150
|
1 // This test describes how we eventually want to describe instructions in
|
|
2 // the target independent code generators.
|
|
3 // RUN: llvm-tblgen %s
|
|
4 // XFAIL: vg_leak
|
|
5
|
|
6 // Target indep stuff.
|
|
7 class Instruction { // Would have other stuff eventually
|
|
8 bit isTwoAddress = 0;
|
|
9 string AssemblyString;
|
|
10 }
|
|
11 class RegisterClass;
|
|
12
|
|
13 class RTLNode;
|
|
14
|
|
15 def ops; // Marker for operand list.
|
|
16
|
|
17 // Various expressions used in RTL descriptions.
|
|
18 def imm8 : RTLNode;
|
|
19 def imm32 : RTLNode;
|
|
20 def addr : RTLNode;
|
|
21
|
|
22 def set : RTLNode;
|
|
23 def signext : RTLNode;
|
|
24 def zeroext : RTLNode;
|
|
25 def plus : RTLNode;
|
|
26 def and : RTLNode;
|
|
27 def xor : RTLNode;
|
|
28 def shl : RTLNode;
|
|
29 def load : RTLNode;
|
|
30 def store : RTLNode;
|
|
31 def unspec : RTLNode;
|
|
32
|
|
33 // Start of X86 specific stuff.
|
|
34
|
|
35 def R8 : RegisterClass;
|
|
36 def R16 : RegisterClass;
|
|
37 def R32 : RegisterClass;
|
|
38
|
|
39 def CL; // As are currently defined
|
|
40 def AL;
|
|
41 def AX;
|
|
42 def EDX;
|
|
43
|
|
44 class Format<bits<5> val> {
|
|
45 bits<5> Value = val;
|
|
46 }
|
|
47
|
|
48 def Pseudo : Format<0>; def RawFrm : Format<1>;
|
|
49 def AddRegFrm : Format<2>; def MRMDestReg : Format<3>;
|
|
50 def MRMDestMem : Format<4>; def MRMSrcReg : Format<5>;
|
|
51 def MRMSrcMem : Format<6>;
|
|
52 def MRM0r : Format<16>; def MRM1r : Format<17>; def MRM2r : Format<18>;
|
|
53 def MRM3r : Format<19>; def MRM4r : Format<20>; def MRM5r : Format<21>;
|
|
54 def MRM6r : Format<22>; def MRM7r : Format<23>;
|
|
55 def MRM0m : Format<24>; def MRM1m : Format<25>; def MRM2m : Format<26>;
|
|
56 def MRM3m : Format<27>; def MRM4m : Format<28>; def MRM5m : Format<29>;
|
|
57 def MRM6m : Format<30>; def MRM7m : Format<31>;
|
|
58
|
|
59
|
|
60 class Inst<dag opnds, string asmstr, bits<8> opcode,
|
|
61 Format f, list<dag> rtl> : Instruction {
|
|
62 dag Operands = opnds;
|
|
63 string AssemblyString = asmstr;
|
|
64 bits<8> Opcode = opcode;
|
|
65 Format Format = f;
|
|
66 list<dag> RTL = rtl;
|
|
67 }
|
|
68
|
|
69
|
|
70 // Start of instruction definitions, the real point of this file.
|
|
71 //
|
|
72 // Note that these patterns show a couple of important things:
|
|
73 // 1. The order and contents of the operands of the MachineInstr are
|
|
74 // described here. Eventually we can do away with this when everything
|
|
75 // is generated from the description.
|
|
76 // 2. The asm string is captured here, which makes it possible to get rid of
|
|
77 // a ton of hacks in the various printers and a bunch of flags.
|
|
78 // 3. Target specific properties (e.g. Format) can still be captured as
|
|
79 // needed.
|
|
80 // 4. We capture the behavior of the instruction with a simplified RTL-like
|
|
81 // expression.
|
|
82 // 5. The use/def properties for each operand are automatically inferred from
|
|
83 // the pattern.
|
|
84 // 6. Address expressions should become first-class entities.
|
|
85
|
|
86 // Simple copy instruction.
|
|
87 def MOV8rr : Inst<(ops R8:$dst, R8:$src),
|
|
88 "mov $dst, $src", 0x88, MRMDestReg,
|
|
89 [(set R8:$dst, R8:$src)]>;
|
|
90
|
|
91 // Simple immediate initialization.
|
|
92 def MOV8ri : Inst<(ops R8:$dst, imm8:$src),
|
|
93 "mov $dst, $src", 0xB0, AddRegFrm,
|
|
94 [(set R8:$dst, imm8:$src)]>;
|
|
95
|
|
96 // Two address instructions are described as three-addr instructions, with
|
|
97 // the special target-independent isTwoAddress flag set. The asm pattern
|
|
98 // should not refer to the $src1, this would be enforced by the
|
|
99 // TargetInstrInfo tablegen backend.
|
|
100 let isTwoAddress = 1 in
|
|
101 def AND8rr : Inst<(ops R8:$dst, R8:$src1, R8:$src2),
|
|
102 "and $dst, $src2", 0x20, MRMDestReg,
|
|
103 [(set R8:$dst, (and R8:$src1, R8:$src2))]>;
|
|
104
|
|
105 // Instructions that have explicit uses/defs make them explicit in the RTL.
|
|
106 // Instructions that need extra stuff emitted in the assembly can, trivially.
|
|
107 let isTwoAddress = 1 in
|
|
108 def SHL32rCL : Inst<(ops R32:$dst, R32:$src),
|
|
109 "shl $dst, CL", 0xD2, MRM4r,
|
|
110 [(set R32:$dst, (shl R32:$src, CL))]>;
|
|
111
|
|
112 // The RTL list is a list, allowing complex instructions to be defined easily.
|
|
113 // Temporary 'internal' registers can be used to break instructions apart.
|
|
114 let isTwoAddress = 1 in
|
|
115 def XOR32mi : Inst<(ops addr:$addr, imm32:$imm),
|
|
116 "xor $dst, $src2", 0x81, MRM6m,
|
|
117 [(set R32:$tmp1, (load addr:$addr)),
|
|
118 (set R32:$tmp2, (xor R32:$tmp1, imm32:$imm)),
|
|
119 (store addr:$addr, R32:$tmp2)]>;
|
|
120
|
|
121 // Alternatively, if each tmporary register is only used once, the instruction
|
|
122 // can just be described in nested form. This would be the canonical
|
|
123 // representation the target generator would convert the above into. Pick your
|
|
124 // favorite indentation scheme.
|
|
125 let isTwoAddress = 1 in
|
|
126 def AND32mr : Inst<(ops addr:$addr, R32:$src),
|
|
127 "xor $dst, $src2", 0x81, MRM6m,
|
|
128 [(store addr:$addr,
|
|
129 (and
|
|
130 (load addr:$addr),
|
|
131 R32:$src)
|
|
132 )
|
|
133 ]>;
|
|
134
|
|
135 // Describing complex instructions is not too hard! Note how implicit uses/defs
|
|
136 // become explicit here.
|
|
137 def CBW : Inst<(ops),
|
|
138 "cbw", 0x98, RawFrm,
|
|
139 [(set AX, (signext AL))]>;
|
|
140
|
|
141 // Noop, does nothing.
|
|
142 def NOOP : Inst<(ops), "nop", 0x90, RawFrm, []>;
|
|
143
|
|
144
|
|
145 // Instructions that don't expect optimization can use unspec.
|
|
146 def IN8rr : Inst<(ops), "in AL, EDX", 0xEC, RawFrm,
|
|
147 [(set AL, (unspec EDX))]>;
|
|
148
|