Mercurial > hg > CbC > CbC_llvm
comparison libc/AOR_v20.02/math/log2.c @ 173:0572611fdcc8 llvm10 llvm12
reorgnization done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 25 May 2020 11:55:54 +0900 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
172:9fbae9c8bf63 | 173:0572611fdcc8 |
---|---|
1 /* | |
2 * Double-precision log2(x) function. | |
3 * | |
4 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |
5 * See https://llvm.org/LICENSE.txt for license information. | |
6 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |
7 */ | |
8 | |
9 #include <float.h> | |
10 #include <math.h> | |
11 #include <stdint.h> | |
12 #include "math_config.h" | |
13 | |
14 #define T __log2_data.tab | |
15 #define T2 __log2_data.tab2 | |
16 #define B __log2_data.poly1 | |
17 #define A __log2_data.poly | |
18 #define InvLn2hi __log2_data.invln2hi | |
19 #define InvLn2lo __log2_data.invln2lo | |
20 #define N (1 << LOG2_TABLE_BITS) | |
21 #define OFF 0x3fe6000000000000 | |
22 | |
23 /* Top 16 bits of a double. */ | |
24 static inline uint32_t | |
25 top16 (double x) | |
26 { | |
27 return asuint64 (x) >> 48; | |
28 } | |
29 | |
30 double | |
31 log2 (double x) | |
32 { | |
33 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ | |
34 double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p; | |
35 uint64_t ix, iz, tmp; | |
36 uint32_t top; | |
37 int k, i; | |
38 | |
39 ix = asuint64 (x); | |
40 top = top16 (x); | |
41 | |
42 #if LOG2_POLY1_ORDER == 11 | |
43 # define LO asuint64 (1.0 - 0x1.5b51p-5) | |
44 # define HI asuint64 (1.0 + 0x1.6ab2p-5) | |
45 #endif | |
46 if (unlikely (ix - LO < HI - LO)) | |
47 { | |
48 /* Handle close to 1.0 inputs separately. */ | |
49 /* Fix sign of zero with downward rounding when x==1. */ | |
50 if (WANT_ROUNDING && unlikely (ix == asuint64 (1.0))) | |
51 return 0; | |
52 r = x - 1.0; | |
53 #if HAVE_FAST_FMA | |
54 hi = r * InvLn2hi; | |
55 lo = r * InvLn2lo + fma (r, InvLn2hi, -hi); | |
56 #else | |
57 double_t rhi, rlo; | |
58 rhi = asdouble (asuint64 (r) & -1ULL << 32); | |
59 rlo = r - rhi; | |
60 hi = rhi * InvLn2hi; | |
61 lo = rlo * InvLn2hi + r * InvLn2lo; | |
62 #endif | |
63 r2 = r * r; /* rounding error: 0x1p-62. */ | |
64 r4 = r2 * r2; | |
65 #if LOG2_POLY1_ORDER == 11 | |
66 /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma). */ | |
67 p = r2 * (B[0] + r * B[1]); | |
68 y = hi + p; | |
69 lo += hi - y + p; | |
70 lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5]) | |
71 + r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9]))); | |
72 y += lo; | |
73 #endif | |
74 return eval_as_double (y); | |
75 } | |
76 if (unlikely (top - 0x0010 >= 0x7ff0 - 0x0010)) | |
77 { | |
78 /* x < 0x1p-1022 or inf or nan. */ | |
79 if (ix * 2 == 0) | |
80 return __math_divzero (1); | |
81 if (ix == asuint64 (INFINITY)) /* log(inf) == inf. */ | |
82 return x; | |
83 if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0) | |
84 return __math_invalid (x); | |
85 /* x is subnormal, normalize it. */ | |
86 ix = asuint64 (x * 0x1p52); | |
87 ix -= 52ULL << 52; | |
88 } | |
89 | |
90 /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. | |
91 The range is split into N subintervals. | |
92 The ith subinterval contains z and c is near its center. */ | |
93 tmp = ix - OFF; | |
94 i = (tmp >> (52 - LOG2_TABLE_BITS)) % N; | |
95 k = (int64_t) tmp >> 52; /* arithmetic shift */ | |
96 iz = ix - (tmp & 0xfffULL << 52); | |
97 invc = T[i].invc; | |
98 logc = T[i].logc; | |
99 z = asdouble (iz); | |
100 kd = (double_t) k; | |
101 | |
102 /* log2(x) = log2(z/c) + log2(c) + k. */ | |
103 /* r ~= z/c - 1, |r| < 1/(2*N). */ | |
104 #if HAVE_FAST_FMA | |
105 /* rounding error: 0x1p-55/N. */ | |
106 r = fma (z, invc, -1.0); | |
107 t1 = r * InvLn2hi; | |
108 t2 = r * InvLn2lo + fma (r, InvLn2hi, -t1); | |
109 #else | |
110 double_t rhi, rlo; | |
111 /* rounding error: 0x1p-55/N + 0x1p-65. */ | |
112 r = (z - T2[i].chi - T2[i].clo) * invc; | |
113 rhi = asdouble (asuint64 (r) & -1ULL << 32); | |
114 rlo = r - rhi; | |
115 t1 = rhi * InvLn2hi; | |
116 t2 = rlo * InvLn2hi + r * InvLn2lo; | |
117 #endif | |
118 | |
119 /* hi + lo = r/ln2 + log2(c) + k. */ | |
120 t3 = kd + logc; | |
121 hi = t3 + t1; | |
122 lo = t3 - hi + t1 + t2; | |
123 | |
124 /* log2(r+1) = r/ln2 + r^2*poly(r). */ | |
125 /* Evaluation is optimized assuming superscalar pipelined execution. */ | |
126 r2 = r * r; /* rounding error: 0x1p-54/N^2. */ | |
127 r4 = r2 * r2; | |
128 #if LOG2_POLY_ORDER == 7 | |
129 /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma). | |
130 ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). */ | |
131 p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]); | |
132 y = lo + r2 * p + hi; | |
133 #endif | |
134 return eval_as_double (y); | |
135 } | |
136 #if USE_GLIBC_ABI | |
137 strong_alias (log2, __log2_finite) | |
138 hidden_alias (log2, __ieee754_log2) | |
139 # if LDBL_MANT_DIG == 53 | |
140 long double log2l (long double x) { return log2 (x); } | |
141 # endif | |
142 #endif |