auto &Seg : Range) {
|
|
419 if (!Seg.start.isRegister())
|
|
420 continue;
|
|
421 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
|
|
422 Defs.insert(DefI->getParent());
|
|
423 if (HII->isPredicated(*DefI))
|
|
424 PredDefs.push_back(Seg.start);
|
|
425 }
|
|
426
|
|
427 SmallVector<SlotIndex,8> Undefs;
|
|
428 LiveInterval &LI = LIS->getInterval(Reg);
|
|
429 LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes());
|
|
430
|
|
431 for (auto &SI : PredDefs) {
|
|
432 MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
|
|
433 auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI);
|
|
434 if (P.first != nullptr || P.second)
|
|
435 SI = SlotIndex();
|
|
436 }
|
|
437
|
|
438 // Calculate reachability for those predicated defs that were not handled
|
|
439 // by the in-block extension.
|
|
440 SmallVector<SlotIndex,4> ExtTo;
|
|
441 for (auto &SI : PredDefs) {
|
|
442 if (!SI.isValid())
|
|
443 continue;
|
|
444 MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
|
|
445 if (BB->pred_empty())
|
|
446 continue;
|
|
447 // If the defs from this range reach SI via all predecessors, it is live.
|
|
448 // It can happen that SI is reached by the defs through some paths, but
|
|
449 // not all. In the IR coming into this optimization, SI would not be
|
|
450 // considered live, since the defs would then not jointly dominate SI.
|
|
451 // That means that SI is an overwriting def, and no implicit use is
|
|
452 // needed at this point. Do not add SI to the extension points, since
|
|
453 // extendToIndices will abort if there is no joint dominance.
|
|
454 // If the abort was avoided by adding extra undefs added to Undefs,
|
|
455 // extendToIndices could actually indicate that SI is live, contrary
|
|
456 // to the original IR.
|
|
457 if (Dominate(Defs, BB))
|
|
458 ExtTo.push_back(SI);
|
|
459 }
|
|
460
|
|
461 if (!ExtTo.empty())
|
|
462 LIS->extendToIndices(Range, ExtTo, Undefs);
|
|
463
|
|
464 // Remove <dead> flags from all defs that are not dead after live range
|
|
465 // extension, and collect all def operands. They will be used to generate
|
|
466 // the necessary implicit uses.
|
|
467 // At the same time, add <dead> flag to all defs that are actually dead.
|
|
468 // This can happen, for example, when a mux with identical inputs is
|
|
469 // replaced with a COPY: the use of the predicate register disappears and
|
|
470 // the dead can become dead.
|
|
471 std::set<RegisterRef> DefRegs;
|
|
472 for (auto &Seg : Range) {
|
|
473 if (!Seg.start.isRegister())
|
|
474 continue;
|
|
475 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
|
|
476 for (auto &Op : DefI->operands()) {
|
|
477 auto P = IsRegDef(Op);
|
|
478 if (P.second && Seg.end.isDead()) {
|
|
479 Op.setIsDead(true);
|
|
480 } else if (P.first) {
|
|
481 DefRegs.insert(Op);
|
|
482 Op.setIsDead(false);
|
|
483 }
|
|
484 }
|
|
485 }
|
|
486
|
|
487 // Now, add implicit uses to each predicated def that is reached
|
|
488 // by other defs.
|
|
489 for (auto &Seg : Range) {
|
|
490 if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot()))
|
|
491 continue;
|
|
492 MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
|
|
493 if (!HII->isPredicated(*DefI))
|
|
494 continue;
|
|
495 // Construct the set of all necessary implicit uses, based on the def
|
|
496 // operands in the instruction. We need to tie the implicit uses to
|
|
497 // the corresponding defs.
|
|
498 std::map<RegisterRef,unsigned> ImpUses;
|
|
499 for (unsigned i = 0, e = DefI->getNumOperands(); i != e; ++i) {
|
|
500 MachineOperand &Op = DefI->getOperand(i);
|
|
501 if (!Op.isReg() || !DefRegs.count(Op))
|
|
502 continue;
|
|
503 if (Op.isDef()) {
|
|
504 // Tied defs will always have corresponding uses, so no extra
|
|
505 // implicit uses are needed.
|
|
506 if (!Op.isTied())
|
|
507 ImpUses.insert({Op, i});
|
|
508 } else {
|
|
509 // This function can be called for the same register with different
|
|
510 // lane masks. If the def in this instruction was for the whole
|
|
511 // register, we can get here more than once. Avoid adding multiple
|
|
512 // implicit uses (or adding an implicit use when an explicit one is
|
|
513 // present).
|
|
514 if (Op.isTied())
|
|
515 ImpUses.erase(Op);
|
|
516 }
|
|
517 }
|
|
518 if (ImpUses.empty())
|
|
519 continue;
|
|
520 MachineFunction &MF = *DefI->getParent()->getParent();
|
236
|
521 for (auto [R, DefIdx] : ImpUses) {
|
150
|
522 MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub);
|
236
|
523 DefI->tieOperands(DefIdx, DefI->getNumOperands()-1);
|
150
|
524 }
|
|
525 }
|
|
526 }
|
|
527
|
221
|
528 void HexagonExpandCondsets::updateDeadFlags(Register Reg) {
|
150
|
529 LiveInterval &LI = LIS->getInterval(Reg);
|
|
530 if (LI.hasSubRanges()) {
|
|
531 for (LiveInterval::SubRange &S : LI.subranges()) {
|
|
532 updateDeadsInRange(Reg, S.LaneMask, S);
|
|
533 LIS->shrinkToUses(S, Reg);
|
|
534 }
|
|
535 LI.clear();
|
|
536 LIS->constructMainRangeFromSubranges(LI);
|
|
537 } else {
|
|
538 updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI);
|
|
539 }
|
|
540 }
|
|
541
|
221
|
542 void HexagonExpandCondsets::recalculateLiveInterval(Register Reg) {
|
150
|
543 LIS->removeInterval(Reg);
|
|
544 LIS->createAndComputeVirtRegInterval(Reg);
|
|
545 }
|
|
546
|
|
547 void HexagonExpandCondsets::removeInstr(MachineInstr &MI) {
|
|
548 LIS->RemoveMachineInstrFromMaps(MI);
|
|
549 MI.eraseFromParent();
|
|
550 }
|
|
551
|
236
|
552 void HexagonExpandCondsets::updateLiveness(const std::set<Register> &RegSet,
|
221
|
553 bool Recalc, bool UpdateKills,
|
|
554 bool UpdateDeads) {
|
150
|
555 UpdateKills |= UpdateDeads;
|
221
|
556 for (Register R : RegSet) {
|
|
557 if (!R.isVirtual()) {
|
|
558 assert(R.isPhysical());
|
150
|
559 // There shouldn't be any physical registers as operands, except
|
|
560 // possibly reserved registers.
|
|
561 assert(MRI->isReserved(R));
|
|
562 continue;
|
|
563 }
|
|
564 if (Recalc)
|
|
565 recalculateLiveInterval(R);
|
|
566 if (UpdateKills)
|
|
567 MRI->clearKillFlags(R);
|
|
568 if (UpdateDeads)
|
|
569 updateDeadFlags(R);
|
|
570 // Fixing <dead> flags may extend live ranges, so reset <kill> flags
|
|
571 // after that.
|
|
572 if (UpdateKills)
|
|
573 updateKillFlags(R);
|
|
574 LIS->getInterval(R).verify();
|
|
575 }
|
|
576 }
|
|
577
|
236
|
578 void HexagonExpandCondsets::distributeLiveIntervals(
|
|
579 const std::set<Register> &Regs) {
|
|
580 ConnectedVNInfoEqClasses EQC(*LIS);
|
|
581 for (Register R : Regs) {
|
|
582 if (!R.isVirtual())
|
|
583 continue;
|
|
584 LiveInterval &LI = LIS->getInterval(R);
|
|
585 unsigned NumComp = EQC.Classify(LI);
|
|
586 if (NumComp == 1)
|
|
587 continue;
|
|
588
|
|
589 SmallVector<LiveInterval*> NewLIs;
|
|
590 const TargetRegisterClass *RC = MRI->getRegClass(LI.reg());
|
|
591 for (unsigned I = 1; I < NumComp; ++I) {
|
|
592 Register NewR = MRI->createVirtualRegister(RC);
|
|
593 NewLIs.push_back(&LIS->createEmptyInterval(NewR));
|
|
594 }
|
|
595 EQC.Distribute(LI, NewLIs.begin(), *MRI);
|
|
596 }
|
|
597 }
|
|
598
|
150
|
599 /// Get the opcode for a conditional transfer of the value in SO (source
|
|
600 /// operand). The condition (true/false) is given in Cond.
|
|
601 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
|
|
602 bool IfTrue) {
|
|
603 if (SO.isReg()) {
|
221
|
604 MCRegister PhysR;
|
150
|
605 RegisterRef RS = SO;
|
221
|
606 if (RS.Reg.isVirtual()) {
|
150
|
607 const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
|
|
608 assert(VC->begin() != VC->end() && "Empty register class");
|
|
609 PhysR = *VC->begin();
|
|
610 } else {
|
|
611 PhysR = RS.Reg;
|
|
612 }
|
221
|
613 MCRegister PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
|
150
|
614 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
|
|
615 switch (TRI->getRegSizeInBits(*RC)) {
|
|
616 case 32:
|
236
|
617 return IfTrue ? Hexagon::A2_tfrt : Hexagon::A2_tfrf;
|
150
|
618 case 64:
|
236
|
619 return IfTrue ? Hexagon::A2_tfrpt : Hexagon::A2_tfrpf;
|
150
|
620 }
|
|
621 llvm_unreachable("Invalid register operand");
|
|
622 }
|
|
623 switch (SO.getType()) {
|
|
624 case MachineOperand::MO_Immediate:
|
|
625 case MachineOperand::MO_FPImmediate:
|
|
626 case MachineOperand::MO_ConstantPoolIndex:
|
|
627 case MachineOperand::MO_TargetIndex:
|
|
628 case MachineOperand::MO_JumpTableIndex:
|
|
629 case MachineOperand::MO_ExternalSymbol:
|
|
630 case MachineOperand::MO_GlobalAddress:
|
|
631 case MachineOperand::MO_BlockAddress:
|
236
|
632 return IfTrue ? Hexagon::C2_cmoveit : Hexagon::C2_cmoveif;
|
150
|
633 default:
|
|
634 break;
|
|
635 }
|
|
636 llvm_unreachable("Unexpected source operand");
|
|
637 }
|
|
638
|
|
639 /// Generate a conditional transfer, copying the value SrcOp to the
|
|
640 /// destination register DstR:DstSR, and using the predicate register from
|
|
641 /// PredOp. The Cond argument specifies whether the predicate is to be
|
|
642 /// if(PredOp), or if(!PredOp).
|
|
643 MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp,
|
|
644 MachineBasicBlock::iterator At,
|
|
645 unsigned DstR, unsigned DstSR, const MachineOperand &PredOp,
|
|
646 bool PredSense, bool ReadUndef, bool ImpUse) {
|
|
647 MachineInstr *MI = SrcOp.getParent();
|
|
648 MachineBasicBlock &B = *At->getParent();
|
|
649 const DebugLoc &DL = MI->getDebugLoc();
|
|
650
|
|
651 // Don't avoid identity copies here (i.e. if the source and the destination
|
|
652 // are the same registers). It is actually better to generate them here,
|
|
653 // since this would cause the copy to potentially be predicated in the next
|
|
654 // step. The predication will remove such a copy if it is unable to
|
|
655 /// predicate.
|
|
656
|
|
657 unsigned Opc = getCondTfrOpcode(SrcOp, PredSense);
|
|
658 unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0);
|
|
659 unsigned PredState = getRegState(PredOp) & ~RegState::Kill;
|
|
660 MachineInstrBuilder MIB;
|
|
661
|
|
662 if (SrcOp.isReg()) {
|
|
663 unsigned SrcState = getRegState(SrcOp);
|
|
664 if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR))
|
|
665 SrcState &= ~RegState::Kill;
|
|
666 MIB = BuildMI(B, At, DL, HII->get(Opc))
|
236
|
667 .addReg(DstR, DstState, DstSR)
|
|
668 .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
|
|
669 .addReg(SrcOp.getReg(), SrcState, SrcOp.getSubReg());
|
150
|
670 } else {
|
|
671 MIB = BuildMI(B, At, DL, HII->get(Opc))
|
236
|
672 .addReg(DstR, DstState, DstSR)
|
|
673 .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
|
|
674 .add(SrcOp);
|
150
|
675 }
|
|
676
|
|
677 LLVM_DEBUG(dbgs() << "created an initial copy: " << *MIB);
|
|
678 return &*MIB;
|
|
679 }
|
|
680
|
|
681 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
|
|
682 /// performs all necessary changes to complete the replacement.
|
|
683 bool HexagonExpandCondsets::split(MachineInstr &MI,
|
221
|
684 std::set<Register> &UpdRegs) {
|
150
|
685 if (TfrLimitActive) {
|
|
686 if (TfrCounter >= TfrLimit)
|
|
687 return false;
|
|
688 TfrCounter++;
|
|
689 }
|
|
690 LLVM_DEBUG(dbgs() << "\nsplitting " << printMBBReference(*MI.getParent())
|
|
691 << ": " << MI);
|
|
692 MachineOperand &MD = MI.getOperand(0); // Definition
|
|
693 MachineOperand &MP = MI.getOperand(1); // Predicate register
|
|
694 assert(MD.isDef());
|
|
695 Register DR = MD.getReg(), DSR = MD.getSubReg();
|
|
696 bool ReadUndef = MD.isUndef();
|
|
697 MachineBasicBlock::iterator At = MI;
|
|
698
|
|
699 auto updateRegs = [&UpdRegs] (const MachineInstr &MI) -> void {
|
236
|
700 for (auto &Op : MI.operands()) {
|
150
|
701 if (Op.isReg())
|
|
702 UpdRegs.insert(Op.getReg());
|
236
|
703 }
|
150
|
704 };
|
|
705
|
|
706 // If this is a mux of the same register, just replace it with COPY.
|
|
707 // Ideally, this would happen earlier, so that register coalescing would
|
|
708 // see it.
|
|
709 MachineOperand &ST = MI.getOperand(2);
|
|
710 MachineOperand &SF = MI.getOperand(3);
|
|
711 if (ST.isReg() && SF.isReg()) {
|
|
712 RegisterRef RT(ST);
|
|
713 if (RT == RegisterRef(SF)) {
|
|
714 // Copy regs to update first.
|
|
715 updateRegs(MI);
|
|
716 MI.setDesc(HII->get(TargetOpcode::COPY));
|
|
717 unsigned S = getRegState(ST);
|
|
718 while (MI.getNumOperands() > 1)
|
236
|
719 MI.removeOperand(MI.getNumOperands()-1);
|
150
|
720 MachineFunction &MF = *MI.getParent()->getParent();
|
|
721 MachineInstrBuilder(MF, MI).addReg(RT.Reg, S, RT.Sub);
|
|
722 return true;
|
|
723 }
|
|
724 }
|
|
725
|
|
726 // First, create the two invididual conditional transfers, and add each
|
|
727 // of them to the live intervals information. Do that first and then remove
|
|
728 // the old instruction from live intervals.
|
|
729 MachineInstr *TfrT =
|
|
730 genCondTfrFor(ST, At, DR, DSR, MP, true, ReadUndef, false);
|
|
731 MachineInstr *TfrF =
|
|
732 genCondTfrFor(SF, At, DR, DSR, MP, false, ReadUndef, true);
|
|
733 LIS->InsertMachineInstrInMaps(*TfrT);
|
|
734 LIS->InsertMachineInstrInMaps(*TfrF);
|
|
735
|
|
736 // Will need to recalculate live intervals for all registers in MI.
|
|
737 updateRegs(MI);
|
|
738
|
|
739 removeInstr(MI);
|
|
740 return true;
|
|
741 }
|
|
742
|
|
743 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
|
|
744 if (HII->isPredicated(*MI) || !HII->isPredicable(*MI))
|
|
745 return false;
|
|
746 if (MI->hasUnmodeledSideEffects() || MI->mayStore())
|
|
747 return false;
|
|
748 // Reject instructions with multiple defs (e.g. post-increment loads).
|
|
749 bool HasDef = false;
|
|
750 for (auto &Op : MI->operands()) {
|
|
751 if (!Op.isReg() || !Op.isDef())
|
|
752 continue;
|
|
753 if (HasDef)
|
|
754 return false;
|
|
755 HasDef = true;
|
|
756 }
|
236
|
757 for (auto &Mo : MI->memoperands()) {
|
150
|
758 if (Mo->isVolatile() || Mo->isAtomic())
|
|
759 return false;
|
236
|
760 }
|
150
|
761 return true;
|
|
762 }
|
|
763
|
|
764 /// Find the reaching definition for a predicated use of RD. The RD is used
|
|
765 /// under the conditions given by PredR and Cond, and this function will ignore
|
|
766 /// definitions that set RD under the opposite conditions.
|
|
767 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
|
|
768 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
|
|
769 MachineBasicBlock &B = *UseIt->getParent();
|
|
770 MachineBasicBlock::iterator I = UseIt, S = B.begin();
|
|
771 if (I == S)
|
|
772 return nullptr;
|
|
773
|
|
774 bool PredValid = true;
|
|
775 do {
|
|
776 --I;
|
|
777 MachineInstr *MI = &*I;
|
|
778 // Check if this instruction can be ignored, i.e. if it is predicated
|
|
779 // on the complementary condition.
|
|
780 if (PredValid && HII->isPredicated(*MI)) {
|
|
781 if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI)))
|
|
782 continue;
|
|
783 }
|
|
784
|
|
785 // Check the defs. If the PredR is defined, invalidate it. If RD is
|
|
786 // defined, return the instruction or 0, depending on the circumstances.
|
|
787 for (auto &Op : MI->operands()) {
|
|
788 if (!Op.isReg() || !Op.isDef())
|
|
789 continue;
|
|
790 RegisterRef RR = Op;
|
|
791 if (RR.Reg == PredR) {
|
|
792 PredValid = false;
|
|
793 continue;
|
|
794 }
|
|
795 if (RR.Reg != RD.Reg)
|
|
796 continue;
|
|
797 // If the "Reg" part agrees, there is still the subregister to check.
|
|
798 // If we are looking for %1:loreg, we can skip %1:hireg, but
|
|
799 // not %1 (w/o subregisters).
|
|
800 if (RR.Sub == RD.Sub)
|
|
801 return MI;
|
|
802 if (RR.Sub == 0 || RD.Sub == 0)
|
|
803 return nullptr;
|
|
804 // We have different subregisters, so we can continue looking.
|
|
805 }
|
|
806 } while (I != S);
|
|
807
|
|
808 return nullptr;
|
|
809 }
|
|
810
|
|
811 /// Check if the instruction MI can be safely moved over a set of instructions
|
|
812 /// whose side-effects (in terms of register defs and uses) are expressed in
|
|
813 /// the maps Defs and Uses. These maps reflect the conditional defs and uses
|
|
814 /// that depend on the same predicate register to allow moving instructions
|
|
815 /// over instructions predicated on the opposite condition.
|
|
816 bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs,
|
|
817 ReferenceMap &Uses) {
|
|
818 // In order to be able to safely move MI over instructions that define
|
|
819 // "Defs" and use "Uses", no def operand from MI can be defined or used
|
|
820 // and no use operand can be defined.
|
|
821 for (auto &Op : MI.operands()) {
|
|
822 if (!Op.isReg())
|
|
823 continue;
|
|
824 RegisterRef RR = Op;
|
|
825 // For physical register we would need to check register aliases, etc.
|
|
826 // and we don't want to bother with that. It would be of little value
|
|
827 // before the actual register rewriting (from virtual to physical).
|
221
|
828 if (!RR.Reg.isVirtual())
|
150
|
829 return false;
|
|
830 // No redefs for any operand.
|
|
831 if (isRefInMap(RR, Defs, Exec_Then))
|
|
832 return false;
|
|
833 // For defs, there cannot be uses.
|
|
834 if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
|
|
835 return false;
|
|
836 }
|
|
837 return true;
|
|
838 }
|
|
839
|
|
840 /// Check if the instruction accessing memory (TheI) can be moved to the
|
|
841 /// location ToI.
|
|
842 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI,
|
|
843 bool IsDown) {
|
|
844 bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore();
|
|
845 if (!IsLoad && !IsStore)
|
|
846 return true;
|
|
847 if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
|
|
848 return true;
|
|
849 if (TheI.hasUnmodeledSideEffects())
|
|
850 return false;
|
|
851
|
|
852 MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
|
|
853 MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
|
|
854 bool Ordered = TheI.hasOrderedMemoryRef();
|
|
855
|
|
856 // Search for aliased memory reference in (StartI, EndI).
|
236
|
857 for (MachineInstr &MI : llvm::make_range(std::next(StartI), EndI)) {
|
|
858 if (MI.hasUnmodeledSideEffects())
|
150
|
859 return false;
|
236
|
860 bool L = MI.mayLoad(), S = MI.mayStore();
|
150
|
861 if (!L && !S)
|
|
862 continue;
|
236
|
863 if (Ordered && MI.hasOrderedMemoryRef())
|
150
|
864 return false;
|
|
865
|
|
866 bool Conflict = (L && IsStore) || S;
|
|
867 if (Conflict)
|
|
868 return false;
|
|
869 }
|
|
870 return true;
|
|
871 }
|
|
872
|
|
873 /// Generate a predicated version of MI (where the condition is given via
|
|
874 /// PredR and Cond) at the point indicated by Where.
|
|
875 void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp,
|
|
876 MachineInstr &MI,
|
|
877 MachineBasicBlock::iterator Where,
|
|
878 const MachineOperand &PredOp, bool Cond,
|
221
|
879 std::set<Register> &UpdRegs) {
|
150
|
880 // The problem with updating live intervals is that we can move one def
|
|
881 // past another def. In particular, this can happen when moving an A2_tfrt
|
|
882 // over an A2_tfrf defining the same register. From the point of view of
|
|
883 // live intervals, these two instructions are two separate definitions,
|
|
884 // and each one starts another live segment. LiveIntervals's "handleMove"
|
|
885 // does not allow such moves, so we need to handle it ourselves. To avoid
|
|
886 // invalidating liveness data while we are using it, the move will be
|
|
887 // implemented in 4 steps: (1) add a clone of the instruction MI at the
|
|
888 // target location, (2) update liveness, (3) delete the old instruction,
|
|
889 // and (4) update liveness again.
|
|
890
|
|
891 MachineBasicBlock &B = *MI.getParent();
|
|
892 DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction.
|
|
893 unsigned Opc = MI.getOpcode();
|
|
894 unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
|
|
895 MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
|
|
896 unsigned Ox = 0, NP = MI.getNumOperands();
|
|
897 // Skip all defs from MI first.
|
|
898 while (Ox < NP) {
|
|
899 MachineOperand &MO = MI.getOperand(Ox);
|
|
900 if (!MO.isReg() || !MO.isDef())
|
|
901 break;
|
|
902 Ox++;
|
|
903 }
|
|
904 // Add the new def, then the predicate register, then the rest of the
|
|
905 // operands.
|
|
906 MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg());
|
|
907 MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0,
|
|
908 PredOp.getSubReg());
|
|
909 while (Ox < NP) {
|
|
910 MachineOperand &MO = MI.getOperand(Ox);
|
|
911 if (!MO.isReg() || !MO.isImplicit())
|
|
912 MB.add(MO);
|
|
913 Ox++;
|
|
914 }
|
|
915 MB.cloneMemRefs(MI);
|
|
916
|
|
917 MachineInstr *NewI = MB;
|
|
918 NewI->clearKillInfo();
|
|
919 LIS->InsertMachineInstrInMaps(*NewI);
|
|
920
|
236
|
921 for (auto &Op : NewI->operands()) {
|
150
|
922 if (Op.isReg())
|
|
923 UpdRegs.insert(Op.getReg());
|
236
|
924 }
|
150
|
925 }
|
|
926
|
|
927 /// In the range [First, Last], rename all references to the "old" register RO
|
|
928 /// to the "new" register RN, but only in instructions predicated on the given
|
|
929 /// condition.
|
|
930 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
|
|
931 unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
|
|
932 MachineBasicBlock::iterator Last) {
|
|
933 MachineBasicBlock::iterator End = std::next(Last);
|
236
|
934 for (MachineInstr &MI : llvm::make_range(First, End)) {
|
150
|
935 // Do not touch instructions that are not predicated, or are predicated
|
|
936 // on the opposite condition.
|
236
|
937 if (!HII->isPredicated(MI))
|
150
|
938 continue;
|
236
|
939 if (!MI.readsRegister(PredR) || (Cond != HII->isPredicatedTrue(MI)))
|
150
|
940 continue;
|
|
941
|
236
|
942 for (auto &Op : MI.operands()) {
|
150
|
943 if (!Op.isReg() || RO != RegisterRef(Op))
|
|
944 continue;
|
|
945 Op.setReg(RN.Reg);
|
|
946 Op.setSubReg(RN.Sub);
|
|
947 // In practice, this isn't supposed to see any defs.
|
|
948 assert(!Op.isDef() && "Not expecting a def");
|
|
949 }
|
|
950 }
|
|
951 }
|
|
952
|
|
953 /// For a given conditional copy, predicate the definition of the source of
|
|
954 /// the copy under the given condition (using the same predicate register as
|
|
955 /// the copy).
|
|
956 bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond,
|
221
|
957 std::set<Register> &UpdRegs) {
|
150
|
958 // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
|
|
959 unsigned Opc = TfrI.getOpcode();
|
|
960 (void)Opc;
|
|
961 assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
|
|
962 LLVM_DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
|
|
963 << ": " << TfrI);
|
|
964
|
|
965 MachineOperand &MD = TfrI.getOperand(0);
|
|
966 MachineOperand &MP = TfrI.getOperand(1);
|
|
967 MachineOperand &MS = TfrI.getOperand(2);
|
|
968 // The source operand should be a <kill>. This is not strictly necessary,
|
|
969 // but it makes things a lot simpler. Otherwise, we would need to rename
|
|
970 // some registers, which would complicate the transformation considerably.
|
|
971 if (!MS.isKill())
|
|
972 return false;
|
|
973 // Avoid predicating instructions that define a subregister if subregister
|
|
974 // liveness tracking is not enabled.
|
|
975 if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg()))
|
|
976 return false;
|
|
977
|
|
978 RegisterRef RT(MS);
|
|
979 Register PredR = MP.getReg();
|
|
980 MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
|
|
981 if (!DefI || !isPredicable(DefI))
|
|
982 return false;
|
|
983
|
|
984 LLVM_DEBUG(dbgs() << "Source def: " << *DefI);
|
|
985
|
|
986 // Collect the information about registers defined and used between the
|
|
987 // DefI and the TfrI.
|
|
988 // Map: reg -> bitmask of subregs
|
|
989 ReferenceMap Uses, Defs;
|
|
990 MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
|
|
991
|
|
992 // Check if the predicate register is valid between DefI and TfrI.
|
|
993 // If it is, we can then ignore instructions predicated on the negated
|
|
994 // conditions when collecting def and use information.
|
|
995 bool PredValid = true;
|
236
|
996 for (MachineInstr &MI : llvm::make_range(std::next(DefIt), TfrIt)) {
|
|
997 if (!MI.modifiesRegister(PredR, nullptr))
|
150
|
998 continue;
|
|
999 PredValid = false;
|
|
1000 break;
|
|
1001 }
|
|
1002
|
236
|
1003 for (MachineInstr &MI : llvm::make_range(std::next(DefIt), TfrIt)) {
|
150
|
1004 // If this instruction is predicated on the same register, it could
|
|
1005 // potentially be ignored.
|
|
1006 // By default assume that the instruction executes on the same condition
|
|
1007 // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
|
|
1008 unsigned Exec = Exec_Then | Exec_Else;
|
236
|
1009 if (PredValid && HII->isPredicated(MI) && MI.readsRegister(PredR))
|
|
1010 Exec = (Cond == HII->isPredicatedTrue(MI)) ? Exec_Then : Exec_Else;
|
150
|
1011
|
236
|
1012 for (auto &Op : MI.operands()) {
|
150
|
1013 if (!Op.isReg())
|
|
1014 continue;
|
|
1015 // We don't want to deal with physical registers. The reason is that
|
|
1016 // they can be aliased with other physical registers. Aliased virtual
|
|
1017 // registers must share the same register number, and can only differ
|
|
1018 // in the subregisters, which we are keeping track of. Physical
|
|
1019 // registers ters no longer have subregisters---their super- and
|
|
1020 // subregisters are other physical registers, and we are not checking
|
|
1021 // that.
|
|
1022 RegisterRef RR = Op;
|
221
|
1023 if (!RR.Reg.isVirtual())
|
150
|
1024 return false;
|
|
1025
|
|
1026 ReferenceMap &Map = Op.isDef() ? Defs : Uses;
|
|
1027 if (Op.isDef() && Op.isUndef()) {
|
|
1028 assert(RR.Sub && "Expecting a subregister on <def,read-undef>");
|
|
1029 // If this is a <def,read-undef>, then it invalidates the non-written
|
|
1030 // part of the register. For the purpose of checking the validity of
|
|
1031 // the move, assume that it modifies the whole register.
|
|
1032 RR.Sub = 0;
|
|
1033 }
|
|
1034 addRefToMap(RR, Map, Exec);
|
|
1035 }
|
|
1036 }
|
|
1037
|
|
1038 // The situation:
|
|
1039 // RT = DefI
|
|
1040 // ...
|
|
1041 // RD = TfrI ..., RT
|
|
1042
|
|
1043 // If the register-in-the-middle (RT) is used or redefined between
|
|
1044 // DefI and TfrI, we may not be able proceed with this transformation.
|
|
1045 // We can ignore a def that will not execute together with TfrI, and a
|
|
1046 // use that will. If there is such a use (that does execute together with
|
|
1047 // TfrI), we will not be able to move DefI down. If there is a use that
|
|
1048 // executed if TfrI's condition is false, then RT must be available
|
|
1049 // unconditionally (cannot be predicated).
|
|
1050 // Essentially, we need to be able to rename RT to RD in this segment.
|
|
1051 if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
|
|
1052 return false;
|
|
1053 RegisterRef RD = MD;
|
|
1054 // If the predicate register is defined between DefI and TfrI, the only
|
|
1055 // potential thing to do would be to move the DefI down to TfrI, and then
|
|
1056 // predicate. The reaching def (DefI) must be movable down to the location
|
|
1057 // of the TfrI.
|
|
1058 // If the target register of the TfrI (RD) is not used or defined between
|
|
1059 // DefI and TfrI, consider moving TfrI up to DefI.
|
|
1060 bool CanUp = canMoveOver(TfrI, Defs, Uses);
|
|
1061 bool CanDown = canMoveOver(*DefI, Defs, Uses);
|
|
1062 // The TfrI does not access memory, but DefI could. Check if it's safe
|
|
1063 // to move DefI down to TfrI.
|
236
|
1064 if (DefI->mayLoadOrStore()) {
|
150
|
1065 if (!canMoveMemTo(*DefI, TfrI, true))
|
|
1066 CanDown = false;
|
236
|
1067 }
|
150
|
1068
|
|
1069 LLVM_DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
|
|
1070 << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
|
|
1071 MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
|
|
1072 if (CanUp)
|
|
1073 predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs);
|
|
1074 else if (CanDown)
|
|
1075 predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs);
|
|
1076 else
|
|
1077 return false;
|
|
1078
|
|
1079 if (RT != RD) {
|
|
1080 renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
|
|
1081 UpdRegs.insert(RT.Reg);
|
|
1082 }
|
|
1083
|
|
1084 removeInstr(TfrI);
|
|
1085 removeInstr(*DefI);
|
|
1086 return true;
|
|
1087 }
|
|
1088
|
|
1089 /// Predicate all cases of conditional copies in the specified block.
|
|
1090 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B,
|
221
|
1091 std::set<Register> &UpdRegs) {
|
150
|
1092 bool Changed = false;
|
236
|
1093 for (MachineInstr &MI : llvm::make_early_inc_range(B)) {
|
|
1094 unsigned Opc = MI.getOpcode();
|
150
|
1095 if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
|
236
|
1096 bool Done = predicate(MI, (Opc == Hexagon::A2_tfrt), UpdRegs);
|
150
|
1097 if (!Done) {
|
|
1098 // If we didn't predicate I, we may need to remove it in case it is
|
|
1099 // an "identity" copy, e.g. %1 = A2_tfrt %2, %1.
|
236
|
1100 if (RegisterRef(MI.getOperand(0)) == RegisterRef(MI.getOperand(2))) {
|
|
1101 for (auto &Op : MI.operands()) {
|
150
|
1102 if (Op.isReg())
|
|
1103 UpdRegs.insert(Op.getReg());
|
236
|
1104 }
|
|
1105 removeInstr(MI);
|
150
|
1106 }
|
|
1107 }
|
|
1108 Changed |= Done;
|
|
1109 }
|
|
1110 }
|
|
1111 return Changed;
|
|
1112 }
|
|
1113
|
|
1114 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
|
221
|
1115 if (!RR.Reg.isVirtual())
|
150
|
1116 return false;
|
|
1117 const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
|
|
1118 if (RC == &Hexagon::IntRegsRegClass) {
|
|
1119 BW = 32;
|
|
1120 return true;
|
|
1121 }
|
|
1122 if (RC == &Hexagon::DoubleRegsRegClass) {
|
|
1123 BW = (RR.Sub != 0) ? 32 : 64;
|
|
1124 return true;
|
|
1125 }
|
|
1126 return false;
|
|
1127 }
|
|
1128
|
|
1129 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
|
236
|
1130 for (LiveRange::Segment &LR : LI) {
|
150
|
1131 // Range must start at a register...
|
|
1132 if (!LR.start.isRegister())
|
|
1133 return false;
|
|
1134 // ...and end in a register or in a dead slot.
|
|
1135 if (!LR.end.isRegister() && !LR.end.isDead())
|
|
1136 return false;
|
|
1137 }
|
|
1138 return true;
|
|
1139 }
|
|
1140
|
|
1141 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
|
|
1142 if (CoaLimitActive) {
|
|
1143 if (CoaCounter >= CoaLimit)
|
|
1144 return false;
|
|
1145 CoaCounter++;
|
|
1146 }
|
|
1147 unsigned BW1, BW2;
|
|
1148 if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
|
|
1149 return false;
|
|
1150 if (MRI->isLiveIn(R1.Reg))
|
|
1151 return false;
|
|
1152 if (MRI->isLiveIn(R2.Reg))
|
|
1153 return false;
|
|
1154
|
|
1155 LiveInterval &L1 = LIS->getInterval(R1.Reg);
|
|
1156 LiveInterval &L2 = LIS->getInterval(R2.Reg);
|
|
1157 if (L2.empty())
|
|
1158 return false;
|
|
1159 if (L1.hasSubRanges() || L2.hasSubRanges())
|
|
1160 return false;
|
|
1161 bool Overlap = L1.overlaps(L2);
|
|
1162
|
|
1163 LLVM_DEBUG(dbgs() << "compatible registers: ("
|
|
1164 << (Overlap ? "overlap" : "disjoint") << ")\n "
|
|
1165 << printReg(R1.Reg, TRI, R1.Sub) << " " << L1 << "\n "
|
|
1166 << printReg(R2.Reg, TRI, R2.Sub) << " " << L2 << "\n");
|
|
1167 if (R1.Sub || R2.Sub)
|
|
1168 return false;
|
|
1169 if (Overlap)
|
|
1170 return false;
|
|
1171
|
|
1172 // Coalescing could have a negative impact on scheduling, so try to limit
|
|
1173 // to some reasonable extent. Only consider coalescing segments, when one
|
|
1174 // of them does not cross basic block boundaries.
|
|
1175 if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
|
|
1176 return false;
|
|
1177
|
|
1178 MRI->replaceRegWith(R2.Reg, R1.Reg);
|
|
1179
|
|
1180 // Move all live segments from L2 to L1.
|
|
1181 using ValueInfoMap = DenseMap<VNInfo *, VNInfo *>;
|
|
1182 ValueInfoMap VM;
|
236
|
1183 for (LiveRange::Segment &I : L2) {
|
|
1184 VNInfo *NewVN, *OldVN = I.valno;
|
150
|
1185 ValueInfoMap::iterator F = VM.find(OldVN);
|
|
1186 if (F == VM.end()) {
|
236
|
1187 NewVN = L1.getNextValue(I.valno->def, LIS->getVNInfoAllocator());
|
150
|
1188 VM.insert(std::make_pair(OldVN, NewVN));
|
|
1189 } else {
|
|
1190 NewVN = F->second;
|
|
1191 }
|
236
|
1192 L1.addSegment(LiveRange::Segment(I.start, I.end, NewVN));
|
150
|
1193 }
|
221
|
1194 while (!L2.empty())
|
150
|
1195 L2.removeSegment(*L2.begin());
|
|
1196 LIS->removeInterval(R2.Reg);
|
|
1197
|
|
1198 updateKillFlags(R1.Reg);
|
|
1199 LLVM_DEBUG(dbgs() << "coalesced: " << L1 << "\n");
|
|
1200 L1.verify();
|
|
1201
|
|
1202 return true;
|
|
1203 }
|
|
1204
|
|
1205 /// Attempt to coalesce one of the source registers to a MUX instruction with
|
|
1206 /// the destination register. This could lead to having only one predicated
|
|
1207 /// instruction in the end instead of two.
|
|
1208 bool HexagonExpandCondsets::coalesceSegments(
|
221
|
1209 const SmallVectorImpl<MachineInstr *> &Condsets,
|
|
1210 std::set<Register> &UpdRegs) {
|
150
|
1211 SmallVector<MachineInstr*,16> TwoRegs;
|
|
1212 for (MachineInstr *MI : Condsets) {
|
|
1213 MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
|
|
1214 if (!S1.isReg() && !S2.isReg())
|
|
1215 continue;
|
|
1216 TwoRegs.push_back(MI);
|
|
1217 }
|
|
1218
|
|
1219 bool Changed = false;
|
|
1220 for (MachineInstr *CI : TwoRegs) {
|
|
1221 RegisterRef RD = CI->getOperand(0);
|
|
1222 RegisterRef RP = CI->getOperand(1);
|
|
1223 MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
|
|
1224 bool Done = false;
|
|
1225 // Consider this case:
|
|
1226 // %1 = instr1 ...
|
|
1227 // %2 = instr2 ...
|
|
1228 // %0 = C2_mux ..., %1, %2
|
|
1229 // If %0 was coalesced with %1, we could end up with the following
|
|
1230 // code:
|
|
1231 // %0 = instr1 ...
|
|
1232 // %2 = instr2 ...
|
|
1233 // %0 = A2_tfrf ..., %2
|
|
1234 // which will later become:
|
|
1235 // %0 = instr1 ...
|
|
1236 // %0 = instr2_cNotPt ...
|
|
1237 // i.e. there will be an unconditional definition (instr1) of %0
|
|
1238 // followed by a conditional one. The output dependency was there before
|
|
1239 // and it unavoidable, but if instr1 is predicable, we will no longer be
|
|
1240 // able to predicate it here.
|
|
1241 // To avoid this scenario, don't coalesce the destination register with
|
|
1242 // a source register that is defined by a predicable instruction.
|
|
1243 if (S1.isReg()) {
|
|
1244 RegisterRef RS = S1;
|
|
1245 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
|
|
1246 if (!RDef || !HII->isPredicable(*RDef)) {
|
|
1247 Done = coalesceRegisters(RD, RegisterRef(S1));
|
|
1248 if (Done) {
|
|
1249 UpdRegs.insert(RD.Reg);
|
|
1250 UpdRegs.insert(S1.getReg());
|
|
1251 }
|
|
1252 }
|
|
1253 }
|
|
1254 if (!Done && S2.isReg()) {
|
|
1255 RegisterRef RS = S2;
|
|
1256 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
|
|
1257 if (!RDef || !HII->isPredicable(*RDef)) {
|
|
1258 Done = coalesceRegisters(RD, RegisterRef(S2));
|
|
1259 if (Done) {
|
|
1260 UpdRegs.insert(RD.Reg);
|
|
1261 UpdRegs.insert(S2.getReg());
|
|
1262 }
|
|
1263 }
|
|
1264 }
|
|
1265 Changed |= Done;
|
|
1266 }
|
|
1267 return Changed;
|
|
1268 }
|
|
1269
|
|
1270 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
|
|
1271 if (skipFunction(MF.getFunction()))
|
|
1272 return false;
|
|
1273
|
|
1274 HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
|
|
1275 TRI = MF.getSubtarget().getRegisterInfo();
|
|
1276 MDT = &getAnalysis<MachineDominatorTree>();
|
|
1277 LIS = &getAnalysis<LiveIntervals>();
|
|
1278 MRI = &MF.getRegInfo();
|
|
1279
|
|
1280 LLVM_DEBUG(LIS->print(dbgs() << "Before expand-condsets\n",
|
|
1281 MF.getFunction().getParent()));
|
|
1282
|
|
1283 bool Changed = false;
|
221
|
1284 std::set<Register> CoalUpd, PredUpd;
|
150
|
1285
|
|
1286 SmallVector<MachineInstr*,16> Condsets;
|
236
|
1287 for (auto &B : MF) {
|
|
1288 for (auto &I : B) {
|
150
|
1289 if (isCondset(I))
|
|
1290 Condsets.push_back(&I);
|
236
|
1291 }
|
|
1292 }
|
150
|
1293
|
|
1294 // Try to coalesce the target of a mux with one of its sources.
|
|
1295 // This could eliminate a register copy in some circumstances.
|
|
1296 Changed |= coalesceSegments(Condsets, CoalUpd);
|
|
1297
|
|
1298 // Update kill flags on all source operands. This is done here because
|
|
1299 // at this moment (when expand-condsets runs), there are no kill flags
|
|
1300 // in the IR (they have been removed by live range analysis).
|
|
1301 // Updating them right before we split is the easiest, because splitting
|
|
1302 // adds definitions which would interfere with updating kills afterwards.
|
221
|
1303 std::set<Register> KillUpd;
|
236
|
1304 for (MachineInstr *MI : Condsets) {
|
|
1305 for (MachineOperand &Op : MI->operands()) {
|
|
1306 if (Op.isReg() && Op.isUse()) {
|
150
|
1307 if (!CoalUpd.count(Op.getReg()))
|
|
1308 KillUpd.insert(Op.getReg());
|
236
|
1309 }
|
|
1310 }
|
|
1311 }
|
150
|
1312 updateLiveness(KillUpd, false, true, false);
|
|
1313 LLVM_DEBUG(
|
|
1314 LIS->print(dbgs() << "After coalescing\n", MF.getFunction().getParent()));
|
|
1315
|
|
1316 // First, simply split all muxes into a pair of conditional transfers
|
|
1317 // and update the live intervals to reflect the new arrangement. The
|
|
1318 // goal is to update the kill flags, since predication will rely on
|
|
1319 // them.
|
|
1320 for (MachineInstr *MI : Condsets)
|
|
1321 Changed |= split(*MI, PredUpd);
|
|
1322 Condsets.clear(); // The contents of Condsets are invalid here anyway.
|
|
1323
|
|
1324 // Do not update live ranges after splitting. Recalculation of live
|
|
1325 // intervals removes kill flags, which were preserved by splitting on
|
|
1326 // the source operands of condsets. These kill flags are needed by
|
|
1327 // predication, and after splitting they are difficult to recalculate
|
|
1328 // (because of predicated defs), so make sure they are left untouched.
|
|
1329 // Predication does not use live intervals.
|
|
1330 LLVM_DEBUG(
|
|
1331 LIS->print(dbgs() << "After splitting\n", MF.getFunction().getParent()));
|
|
1332
|
|
1333 // Traverse all blocks and collapse predicable instructions feeding
|
|
1334 // conditional transfers into predicated instructions.
|
|
1335 // Walk over all the instructions again, so we may catch pre-existing
|
|
1336 // cases that were not created in the previous step.
|
|
1337 for (auto &B : MF)
|
|
1338 Changed |= predicateInBlock(B, PredUpd);
|
|
1339 LLVM_DEBUG(LIS->print(dbgs() << "After predicating\n",
|
|
1340 MF.getFunction().getParent()));
|
|
1341
|
|
1342 PredUpd.insert(CoalUpd.begin(), CoalUpd.end());
|
|
1343 updateLiveness(PredUpd, true, true, true);
|
|
1344
|
236
|
1345 if (Changed)
|
|
1346 distributeLiveIntervals(PredUpd);
|
|
1347
|
150
|
1348 LLVM_DEBUG({
|
|
1349 if (Changed)
|
|
1350 LIS->print(dbgs() << "After expand-condsets\n",
|
|
1351 MF.getFunction().getParent());
|
|
1352 });
|
|
1353
|
|
1354 return Changed;
|
|
1355 }
|
|
1356
|
|
1357 //===----------------------------------------------------------------------===//
|
|
1358 // Public Constructor Functions
|
|
1359 //===----------------------------------------------------------------------===//
|
|
1360 FunctionPass *llvm::createHexagonExpandCondsets() {
|
|
1361 return new HexagonExpandCondsets();
|
|
1362 }
|