Mercurial > hg > CbC > CbC_llvm
comparison clang/lib/CodeGen/CGGPUBuiltin.cpp @ 150:1d019706d866
LLVM10
author | anatofuz |
---|---|
date | Thu, 13 Feb 2020 15:10:13 +0900 |
parents | |
children | c4bab56944e8 |
comparison
equal
deleted
inserted
replaced
147:c2174574ed3a | 150:1d019706d866 |
---|---|
1 //===------ CGGPUBuiltin.cpp - Codegen for GPU builtins -------------------===// | |
2 // | |
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |
4 // See https://llvm.org/LICENSE.txt for license information. | |
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |
6 // | |
7 //===----------------------------------------------------------------------===// | |
8 // | |
9 // Generates code for built-in GPU calls which are not runtime-specific. | |
10 // (Runtime-specific codegen lives in programming model specific files.) | |
11 // | |
12 //===----------------------------------------------------------------------===// | |
13 | |
14 #include "CodeGenFunction.h" | |
15 #include "clang/Basic/Builtins.h" | |
16 #include "llvm/IR/DataLayout.h" | |
17 #include "llvm/IR/Instruction.h" | |
18 #include "llvm/Support/MathExtras.h" | |
19 #include "llvm/Transforms/Utils/AMDGPUEmitPrintf.h" | |
20 | |
21 using namespace clang; | |
22 using namespace CodeGen; | |
23 | |
24 static llvm::Function *GetVprintfDeclaration(llvm::Module &M) { | |
25 llvm::Type *ArgTypes[] = {llvm::Type::getInt8PtrTy(M.getContext()), | |
26 llvm::Type::getInt8PtrTy(M.getContext())}; | |
27 llvm::FunctionType *VprintfFuncType = llvm::FunctionType::get( | |
28 llvm::Type::getInt32Ty(M.getContext()), ArgTypes, false); | |
29 | |
30 if (auto* F = M.getFunction("vprintf")) { | |
31 // Our CUDA system header declares vprintf with the right signature, so | |
32 // nobody else should have been able to declare vprintf with a bogus | |
33 // signature. | |
34 assert(F->getFunctionType() == VprintfFuncType); | |
35 return F; | |
36 } | |
37 | |
38 // vprintf doesn't already exist; create a declaration and insert it into the | |
39 // module. | |
40 return llvm::Function::Create( | |
41 VprintfFuncType, llvm::GlobalVariable::ExternalLinkage, "vprintf", &M); | |
42 } | |
43 | |
44 // Transforms a call to printf into a call to the NVPTX vprintf syscall (which | |
45 // isn't particularly special; it's invoked just like a regular function). | |
46 // vprintf takes two args: A format string, and a pointer to a buffer containing | |
47 // the varargs. | |
48 // | |
49 // For example, the call | |
50 // | |
51 // printf("format string", arg1, arg2, arg3); | |
52 // | |
53 // is converted into something resembling | |
54 // | |
55 // struct Tmp { | |
56 // Arg1 a1; | |
57 // Arg2 a2; | |
58 // Arg3 a3; | |
59 // }; | |
60 // char* buf = alloca(sizeof(Tmp)); | |
61 // *(Tmp*)buf = {a1, a2, a3}; | |
62 // vprintf("format string", buf); | |
63 // | |
64 // buf is aligned to the max of {alignof(Arg1), ...}. Furthermore, each of the | |
65 // args is itself aligned to its preferred alignment. | |
66 // | |
67 // Note that by the time this function runs, E's args have already undergone the | |
68 // standard C vararg promotion (short -> int, float -> double, etc.). | |
69 RValue | |
70 CodeGenFunction::EmitNVPTXDevicePrintfCallExpr(const CallExpr *E, | |
71 ReturnValueSlot ReturnValue) { | |
72 assert(getTarget().getTriple().isNVPTX()); | |
73 assert(E->getBuiltinCallee() == Builtin::BIprintf); | |
74 assert(E->getNumArgs() >= 1); // printf always has at least one arg. | |
75 | |
76 const llvm::DataLayout &DL = CGM.getDataLayout(); | |
77 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); | |
78 | |
79 CallArgList Args; | |
80 EmitCallArgs(Args, | |
81 E->getDirectCallee()->getType()->getAs<FunctionProtoType>(), | |
82 E->arguments(), E->getDirectCallee(), | |
83 /* ParamsToSkip = */ 0); | |
84 | |
85 // We don't know how to emit non-scalar varargs. | |
86 if (std::any_of(Args.begin() + 1, Args.end(), [&](const CallArg &A) { | |
87 return !A.getRValue(*this).isScalar(); | |
88 })) { | |
89 CGM.ErrorUnsupported(E, "non-scalar arg to printf"); | |
90 return RValue::get(llvm::ConstantInt::get(IntTy, 0)); | |
91 } | |
92 | |
93 // Construct and fill the args buffer that we'll pass to vprintf. | |
94 llvm::Value *BufferPtr; | |
95 if (Args.size() <= 1) { | |
96 // If there are no args, pass a null pointer to vprintf. | |
97 BufferPtr = llvm::ConstantPointerNull::get(llvm::Type::getInt8PtrTy(Ctx)); | |
98 } else { | |
99 llvm::SmallVector<llvm::Type *, 8> ArgTypes; | |
100 for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) | |
101 ArgTypes.push_back(Args[I].getRValue(*this).getScalarVal()->getType()); | |
102 | |
103 // Using llvm::StructType is correct only because printf doesn't accept | |
104 // aggregates. If we had to handle aggregates here, we'd have to manually | |
105 // compute the offsets within the alloca -- we wouldn't be able to assume | |
106 // that the alignment of the llvm type was the same as the alignment of the | |
107 // clang type. | |
108 llvm::Type *AllocaTy = llvm::StructType::create(ArgTypes, "printf_args"); | |
109 llvm::Value *Alloca = CreateTempAlloca(AllocaTy); | |
110 | |
111 for (unsigned I = 1, NumArgs = Args.size(); I < NumArgs; ++I) { | |
112 llvm::Value *P = Builder.CreateStructGEP(AllocaTy, Alloca, I - 1); | |
113 llvm::Value *Arg = Args[I].getRValue(*this).getScalarVal(); | |
114 Builder.CreateAlignedStore(Arg, P, DL.getPrefTypeAlign(Arg->getType())); | |
115 } | |
116 BufferPtr = Builder.CreatePointerCast(Alloca, llvm::Type::getInt8PtrTy(Ctx)); | |
117 } | |
118 | |
119 // Invoke vprintf and return. | |
120 llvm::Function* VprintfFunc = GetVprintfDeclaration(CGM.getModule()); | |
121 return RValue::get(Builder.CreateCall( | |
122 VprintfFunc, {Args[0].getRValue(*this).getScalarVal(), BufferPtr})); | |
123 } | |
124 | |
125 RValue | |
126 CodeGenFunction::EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E, | |
127 ReturnValueSlot ReturnValue) { | |
128 assert(getTarget().getTriple().getArch() == llvm::Triple::amdgcn); | |
129 assert(E->getBuiltinCallee() == Builtin::BIprintf || | |
130 E->getBuiltinCallee() == Builtin::BI__builtin_printf); | |
131 assert(E->getNumArgs() >= 1); // printf always has at least one arg. | |
132 | |
133 CallArgList CallArgs; | |
134 EmitCallArgs(CallArgs, | |
135 E->getDirectCallee()->getType()->getAs<FunctionProtoType>(), | |
136 E->arguments(), E->getDirectCallee(), | |
137 /* ParamsToSkip = */ 0); | |
138 | |
139 SmallVector<llvm::Value *, 8> Args; | |
140 for (auto A : CallArgs) { | |
141 // We don't know how to emit non-scalar varargs. | |
142 if (!A.getRValue(*this).isScalar()) { | |
143 CGM.ErrorUnsupported(E, "non-scalar arg to printf"); | |
144 return RValue::get(llvm::ConstantInt::get(IntTy, -1)); | |
145 } | |
146 | |
147 llvm::Value *Arg = A.getRValue(*this).getScalarVal(); | |
148 Args.push_back(Arg); | |
149 } | |
150 | |
151 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); | |
152 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); | |
153 auto Printf = llvm::emitAMDGPUPrintfCall(IRB, Args); | |
154 Builder.SetInsertPoint(IRB.GetInsertBlock(), IRB.GetInsertPoint()); | |
155 return RValue::get(Printf); | |
156 } |