comparison clang/lib/Lex/PPMacroExpansion.cpp @ 150:1d019706d866

LLVM10
author anatofuz
date Thu, 13 Feb 2020 15:10:13 +0900
parents
children 0572611fdcc8
comparison
equal deleted inserted replaced
147:c2174574ed3a 150:1d019706d866
1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the top level handling of macro expansion for the
10 // preprocessor.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Basic/Attributes.h"
15 #include "clang/Basic/Builtins.h"
16 #include "clang/Basic/FileManager.h"
17 #include "clang/Basic/IdentifierTable.h"
18 #include "clang/Basic/LLVM.h"
19 #include "clang/Basic/LangOptions.h"
20 #include "clang/Basic/ObjCRuntime.h"
21 #include "clang/Basic/SourceLocation.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/Lex/CodeCompletionHandler.h"
24 #include "clang/Lex/DirectoryLookup.h"
25 #include "clang/Lex/ExternalPreprocessorSource.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/LexDiagnostic.h"
28 #include "clang/Lex/MacroArgs.h"
29 #include "clang/Lex/MacroInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Lex/PreprocessorLexer.h"
32 #include "clang/Lex/PreprocessorOptions.h"
33 #include "clang/Lex/Token.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/DenseSet.h"
37 #include "llvm/ADT/FoldingSet.h"
38 #include "llvm/ADT/None.h"
39 #include "llvm/ADT/Optional.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/ADT/SmallString.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/ADT/StringRef.h"
44 #include "llvm/ADT/StringSwitch.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/Format.h"
48 #include "llvm/Support/Path.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstddef>
53 #include <cstring>
54 #include <ctime>
55 #include <string>
56 #include <tuple>
57 #include <utility>
58
59 using namespace clang;
60
61 MacroDirective *
62 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const {
63 if (!II->hadMacroDefinition())
64 return nullptr;
65 auto Pos = CurSubmoduleState->Macros.find(II);
66 return Pos == CurSubmoduleState->Macros.end() ? nullptr
67 : Pos->second.getLatest();
68 }
69
70 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
71 assert(MD && "MacroDirective should be non-zero!");
72 assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
73
74 MacroState &StoredMD = CurSubmoduleState->Macros[II];
75 auto *OldMD = StoredMD.getLatest();
76 MD->setPrevious(OldMD);
77 StoredMD.setLatest(MD);
78 StoredMD.overrideActiveModuleMacros(*this, II);
79
80 if (needModuleMacros()) {
81 // Track that we created a new macro directive, so we know we should
82 // consider building a ModuleMacro for it when we get to the end of
83 // the module.
84 PendingModuleMacroNames.push_back(II);
85 }
86
87 // Set up the identifier as having associated macro history.
88 II->setHasMacroDefinition(true);
89 if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
90 II->setHasMacroDefinition(false);
91 if (II->isFromAST())
92 II->setChangedSinceDeserialization();
93 }
94
95 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
96 MacroDirective *ED,
97 MacroDirective *MD) {
98 // Normally, when a macro is defined, it goes through appendMacroDirective()
99 // above, which chains a macro to previous defines, undefs, etc.
100 // However, in a pch, the whole macro history up to the end of the pch is
101 // stored, so ASTReader goes through this function instead.
102 // However, built-in macros are already registered in the Preprocessor
103 // ctor, and ASTWriter stops writing the macro chain at built-in macros,
104 // so in that case the chain from the pch needs to be spliced to the existing
105 // built-in.
106
107 assert(II && MD);
108 MacroState &StoredMD = CurSubmoduleState->Macros[II];
109
110 if (auto *OldMD = StoredMD.getLatest()) {
111 // shouldIgnoreMacro() in ASTWriter also stops at macros from the
112 // predefines buffer in module builds. However, in module builds, modules
113 // are loaded completely before predefines are processed, so StoredMD
114 // will be nullptr for them when they're loaded. StoredMD should only be
115 // non-nullptr for builtins read from a pch file.
116 assert(OldMD->getMacroInfo()->isBuiltinMacro() &&
117 "only built-ins should have an entry here");
118 assert(!OldMD->getPrevious() && "builtin should only have a single entry");
119 ED->setPrevious(OldMD);
120 StoredMD.setLatest(MD);
121 } else {
122 StoredMD = MD;
123 }
124
125 // Setup the identifier as having associated macro history.
126 II->setHasMacroDefinition(true);
127 if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
128 II->setHasMacroDefinition(false);
129 }
130
131 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II,
132 MacroInfo *Macro,
133 ArrayRef<ModuleMacro *> Overrides,
134 bool &New) {
135 llvm::FoldingSetNodeID ID;
136 ModuleMacro::Profile(ID, Mod, II);
137
138 void *InsertPos;
139 if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) {
140 New = false;
141 return MM;
142 }
143
144 auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides);
145 ModuleMacros.InsertNode(MM, InsertPos);
146
147 // Each overridden macro is now overridden by one more macro.
148 bool HidAny = false;
149 for (auto *O : Overrides) {
150 HidAny |= (O->NumOverriddenBy == 0);
151 ++O->NumOverriddenBy;
152 }
153
154 // If we were the first overrider for any macro, it's no longer a leaf.
155 auto &LeafMacros = LeafModuleMacros[II];
156 if (HidAny) {
157 LeafMacros.erase(std::remove_if(LeafMacros.begin(), LeafMacros.end(),
158 [](ModuleMacro *MM) {
159 return MM->NumOverriddenBy != 0;
160 }),
161 LeafMacros.end());
162 }
163
164 // The new macro is always a leaf macro.
165 LeafMacros.push_back(MM);
166 // The identifier now has defined macros (that may or may not be visible).
167 II->setHasMacroDefinition(true);
168
169 New = true;
170 return MM;
171 }
172
173 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, IdentifierInfo *II) {
174 llvm::FoldingSetNodeID ID;
175 ModuleMacro::Profile(ID, Mod, II);
176
177 void *InsertPos;
178 return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos);
179 }
180
181 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II,
182 ModuleMacroInfo &Info) {
183 assert(Info.ActiveModuleMacrosGeneration !=
184 CurSubmoduleState->VisibleModules.getGeneration() &&
185 "don't need to update this macro name info");
186 Info.ActiveModuleMacrosGeneration =
187 CurSubmoduleState->VisibleModules.getGeneration();
188
189 auto Leaf = LeafModuleMacros.find(II);
190 if (Leaf == LeafModuleMacros.end()) {
191 // No imported macros at all: nothing to do.
192 return;
193 }
194
195 Info.ActiveModuleMacros.clear();
196
197 // Every macro that's locally overridden is overridden by a visible macro.
198 llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides;
199 for (auto *O : Info.OverriddenMacros)
200 NumHiddenOverrides[O] = -1;
201
202 // Collect all macros that are not overridden by a visible macro.
203 llvm::SmallVector<ModuleMacro *, 16> Worklist;
204 for (auto *LeafMM : Leaf->second) {
205 assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden");
206 if (NumHiddenOverrides.lookup(LeafMM) == 0)
207 Worklist.push_back(LeafMM);
208 }
209 while (!Worklist.empty()) {
210 auto *MM = Worklist.pop_back_val();
211 if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) {
212 // We only care about collecting definitions; undefinitions only act
213 // to override other definitions.
214 if (MM->getMacroInfo())
215 Info.ActiveModuleMacros.push_back(MM);
216 } else {
217 for (auto *O : MM->overrides())
218 if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros())
219 Worklist.push_back(O);
220 }
221 }
222 // Our reverse postorder walk found the macros in reverse order.
223 std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end());
224
225 // Determine whether the macro name is ambiguous.
226 MacroInfo *MI = nullptr;
227 bool IsSystemMacro = true;
228 bool IsAmbiguous = false;
229 if (auto *MD = Info.MD) {
230 while (MD && isa<VisibilityMacroDirective>(MD))
231 MD = MD->getPrevious();
232 if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) {
233 MI = DMD->getInfo();
234 IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation());
235 }
236 }
237 for (auto *Active : Info.ActiveModuleMacros) {
238 auto *NewMI = Active->getMacroInfo();
239
240 // Before marking the macro as ambiguous, check if this is a case where
241 // both macros are in system headers. If so, we trust that the system
242 // did not get it wrong. This also handles cases where Clang's own
243 // headers have a different spelling of certain system macros:
244 // #define LONG_MAX __LONG_MAX__ (clang's limits.h)
245 // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
246 //
247 // FIXME: Remove the defined-in-system-headers check. clang's limits.h
248 // overrides the system limits.h's macros, so there's no conflict here.
249 if (MI && NewMI != MI &&
250 !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true))
251 IsAmbiguous = true;
252 IsSystemMacro &= Active->getOwningModule()->IsSystem ||
253 SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc());
254 MI = NewMI;
255 }
256 Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro;
257 }
258
259 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) {
260 ArrayRef<ModuleMacro*> Leaf;
261 auto LeafIt = LeafModuleMacros.find(II);
262 if (LeafIt != LeafModuleMacros.end())
263 Leaf = LeafIt->second;
264 const MacroState *State = nullptr;
265 auto Pos = CurSubmoduleState->Macros.find(II);
266 if (Pos != CurSubmoduleState->Macros.end())
267 State = &Pos->second;
268
269 llvm::errs() << "MacroState " << State << " " << II->getNameStart();
270 if (State && State->isAmbiguous(*this, II))
271 llvm::errs() << " ambiguous";
272 if (State && !State->getOverriddenMacros().empty()) {
273 llvm::errs() << " overrides";
274 for (auto *O : State->getOverriddenMacros())
275 llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
276 }
277 llvm::errs() << "\n";
278
279 // Dump local macro directives.
280 for (auto *MD = State ? State->getLatest() : nullptr; MD;
281 MD = MD->getPrevious()) {
282 llvm::errs() << " ";
283 MD->dump();
284 }
285
286 // Dump module macros.
287 llvm::DenseSet<ModuleMacro*> Active;
288 for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None)
289 Active.insert(MM);
290 llvm::DenseSet<ModuleMacro*> Visited;
291 llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end());
292 while (!Worklist.empty()) {
293 auto *MM = Worklist.pop_back_val();
294 llvm::errs() << " ModuleMacro " << MM << " "
295 << MM->getOwningModule()->getFullModuleName();
296 if (!MM->getMacroInfo())
297 llvm::errs() << " undef";
298
299 if (Active.count(MM))
300 llvm::errs() << " active";
301 else if (!CurSubmoduleState->VisibleModules.isVisible(
302 MM->getOwningModule()))
303 llvm::errs() << " hidden";
304 else if (MM->getMacroInfo())
305 llvm::errs() << " overridden";
306
307 if (!MM->overrides().empty()) {
308 llvm::errs() << " overrides";
309 for (auto *O : MM->overrides()) {
310 llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
311 if (Visited.insert(O).second)
312 Worklist.push_back(O);
313 }
314 }
315 llvm::errs() << "\n";
316 if (auto *MI = MM->getMacroInfo()) {
317 llvm::errs() << " ";
318 MI->dump();
319 llvm::errs() << "\n";
320 }
321 }
322 }
323
324 /// RegisterBuiltinMacro - Register the specified identifier in the identifier
325 /// table and mark it as a builtin macro to be expanded.
326 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
327 // Get the identifier.
328 IdentifierInfo *Id = PP.getIdentifierInfo(Name);
329
330 // Mark it as being a macro that is builtin.
331 MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
332 MI->setIsBuiltinMacro();
333 PP.appendDefMacroDirective(Id, MI);
334 return Id;
335 }
336
337 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
338 /// identifier table.
339 void Preprocessor::RegisterBuiltinMacros() {
340 Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
341 Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
342 Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
343 Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
344 Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
345 Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma");
346
347 // C++ Standing Document Extensions.
348 if (LangOpts.CPlusPlus)
349 Ident__has_cpp_attribute =
350 RegisterBuiltinMacro(*this, "__has_cpp_attribute");
351 else
352 Ident__has_cpp_attribute = nullptr;
353
354 // GCC Extensions.
355 Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__");
356 Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
357 Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
358
359 // Microsoft Extensions.
360 if (LangOpts.MicrosoftExt) {
361 Ident__identifier = RegisterBuiltinMacro(*this, "__identifier");
362 Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
363 } else {
364 Ident__identifier = nullptr;
365 Ident__pragma = nullptr;
366 }
367
368 // Clang Extensions.
369 Ident__FILE_NAME__ = RegisterBuiltinMacro(*this, "__FILE_NAME__");
370 Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature");
371 Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension");
372 Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin");
373 Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute");
374 if (!LangOpts.CPlusPlus)
375 Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute");
376 else
377 Ident__has_c_attribute = nullptr;
378
379 Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute");
380 Ident__has_include = RegisterBuiltinMacro(*this, "__has_include");
381 Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
382 Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning");
383 Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier");
384 Ident__is_target_arch = RegisterBuiltinMacro(*this, "__is_target_arch");
385 Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor");
386 Ident__is_target_os = RegisterBuiltinMacro(*this, "__is_target_os");
387 Ident__is_target_environment =
388 RegisterBuiltinMacro(*this, "__is_target_environment");
389
390 // Modules.
391 Ident__building_module = RegisterBuiltinMacro(*this, "__building_module");
392 if (!LangOpts.CurrentModule.empty())
393 Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
394 else
395 Ident__MODULE__ = nullptr;
396 }
397
398 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
399 /// in its expansion, currently expands to that token literally.
400 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
401 const IdentifierInfo *MacroIdent,
402 Preprocessor &PP) {
403 IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
404
405 // If the token isn't an identifier, it's always literally expanded.
406 if (!II) return true;
407
408 // If the information about this identifier is out of date, update it from
409 // the external source.
410 if (II->isOutOfDate())
411 PP.getExternalSource()->updateOutOfDateIdentifier(*II);
412
413 // If the identifier is a macro, and if that macro is enabled, it may be
414 // expanded so it's not a trivial expansion.
415 if (auto *ExpansionMI = PP.getMacroInfo(II))
416 if (ExpansionMI->isEnabled() &&
417 // Fast expanding "#define X X" is ok, because X would be disabled.
418 II != MacroIdent)
419 return false;
420
421 // If this is an object-like macro invocation, it is safe to trivially expand
422 // it.
423 if (MI->isObjectLike()) return true;
424
425 // If this is a function-like macro invocation, it's safe to trivially expand
426 // as long as the identifier is not a macro argument.
427 return std::find(MI->param_begin(), MI->param_end(), II) == MI->param_end();
428 }
429
430 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be
431 /// lexed is a '('. If so, consume the token and return true, if not, this
432 /// method should have no observable side-effect on the lexed tokens.
433 bool Preprocessor::isNextPPTokenLParen() {
434 // Do some quick tests for rejection cases.
435 unsigned Val;
436 if (CurLexer)
437 Val = CurLexer->isNextPPTokenLParen();
438 else
439 Val = CurTokenLexer->isNextTokenLParen();
440
441 if (Val == 2) {
442 // We have run off the end. If it's a source file we don't
443 // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the
444 // macro stack.
445 if (CurPPLexer)
446 return false;
447 for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) {
448 if (Entry.TheLexer)
449 Val = Entry.TheLexer->isNextPPTokenLParen();
450 else
451 Val = Entry.TheTokenLexer->isNextTokenLParen();
452
453 if (Val != 2)
454 break;
455
456 // Ran off the end of a source file?
457 if (Entry.ThePPLexer)
458 return false;
459 }
460 }
461
462 // Okay, if we know that the token is a '(', lex it and return. Otherwise we
463 // have found something that isn't a '(' or we found the end of the
464 // translation unit. In either case, return false.
465 return Val == 1;
466 }
467
468 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
469 /// expanded as a macro, handle it and return the next token as 'Identifier'.
470 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
471 const MacroDefinition &M) {
472 MacroInfo *MI = M.getMacroInfo();
473
474 // If this is a macro expansion in the "#if !defined(x)" line for the file,
475 // then the macro could expand to different things in other contexts, we need
476 // to disable the optimization in this case.
477 if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
478
479 // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
480 if (MI->isBuiltinMacro()) {
481 if (Callbacks)
482 Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(),
483 /*Args=*/nullptr);
484 ExpandBuiltinMacro(Identifier);
485 return true;
486 }
487
488 /// Args - If this is a function-like macro expansion, this contains,
489 /// for each macro argument, the list of tokens that were provided to the
490 /// invocation.
491 MacroArgs *Args = nullptr;
492
493 // Remember where the end of the expansion occurred. For an object-like
494 // macro, this is the identifier. For a function-like macro, this is the ')'.
495 SourceLocation ExpansionEnd = Identifier.getLocation();
496
497 // If this is a function-like macro, read the arguments.
498 if (MI->isFunctionLike()) {
499 // Remember that we are now parsing the arguments to a macro invocation.
500 // Preprocessor directives used inside macro arguments are not portable, and
501 // this enables the warning.
502 InMacroArgs = true;
503 ArgMacro = &Identifier;
504
505 Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd);
506
507 // Finished parsing args.
508 InMacroArgs = false;
509 ArgMacro = nullptr;
510
511 // If there was an error parsing the arguments, bail out.
512 if (!Args) return true;
513
514 ++NumFnMacroExpanded;
515 } else {
516 ++NumMacroExpanded;
517 }
518
519 // Notice that this macro has been used.
520 markMacroAsUsed(MI);
521
522 // Remember where the token is expanded.
523 SourceLocation ExpandLoc = Identifier.getLocation();
524 SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
525
526 if (Callbacks) {
527 if (InMacroArgs) {
528 // We can have macro expansion inside a conditional directive while
529 // reading the function macro arguments. To ensure, in that case, that
530 // MacroExpands callbacks still happen in source order, queue this
531 // callback to have it happen after the function macro callback.
532 DelayedMacroExpandsCallbacks.push_back(
533 MacroExpandsInfo(Identifier, M, ExpansionRange));
534 } else {
535 Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args);
536 if (!DelayedMacroExpandsCallbacks.empty()) {
537 for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) {
538 // FIXME: We lose macro args info with delayed callback.
539 Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range,
540 /*Args=*/nullptr);
541 }
542 DelayedMacroExpandsCallbacks.clear();
543 }
544 }
545 }
546
547 // If the macro definition is ambiguous, complain.
548 if (M.isAmbiguous()) {
549 Diag(Identifier, diag::warn_pp_ambiguous_macro)
550 << Identifier.getIdentifierInfo();
551 Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
552 << Identifier.getIdentifierInfo();
553 M.forAllDefinitions([&](const MacroInfo *OtherMI) {
554 if (OtherMI != MI)
555 Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other)
556 << Identifier.getIdentifierInfo();
557 });
558 }
559
560 // If we started lexing a macro, enter the macro expansion body.
561
562 // If this macro expands to no tokens, don't bother to push it onto the
563 // expansion stack, only to take it right back off.
564 if (MI->getNumTokens() == 0) {
565 // No need for arg info.
566 if (Args) Args->destroy(*this);
567
568 // Propagate whitespace info as if we had pushed, then popped,
569 // a macro context.
570 Identifier.setFlag(Token::LeadingEmptyMacro);
571 PropagateLineStartLeadingSpaceInfo(Identifier);
572 ++NumFastMacroExpanded;
573 return false;
574 } else if (MI->getNumTokens() == 1 &&
575 isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
576 *this)) {
577 // Otherwise, if this macro expands into a single trivially-expanded
578 // token: expand it now. This handles common cases like
579 // "#define VAL 42".
580
581 // No need for arg info.
582 if (Args) Args->destroy(*this);
583
584 // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
585 // identifier to the expanded token.
586 bool isAtStartOfLine = Identifier.isAtStartOfLine();
587 bool hasLeadingSpace = Identifier.hasLeadingSpace();
588
589 // Replace the result token.
590 Identifier = MI->getReplacementToken(0);
591
592 // Restore the StartOfLine/LeadingSpace markers.
593 Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
594 Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
595
596 // Update the tokens location to include both its expansion and physical
597 // locations.
598 SourceLocation Loc =
599 SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
600 ExpansionEnd,Identifier.getLength());
601 Identifier.setLocation(Loc);
602
603 // If this is a disabled macro or #define X X, we must mark the result as
604 // unexpandable.
605 if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
606 if (MacroInfo *NewMI = getMacroInfo(NewII))
607 if (!NewMI->isEnabled() || NewMI == MI) {
608 Identifier.setFlag(Token::DisableExpand);
609 // Don't warn for "#define X X" like "#define bool bool" from
610 // stdbool.h.
611 if (NewMI != MI || MI->isFunctionLike())
612 Diag(Identifier, diag::pp_disabled_macro_expansion);
613 }
614 }
615
616 // Since this is not an identifier token, it can't be macro expanded, so
617 // we're done.
618 ++NumFastMacroExpanded;
619 return true;
620 }
621
622 // Start expanding the macro.
623 EnterMacro(Identifier, ExpansionEnd, MI, Args);
624 return false;
625 }
626
627 enum Bracket {
628 Brace,
629 Paren
630 };
631
632 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the
633 /// token vector are properly nested.
634 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
635 SmallVector<Bracket, 8> Brackets;
636 for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
637 E = Tokens.end();
638 I != E; ++I) {
639 if (I->is(tok::l_paren)) {
640 Brackets.push_back(Paren);
641 } else if (I->is(tok::r_paren)) {
642 if (Brackets.empty() || Brackets.back() == Brace)
643 return false;
644 Brackets.pop_back();
645 } else if (I->is(tok::l_brace)) {
646 Brackets.push_back(Brace);
647 } else if (I->is(tok::r_brace)) {
648 if (Brackets.empty() || Brackets.back() == Paren)
649 return false;
650 Brackets.pop_back();
651 }
652 }
653 return Brackets.empty();
654 }
655
656 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
657 /// vector of tokens in NewTokens. The new number of arguments will be placed
658 /// in NumArgs and the ranges which need to surrounded in parentheses will be
659 /// in ParenHints.
660 /// Returns false if the token stream cannot be changed. If this is because
661 /// of an initializer list starting a macro argument, the range of those
662 /// initializer lists will be place in InitLists.
663 static bool GenerateNewArgTokens(Preprocessor &PP,
664 SmallVectorImpl<Token> &OldTokens,
665 SmallVectorImpl<Token> &NewTokens,
666 unsigned &NumArgs,
667 SmallVectorImpl<SourceRange> &ParenHints,
668 SmallVectorImpl<SourceRange> &InitLists) {
669 if (!CheckMatchedBrackets(OldTokens))
670 return false;
671
672 // Once it is known that the brackets are matched, only a simple count of the
673 // braces is needed.
674 unsigned Braces = 0;
675
676 // First token of a new macro argument.
677 SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
678
679 // First closing brace in a new macro argument. Used to generate
680 // SourceRanges for InitLists.
681 SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
682 NumArgs = 0;
683 Token TempToken;
684 // Set to true when a macro separator token is found inside a braced list.
685 // If true, the fixed argument spans multiple old arguments and ParenHints
686 // will be updated.
687 bool FoundSeparatorToken = false;
688 for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
689 E = OldTokens.end();
690 I != E; ++I) {
691 if (I->is(tok::l_brace)) {
692 ++Braces;
693 } else if (I->is(tok::r_brace)) {
694 --Braces;
695 if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
696 ClosingBrace = I;
697 } else if (I->is(tok::eof)) {
698 // EOF token is used to separate macro arguments
699 if (Braces != 0) {
700 // Assume comma separator is actually braced list separator and change
701 // it back to a comma.
702 FoundSeparatorToken = true;
703 I->setKind(tok::comma);
704 I->setLength(1);
705 } else { // Braces == 0
706 // Separator token still separates arguments.
707 ++NumArgs;
708
709 // If the argument starts with a brace, it can't be fixed with
710 // parentheses. A different diagnostic will be given.
711 if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
712 InitLists.push_back(
713 SourceRange(ArgStartIterator->getLocation(),
714 PP.getLocForEndOfToken(ClosingBrace->getLocation())));
715 ClosingBrace = E;
716 }
717
718 // Add left paren
719 if (FoundSeparatorToken) {
720 TempToken.startToken();
721 TempToken.setKind(tok::l_paren);
722 TempToken.setLocation(ArgStartIterator->getLocation());
723 TempToken.setLength(0);
724 NewTokens.push_back(TempToken);
725 }
726
727 // Copy over argument tokens
728 NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
729
730 // Add right paren and store the paren locations in ParenHints
731 if (FoundSeparatorToken) {
732 SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
733 TempToken.startToken();
734 TempToken.setKind(tok::r_paren);
735 TempToken.setLocation(Loc);
736 TempToken.setLength(0);
737 NewTokens.push_back(TempToken);
738 ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
739 Loc));
740 }
741
742 // Copy separator token
743 NewTokens.push_back(*I);
744
745 // Reset values
746 ArgStartIterator = I + 1;
747 FoundSeparatorToken = false;
748 }
749 }
750 }
751
752 return !ParenHints.empty() && InitLists.empty();
753 }
754
755 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
756 /// token is the '(' of the macro, this method is invoked to read all of the
757 /// actual arguments specified for the macro invocation. This returns null on
758 /// error.
759 MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName,
760 MacroInfo *MI,
761 SourceLocation &MacroEnd) {
762 // The number of fixed arguments to parse.
763 unsigned NumFixedArgsLeft = MI->getNumParams();
764 bool isVariadic = MI->isVariadic();
765
766 // Outer loop, while there are more arguments, keep reading them.
767 Token Tok;
768
769 // Read arguments as unexpanded tokens. This avoids issues, e.g., where
770 // an argument value in a macro could expand to ',' or '(' or ')'.
771 LexUnexpandedToken(Tok);
772 assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
773
774 // ArgTokens - Build up a list of tokens that make up each argument. Each
775 // argument is separated by an EOF token. Use a SmallVector so we can avoid
776 // heap allocations in the common case.
777 SmallVector<Token, 64> ArgTokens;
778 bool ContainsCodeCompletionTok = false;
779 bool FoundElidedComma = false;
780
781 SourceLocation TooManyArgsLoc;
782
783 unsigned NumActuals = 0;
784 while (Tok.isNot(tok::r_paren)) {
785 if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod))
786 break;
787
788 assert(Tok.isOneOf(tok::l_paren, tok::comma) &&
789 "only expect argument separators here");
790
791 size_t ArgTokenStart = ArgTokens.size();
792 SourceLocation ArgStartLoc = Tok.getLocation();
793
794 // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note
795 // that we already consumed the first one.
796 unsigned NumParens = 0;
797
798 while (true) {
799 // Read arguments as unexpanded tokens. This avoids issues, e.g., where
800 // an argument value in a macro could expand to ',' or '(' or ')'.
801 LexUnexpandedToken(Tok);
802
803 if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n"
804 if (!ContainsCodeCompletionTok) {
805 Diag(MacroName, diag::err_unterm_macro_invoc);
806 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
807 << MacroName.getIdentifierInfo();
808 // Do not lose the EOF/EOD. Return it to the client.
809 MacroName = Tok;
810 return nullptr;
811 }
812 // Do not lose the EOF/EOD.
813 auto Toks = std::make_unique<Token[]>(1);
814 Toks[0] = Tok;
815 EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false);
816 break;
817 } else if (Tok.is(tok::r_paren)) {
818 // If we found the ) token, the macro arg list is done.
819 if (NumParens-- == 0) {
820 MacroEnd = Tok.getLocation();
821 if (!ArgTokens.empty() &&
822 ArgTokens.back().commaAfterElided()) {
823 FoundElidedComma = true;
824 }
825 break;
826 }
827 } else if (Tok.is(tok::l_paren)) {
828 ++NumParens;
829 } else if (Tok.is(tok::comma)) {
830 // In Microsoft-compatibility mode, single commas from nested macro
831 // expansions should not be considered as argument separators. We test
832 // for this with the IgnoredComma token flag.
833 if (Tok.getFlags() & Token::IgnoredComma) {
834 // However, in MSVC's preprocessor, subsequent expansions do treat
835 // these commas as argument separators. This leads to a common
836 // workaround used in macros that need to work in both MSVC and
837 // compliant preprocessors. Therefore, the IgnoredComma flag can only
838 // apply once to any given token.
839 Tok.clearFlag(Token::IgnoredComma);
840 } else if (NumParens == 0) {
841 // Comma ends this argument if there are more fixed arguments
842 // expected. However, if this is a variadic macro, and this is part of
843 // the variadic part, then the comma is just an argument token.
844 if (!isVariadic)
845 break;
846 if (NumFixedArgsLeft > 1)
847 break;
848 }
849 } else if (Tok.is(tok::comment) && !KeepMacroComments) {
850 // If this is a comment token in the argument list and we're just in
851 // -C mode (not -CC mode), discard the comment.
852 continue;
853 } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
854 // Reading macro arguments can cause macros that we are currently
855 // expanding from to be popped off the expansion stack. Doing so causes
856 // them to be reenabled for expansion. Here we record whether any
857 // identifiers we lex as macro arguments correspond to disabled macros.
858 // If so, we mark the token as noexpand. This is a subtle aspect of
859 // C99 6.10.3.4p2.
860 if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
861 if (!MI->isEnabled())
862 Tok.setFlag(Token::DisableExpand);
863 } else if (Tok.is(tok::code_completion)) {
864 ContainsCodeCompletionTok = true;
865 if (CodeComplete)
866 CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
867 MI, NumActuals);
868 // Don't mark that we reached the code-completion point because the
869 // parser is going to handle the token and there will be another
870 // code-completion callback.
871 }
872
873 ArgTokens.push_back(Tok);
874 }
875
876 // If this was an empty argument list foo(), don't add this as an empty
877 // argument.
878 if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
879 break;
880
881 // If this is not a variadic macro, and too many args were specified, emit
882 // an error.
883 if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
884 if (ArgTokens.size() != ArgTokenStart)
885 TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
886 else
887 TooManyArgsLoc = ArgStartLoc;
888 }
889
890 // Empty arguments are standard in C99 and C++0x, and are supported as an
891 // extension in other modes.
892 if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99)
893 Diag(Tok, LangOpts.CPlusPlus11 ?
894 diag::warn_cxx98_compat_empty_fnmacro_arg :
895 diag::ext_empty_fnmacro_arg);
896
897 // Add a marker EOF token to the end of the token list for this argument.
898 Token EOFTok;
899 EOFTok.startToken();
900 EOFTok.setKind(tok::eof);
901 EOFTok.setLocation(Tok.getLocation());
902 EOFTok.setLength(0);
903 ArgTokens.push_back(EOFTok);
904 ++NumActuals;
905 if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
906 --NumFixedArgsLeft;
907 }
908
909 // Okay, we either found the r_paren. Check to see if we parsed too few
910 // arguments.
911 unsigned MinArgsExpected = MI->getNumParams();
912
913 // If this is not a variadic macro, and too many args were specified, emit
914 // an error.
915 if (!isVariadic && NumActuals > MinArgsExpected &&
916 !ContainsCodeCompletionTok) {
917 // Emit the diagnostic at the macro name in case there is a missing ).
918 // Emitting it at the , could be far away from the macro name.
919 Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
920 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
921 << MacroName.getIdentifierInfo();
922
923 // Commas from braced initializer lists will be treated as argument
924 // separators inside macros. Attempt to correct for this with parentheses.
925 // TODO: See if this can be generalized to angle brackets for templates
926 // inside macro arguments.
927
928 SmallVector<Token, 4> FixedArgTokens;
929 unsigned FixedNumArgs = 0;
930 SmallVector<SourceRange, 4> ParenHints, InitLists;
931 if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
932 ParenHints, InitLists)) {
933 if (!InitLists.empty()) {
934 DiagnosticBuilder DB =
935 Diag(MacroName,
936 diag::note_init_list_at_beginning_of_macro_argument);
937 for (SourceRange Range : InitLists)
938 DB << Range;
939 }
940 return nullptr;
941 }
942 if (FixedNumArgs != MinArgsExpected)
943 return nullptr;
944
945 DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
946 for (SourceRange ParenLocation : ParenHints) {
947 DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "(");
948 DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")");
949 }
950 ArgTokens.swap(FixedArgTokens);
951 NumActuals = FixedNumArgs;
952 }
953
954 // See MacroArgs instance var for description of this.
955 bool isVarargsElided = false;
956
957 if (ContainsCodeCompletionTok) {
958 // Recover from not-fully-formed macro invocation during code-completion.
959 Token EOFTok;
960 EOFTok.startToken();
961 EOFTok.setKind(tok::eof);
962 EOFTok.setLocation(Tok.getLocation());
963 EOFTok.setLength(0);
964 for (; NumActuals < MinArgsExpected; ++NumActuals)
965 ArgTokens.push_back(EOFTok);
966 }
967
968 if (NumActuals < MinArgsExpected) {
969 // There are several cases where too few arguments is ok, handle them now.
970 if (NumActuals == 0 && MinArgsExpected == 1) {
971 // #define A(X) or #define A(...) ---> A()
972
973 // If there is exactly one argument, and that argument is missing,
974 // then we have an empty "()" argument empty list. This is fine, even if
975 // the macro expects one argument (the argument is just empty).
976 isVarargsElided = MI->isVariadic();
977 } else if ((FoundElidedComma || MI->isVariadic()) &&
978 (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X)
979 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
980 // Varargs where the named vararg parameter is missing: OK as extension.
981 // #define A(x, ...)
982 // A("blah")
983 //
984 // If the macro contains the comma pasting extension, the diagnostic
985 // is suppressed; we know we'll get another diagnostic later.
986 if (!MI->hasCommaPasting()) {
987 Diag(Tok, diag::ext_missing_varargs_arg);
988 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
989 << MacroName.getIdentifierInfo();
990 }
991
992 // Remember this occurred, allowing us to elide the comma when used for
993 // cases like:
994 // #define A(x, foo...) blah(a, ## foo)
995 // #define B(x, ...) blah(a, ## __VA_ARGS__)
996 // #define C(...) blah(a, ## __VA_ARGS__)
997 // A(x) B(x) C()
998 isVarargsElided = true;
999 } else if (!ContainsCodeCompletionTok) {
1000 // Otherwise, emit the error.
1001 Diag(Tok, diag::err_too_few_args_in_macro_invoc);
1002 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1003 << MacroName.getIdentifierInfo();
1004 return nullptr;
1005 }
1006
1007 // Add a marker EOF token to the end of the token list for this argument.
1008 SourceLocation EndLoc = Tok.getLocation();
1009 Tok.startToken();
1010 Tok.setKind(tok::eof);
1011 Tok.setLocation(EndLoc);
1012 Tok.setLength(0);
1013 ArgTokens.push_back(Tok);
1014
1015 // If we expect two arguments, add both as empty.
1016 if (NumActuals == 0 && MinArgsExpected == 2)
1017 ArgTokens.push_back(Tok);
1018
1019 } else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
1020 !ContainsCodeCompletionTok) {
1021 // Emit the diagnostic at the macro name in case there is a missing ).
1022 // Emitting it at the , could be far away from the macro name.
1023 Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
1024 Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1025 << MacroName.getIdentifierInfo();
1026 return nullptr;
1027 }
1028
1029 return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
1030 }
1031
1032 /// Keeps macro expanded tokens for TokenLexers.
1033 //
1034 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
1035 /// going to lex in the cache and when it finishes the tokens are removed
1036 /// from the end of the cache.
1037 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
1038 ArrayRef<Token> tokens) {
1039 assert(tokLexer);
1040 if (tokens.empty())
1041 return nullptr;
1042
1043 size_t newIndex = MacroExpandedTokens.size();
1044 bool cacheNeedsToGrow = tokens.size() >
1045 MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
1046 MacroExpandedTokens.append(tokens.begin(), tokens.end());
1047
1048 if (cacheNeedsToGrow) {
1049 // Go through all the TokenLexers whose 'Tokens' pointer points in the
1050 // buffer and update the pointers to the (potential) new buffer array.
1051 for (const auto &Lexer : MacroExpandingLexersStack) {
1052 TokenLexer *prevLexer;
1053 size_t tokIndex;
1054 std::tie(prevLexer, tokIndex) = Lexer;
1055 prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
1056 }
1057 }
1058
1059 MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
1060 return MacroExpandedTokens.data() + newIndex;
1061 }
1062
1063 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
1064 assert(!MacroExpandingLexersStack.empty());
1065 size_t tokIndex = MacroExpandingLexersStack.back().second;
1066 assert(tokIndex < MacroExpandedTokens.size());
1067 // Pop the cached macro expanded tokens from the end.
1068 MacroExpandedTokens.resize(tokIndex);
1069 MacroExpandingLexersStack.pop_back();
1070 }
1071
1072 /// ComputeDATE_TIME - Compute the current time, enter it into the specified
1073 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of
1074 /// the identifier tokens inserted.
1075 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
1076 Preprocessor &PP) {
1077 time_t TT = time(nullptr);
1078 struct tm *TM = localtime(&TT);
1079
1080 static const char * const Months[] = {
1081 "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
1082 };
1083
1084 {
1085 SmallString<32> TmpBuffer;
1086 llvm::raw_svector_ostream TmpStream(TmpBuffer);
1087 TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
1088 TM->tm_mday, TM->tm_year + 1900);
1089 Token TmpTok;
1090 TmpTok.startToken();
1091 PP.CreateString(TmpStream.str(), TmpTok);
1092 DATELoc = TmpTok.getLocation();
1093 }
1094
1095 {
1096 SmallString<32> TmpBuffer;
1097 llvm::raw_svector_ostream TmpStream(TmpBuffer);
1098 TmpStream << llvm::format("\"%02d:%02d:%02d\"",
1099 TM->tm_hour, TM->tm_min, TM->tm_sec);
1100 Token TmpTok;
1101 TmpTok.startToken();
1102 PP.CreateString(TmpStream.str(), TmpTok);
1103 TIMELoc = TmpTok.getLocation();
1104 }
1105 }
1106
1107 /// HasFeature - Return true if we recognize and implement the feature
1108 /// specified by the identifier as a standard language feature.
1109 static bool HasFeature(const Preprocessor &PP, StringRef Feature) {
1110 const LangOptions &LangOpts = PP.getLangOpts();
1111
1112 // Normalize the feature name, __foo__ becomes foo.
1113 if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4)
1114 Feature = Feature.substr(2, Feature.size() - 4);
1115
1116 #define FEATURE(Name, Predicate) .Case(#Name, Predicate)
1117 return llvm::StringSwitch<bool>(Feature)
1118 #include "clang/Basic/Features.def"
1119 .Default(false);
1120 #undef FEATURE
1121 }
1122
1123 /// HasExtension - Return true if we recognize and implement the feature
1124 /// specified by the identifier, either as an extension or a standard language
1125 /// feature.
1126 static bool HasExtension(const Preprocessor &PP, StringRef Extension) {
1127 if (HasFeature(PP, Extension))
1128 return true;
1129
1130 // If the use of an extension results in an error diagnostic, extensions are
1131 // effectively unavailable, so just return false here.
1132 if (PP.getDiagnostics().getExtensionHandlingBehavior() >=
1133 diag::Severity::Error)
1134 return false;
1135
1136 const LangOptions &LangOpts = PP.getLangOpts();
1137
1138 // Normalize the extension name, __foo__ becomes foo.
1139 if (Extension.startswith("__") && Extension.endswith("__") &&
1140 Extension.size() >= 4)
1141 Extension = Extension.substr(2, Extension.size() - 4);
1142
1143 // Because we inherit the feature list from HasFeature, this string switch
1144 // must be less restrictive than HasFeature's.
1145 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate)
1146 return llvm::StringSwitch<bool>(Extension)
1147 #include "clang/Basic/Features.def"
1148 .Default(false);
1149 #undef EXTENSION
1150 }
1151
1152 /// EvaluateHasIncludeCommon - Process a '__has_include("path")'
1153 /// or '__has_include_next("path")' expression.
1154 /// Returns true if successful.
1155 static bool EvaluateHasIncludeCommon(Token &Tok,
1156 IdentifierInfo *II, Preprocessor &PP,
1157 const DirectoryLookup *LookupFrom,
1158 const FileEntry *LookupFromFile) {
1159 // Save the location of the current token. If a '(' is later found, use
1160 // that location. If not, use the end of this location instead.
1161 SourceLocation LParenLoc = Tok.getLocation();
1162
1163 // These expressions are only allowed within a preprocessor directive.
1164 if (!PP.isParsingIfOrElifDirective()) {
1165 PP.Diag(LParenLoc, diag::err_pp_directive_required) << II;
1166 // Return a valid identifier token.
1167 assert(Tok.is(tok::identifier));
1168 Tok.setIdentifierInfo(II);
1169 return false;
1170 }
1171
1172 // Get '('. If we don't have a '(', try to form a header-name token.
1173 do {
1174 if (PP.LexHeaderName(Tok))
1175 return false;
1176 } while (Tok.getKind() == tok::comment);
1177
1178 // Ensure we have a '('.
1179 if (Tok.isNot(tok::l_paren)) {
1180 // No '(', use end of last token.
1181 LParenLoc = PP.getLocForEndOfToken(LParenLoc);
1182 PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren;
1183 // If the next token looks like a filename or the start of one,
1184 // assume it is and process it as such.
1185 if (Tok.isNot(tok::header_name))
1186 return false;
1187 } else {
1188 // Save '(' location for possible missing ')' message.
1189 LParenLoc = Tok.getLocation();
1190 if (PP.LexHeaderName(Tok))
1191 return false;
1192 }
1193
1194 if (Tok.isNot(tok::header_name)) {
1195 PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
1196 return false;
1197 }
1198
1199 // Reserve a buffer to get the spelling.
1200 SmallString<128> FilenameBuffer;
1201 bool Invalid = false;
1202 StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
1203 if (Invalid)
1204 return false;
1205
1206 SourceLocation FilenameLoc = Tok.getLocation();
1207
1208 // Get ')'.
1209 PP.LexNonComment(Tok);
1210
1211 // Ensure we have a trailing ).
1212 if (Tok.isNot(tok::r_paren)) {
1213 PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
1214 << II << tok::r_paren;
1215 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1216 return false;
1217 }
1218
1219 bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
1220 // If GetIncludeFilenameSpelling set the start ptr to null, there was an
1221 // error.
1222 if (Filename.empty())
1223 return false;
1224
1225 // Search include directories.
1226 const DirectoryLookup *CurDir;
1227 Optional<FileEntryRef> File =
1228 PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile,
1229 CurDir, nullptr, nullptr, nullptr, nullptr, nullptr);
1230
1231 if (PPCallbacks *Callbacks = PP.getPPCallbacks()) {
1232 SrcMgr::CharacteristicKind FileType = SrcMgr::C_User;
1233 if (File)
1234 FileType =
1235 PP.getHeaderSearchInfo().getFileDirFlavor(&File->getFileEntry());
1236 Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType);
1237 }
1238
1239 // Get the result value. A result of true means the file exists.
1240 return File.hasValue();
1241 }
1242
1243 /// EvaluateHasInclude - Process a '__has_include("path")' expression.
1244 /// Returns true if successful.
1245 static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II,
1246 Preprocessor &PP) {
1247 return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr);
1248 }
1249
1250 /// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression.
1251 /// Returns true if successful.
1252 static bool EvaluateHasIncludeNext(Token &Tok,
1253 IdentifierInfo *II, Preprocessor &PP) {
1254 // __has_include_next is like __has_include, except that we start
1255 // searching after the current found directory. If we can't do this,
1256 // issue a diagnostic.
1257 // FIXME: Factor out duplication with
1258 // Preprocessor::HandleIncludeNextDirective.
1259 const DirectoryLookup *Lookup = PP.GetCurDirLookup();
1260 const FileEntry *LookupFromFile = nullptr;
1261 if (PP.isInPrimaryFile() && PP.getLangOpts().IsHeaderFile) {
1262 // If the main file is a header, then it's either for PCH/AST generation,
1263 // or libclang opened it. Either way, handle it as a normal include below
1264 // and do not complain about __has_include_next.
1265 } else if (PP.isInPrimaryFile()) {
1266 Lookup = nullptr;
1267 PP.Diag(Tok, diag::pp_include_next_in_primary);
1268 } else if (PP.getCurrentLexerSubmodule()) {
1269 // Start looking up in the directory *after* the one in which the current
1270 // file would be found, if any.
1271 assert(PP.getCurrentLexer() && "#include_next directive in macro?");
1272 LookupFromFile = PP.getCurrentLexer()->getFileEntry();
1273 Lookup = nullptr;
1274 } else if (!Lookup) {
1275 PP.Diag(Tok, diag::pp_include_next_absolute_path);
1276 } else {
1277 // Start looking up in the next directory.
1278 ++Lookup;
1279 }
1280
1281 return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile);
1282 }
1283
1284 /// Process single-argument builtin feature-like macros that return
1285 /// integer values.
1286 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS,
1287 Token &Tok, IdentifierInfo *II,
1288 Preprocessor &PP,
1289 llvm::function_ref<
1290 int(Token &Tok,
1291 bool &HasLexedNextTok)> Op) {
1292 // Parse the initial '('.
1293 PP.LexUnexpandedToken(Tok);
1294 if (Tok.isNot(tok::l_paren)) {
1295 PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
1296 << tok::l_paren;
1297
1298 // Provide a dummy '0' value on output stream to elide further errors.
1299 if (!Tok.isOneOf(tok::eof, tok::eod)) {
1300 OS << 0;
1301 Tok.setKind(tok::numeric_constant);
1302 }
1303 return;
1304 }
1305
1306 unsigned ParenDepth = 1;
1307 SourceLocation LParenLoc = Tok.getLocation();
1308 llvm::Optional<int> Result;
1309
1310 Token ResultTok;
1311 bool SuppressDiagnostic = false;
1312 while (true) {
1313 // Parse next token.
1314 PP.LexUnexpandedToken(Tok);
1315
1316 already_lexed:
1317 switch (Tok.getKind()) {
1318 case tok::eof:
1319 case tok::eod:
1320 // Don't provide even a dummy value if the eod or eof marker is
1321 // reached. Simply provide a diagnostic.
1322 PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc);
1323 return;
1324
1325 case tok::comma:
1326 if (!SuppressDiagnostic) {
1327 PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc);
1328 SuppressDiagnostic = true;
1329 }
1330 continue;
1331
1332 case tok::l_paren:
1333 ++ParenDepth;
1334 if (Result.hasValue())
1335 break;
1336 if (!SuppressDiagnostic) {
1337 PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II;
1338 SuppressDiagnostic = true;
1339 }
1340 continue;
1341
1342 case tok::r_paren:
1343 if (--ParenDepth > 0)
1344 continue;
1345
1346 // The last ')' has been reached; return the value if one found or
1347 // a diagnostic and a dummy value.
1348 if (Result.hasValue()) {
1349 OS << Result.getValue();
1350 // For strict conformance to __has_cpp_attribute rules, use 'L'
1351 // suffix for dated literals.
1352 if (Result.getValue() > 1)
1353 OS << 'L';
1354 } else {
1355 OS << 0;
1356 if (!SuppressDiagnostic)
1357 PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc);
1358 }
1359 Tok.setKind(tok::numeric_constant);
1360 return;
1361
1362 default: {
1363 // Parse the macro argument, if one not found so far.
1364 if (Result.hasValue())
1365 break;
1366
1367 bool HasLexedNextToken = false;
1368 Result = Op(Tok, HasLexedNextToken);
1369 ResultTok = Tok;
1370 if (HasLexedNextToken)
1371 goto already_lexed;
1372 continue;
1373 }
1374 }
1375
1376 // Diagnose missing ')'.
1377 if (!SuppressDiagnostic) {
1378 if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) {
1379 if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo())
1380 Diag << LastII;
1381 else
1382 Diag << ResultTok.getKind();
1383 Diag << tok::r_paren << ResultTok.getLocation();
1384 }
1385 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1386 SuppressDiagnostic = true;
1387 }
1388 }
1389 }
1390
1391 /// Helper function to return the IdentifierInfo structure of a Token
1392 /// or generate a diagnostic if none available.
1393 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok,
1394 Preprocessor &PP,
1395 signed DiagID) {
1396 IdentifierInfo *II;
1397 if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo()))
1398 return II;
1399
1400 PP.Diag(Tok.getLocation(), DiagID);
1401 return nullptr;
1402 }
1403
1404 /// Implements the __is_target_arch builtin macro.
1405 static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) {
1406 std::string ArchName = II->getName().lower() + "--";
1407 llvm::Triple Arch(ArchName);
1408 const llvm::Triple &TT = TI.getTriple();
1409 if (TT.isThumb()) {
1410 // arm matches thumb or thumbv7. armv7 matches thumbv7.
1411 if ((Arch.getSubArch() == llvm::Triple::NoSubArch ||
1412 Arch.getSubArch() == TT.getSubArch()) &&
1413 ((TT.getArch() == llvm::Triple::thumb &&
1414 Arch.getArch() == llvm::Triple::arm) ||
1415 (TT.getArch() == llvm::Triple::thumbeb &&
1416 Arch.getArch() == llvm::Triple::armeb)))
1417 return true;
1418 }
1419 // Check the parsed arch when it has no sub arch to allow Clang to
1420 // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7.
1421 return (Arch.getSubArch() == llvm::Triple::NoSubArch ||
1422 Arch.getSubArch() == TT.getSubArch()) &&
1423 Arch.getArch() == TT.getArch();
1424 }
1425
1426 /// Implements the __is_target_vendor builtin macro.
1427 static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) {
1428 StringRef VendorName = TI.getTriple().getVendorName();
1429 if (VendorName.empty())
1430 VendorName = "unknown";
1431 return VendorName.equals_lower(II->getName());
1432 }
1433
1434 /// Implements the __is_target_os builtin macro.
1435 static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) {
1436 std::string OSName =
1437 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str();
1438 llvm::Triple OS(OSName);
1439 if (OS.getOS() == llvm::Triple::Darwin) {
1440 // Darwin matches macos, ios, etc.
1441 return TI.getTriple().isOSDarwin();
1442 }
1443 return TI.getTriple().getOS() == OS.getOS();
1444 }
1445
1446 /// Implements the __is_target_environment builtin macro.
1447 static bool isTargetEnvironment(const TargetInfo &TI,
1448 const IdentifierInfo *II) {
1449 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str();
1450 llvm::Triple Env(EnvName);
1451 return TI.getTriple().getEnvironment() == Env.getEnvironment();
1452 }
1453
1454 static void remapMacroPath(
1455 SmallString<256> &Path,
1456 const std::map<std::string, std::string, std::greater<std::string>>
1457 &MacroPrefixMap) {
1458 for (const auto &Entry : MacroPrefixMap)
1459 if (Path.startswith(Entry.first)) {
1460 Path = (Twine(Entry.second) + Path.substr(Entry.first.size())).str();
1461 break;
1462 }
1463 }
1464
1465 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
1466 /// as a builtin macro, handle it and return the next token as 'Tok'.
1467 void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
1468 // Figure out which token this is.
1469 IdentifierInfo *II = Tok.getIdentifierInfo();
1470 assert(II && "Can't be a macro without id info!");
1471
1472 // If this is an _Pragma or Microsoft __pragma directive, expand it,
1473 // invoke the pragma handler, then lex the token after it.
1474 if (II == Ident_Pragma)
1475 return Handle_Pragma(Tok);
1476 else if (II == Ident__pragma) // in non-MS mode this is null
1477 return HandleMicrosoft__pragma(Tok);
1478
1479 ++NumBuiltinMacroExpanded;
1480
1481 SmallString<128> TmpBuffer;
1482 llvm::raw_svector_ostream OS(TmpBuffer);
1483
1484 // Set up the return result.
1485 Tok.setIdentifierInfo(nullptr);
1486 Tok.clearFlag(Token::NeedsCleaning);
1487 bool IsAtStartOfLine = Tok.isAtStartOfLine();
1488 bool HasLeadingSpace = Tok.hasLeadingSpace();
1489
1490 if (II == Ident__LINE__) {
1491 // C99 6.10.8: "__LINE__: The presumed line number (within the current
1492 // source file) of the current source line (an integer constant)". This can
1493 // be affected by #line.
1494 SourceLocation Loc = Tok.getLocation();
1495
1496 // Advance to the location of the first _, this might not be the first byte
1497 // of the token if it starts with an escaped newline.
1498 Loc = AdvanceToTokenCharacter(Loc, 0);
1499
1500 // One wrinkle here is that GCC expands __LINE__ to location of the *end* of
1501 // a macro expansion. This doesn't matter for object-like macros, but
1502 // can matter for a function-like macro that expands to contain __LINE__.
1503 // Skip down through expansion points until we find a file loc for the
1504 // end of the expansion history.
1505 Loc = SourceMgr.getExpansionRange(Loc).getEnd();
1506 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
1507
1508 // __LINE__ expands to a simple numeric value.
1509 OS << (PLoc.isValid()? PLoc.getLine() : 1);
1510 Tok.setKind(tok::numeric_constant);
1511 } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ ||
1512 II == Ident__FILE_NAME__) {
1513 // C99 6.10.8: "__FILE__: The presumed name of the current source file (a
1514 // character string literal)". This can be affected by #line.
1515 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1516
1517 // __BASE_FILE__ is a GNU extension that returns the top of the presumed
1518 // #include stack instead of the current file.
1519 if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
1520 SourceLocation NextLoc = PLoc.getIncludeLoc();
1521 while (NextLoc.isValid()) {
1522 PLoc = SourceMgr.getPresumedLoc(NextLoc);
1523 if (PLoc.isInvalid())
1524 break;
1525
1526 NextLoc = PLoc.getIncludeLoc();
1527 }
1528 }
1529
1530 // Escape this filename. Turn '\' -> '\\' '"' -> '\"'
1531 SmallString<256> FN;
1532 if (PLoc.isValid()) {
1533 // __FILE_NAME__ is a Clang-specific extension that expands to the
1534 // the last part of __FILE__.
1535 if (II == Ident__FILE_NAME__) {
1536 // Try to get the last path component, failing that return the original
1537 // presumed location.
1538 StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename());
1539 if (PLFileName != "")
1540 FN += PLFileName;
1541 else
1542 FN += PLoc.getFilename();
1543 } else {
1544 FN += PLoc.getFilename();
1545 }
1546 Lexer::Stringify(FN);
1547 remapMacroPath(FN, PPOpts->MacroPrefixMap);
1548 OS << '"' << FN << '"';
1549 }
1550 Tok.setKind(tok::string_literal);
1551 } else if (II == Ident__DATE__) {
1552 Diag(Tok.getLocation(), diag::warn_pp_date_time);
1553 if (!DATELoc.isValid())
1554 ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1555 Tok.setKind(tok::string_literal);
1556 Tok.setLength(strlen("\"Mmm dd yyyy\""));
1557 Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
1558 Tok.getLocation(),
1559 Tok.getLength()));
1560 return;
1561 } else if (II == Ident__TIME__) {
1562 Diag(Tok.getLocation(), diag::warn_pp_date_time);
1563 if (!TIMELoc.isValid())
1564 ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1565 Tok.setKind(tok::string_literal);
1566 Tok.setLength(strlen("\"hh:mm:ss\""));
1567 Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
1568 Tok.getLocation(),
1569 Tok.getLength()));
1570 return;
1571 } else if (II == Ident__INCLUDE_LEVEL__) {
1572 // Compute the presumed include depth of this token. This can be affected
1573 // by GNU line markers.
1574 unsigned Depth = 0;
1575
1576 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1577 if (PLoc.isValid()) {
1578 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1579 for (; PLoc.isValid(); ++Depth)
1580 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1581 }
1582
1583 // __INCLUDE_LEVEL__ expands to a simple numeric value.
1584 OS << Depth;
1585 Tok.setKind(tok::numeric_constant);
1586 } else if (II == Ident__TIMESTAMP__) {
1587 Diag(Tok.getLocation(), diag::warn_pp_date_time);
1588 // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be
1589 // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
1590
1591 // Get the file that we are lexing out of. If we're currently lexing from
1592 // a macro, dig into the include stack.
1593 const FileEntry *CurFile = nullptr;
1594 PreprocessorLexer *TheLexer = getCurrentFileLexer();
1595
1596 if (TheLexer)
1597 CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
1598
1599 const char *Result;
1600 if (CurFile) {
1601 time_t TT = CurFile->getModificationTime();
1602 struct tm *TM = localtime(&TT);
1603 Result = asctime(TM);
1604 } else {
1605 Result = "??? ??? ?? ??:??:?? ????\n";
1606 }
1607 // Surround the string with " and strip the trailing newline.
1608 OS << '"' << StringRef(Result).drop_back() << '"';
1609 Tok.setKind(tok::string_literal);
1610 } else if (II == Ident__COUNTER__) {
1611 // __COUNTER__ expands to a simple numeric value.
1612 OS << CounterValue++;
1613 Tok.setKind(tok::numeric_constant);
1614 } else if (II == Ident__has_feature) {
1615 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1616 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1617 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1618 diag::err_feature_check_malformed);
1619 return II && HasFeature(*this, II->getName());
1620 });
1621 } else if (II == Ident__has_extension) {
1622 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1623 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1624 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1625 diag::err_feature_check_malformed);
1626 return II && HasExtension(*this, II->getName());
1627 });
1628 } else if (II == Ident__has_builtin) {
1629 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1630 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1631 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1632 diag::err_feature_check_malformed);
1633 const LangOptions &LangOpts = getLangOpts();
1634 if (!II)
1635 return false;
1636 else if (II->getBuiltinID() != 0) {
1637 switch (II->getBuiltinID()) {
1638 case Builtin::BI__builtin_operator_new:
1639 case Builtin::BI__builtin_operator_delete:
1640 // denotes date of behavior change to support calling arbitrary
1641 // usual allocation and deallocation functions. Required by libc++
1642 return 201802;
1643 default:
1644 return true;
1645 }
1646 return true;
1647 } else if (II->getTokenID() != tok::identifier ||
1648 II->hasRevertedTokenIDToIdentifier()) {
1649 // Treat all keywords that introduce a custom syntax of the form
1650 //
1651 // '__some_keyword' '(' [...] ')'
1652 //
1653 // as being "builtin functions", even if the syntax isn't a valid
1654 // function call (for example, because the builtin takes a type
1655 // argument).
1656 if (II->getName().startswith("__builtin_") ||
1657 II->getName().startswith("__is_") ||
1658 II->getName().startswith("__has_"))
1659 return true;
1660 return llvm::StringSwitch<bool>(II->getName())
1661 .Case("__array_rank", true)
1662 .Case("__array_extent", true)
1663 .Case("__reference_binds_to_temporary", true)
1664 .Case("__underlying_type", true)
1665 .Default(false);
1666 } else {
1667 return llvm::StringSwitch<bool>(II->getName())
1668 // Report builtin templates as being builtins.
1669 .Case("__make_integer_seq", LangOpts.CPlusPlus)
1670 .Case("__type_pack_element", LangOpts.CPlusPlus)
1671 // Likewise for some builtin preprocessor macros.
1672 // FIXME: This is inconsistent; we usually suggest detecting
1673 // builtin macros via #ifdef. Don't add more cases here.
1674 .Case("__is_target_arch", true)
1675 .Case("__is_target_vendor", true)
1676 .Case("__is_target_os", true)
1677 .Case("__is_target_environment", true)
1678 .Default(false);
1679 }
1680 });
1681 } else if (II == Ident__is_identifier) {
1682 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1683 [](Token &Tok, bool &HasLexedNextToken) -> int {
1684 return Tok.is(tok::identifier);
1685 });
1686 } else if (II == Ident__has_attribute) {
1687 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1688 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1689 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1690 diag::err_feature_check_malformed);
1691 return II ? hasAttribute(AttrSyntax::GNU, nullptr, II,
1692 getTargetInfo(), getLangOpts()) : 0;
1693 });
1694 } else if (II == Ident__has_declspec) {
1695 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1696 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1697 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1698 diag::err_feature_check_malformed);
1699 return II ? hasAttribute(AttrSyntax::Declspec, nullptr, II,
1700 getTargetInfo(), getLangOpts()) : 0;
1701 });
1702 } else if (II == Ident__has_cpp_attribute ||
1703 II == Ident__has_c_attribute) {
1704 bool IsCXX = II == Ident__has_cpp_attribute;
1705 EvaluateFeatureLikeBuiltinMacro(
1706 OS, Tok, II, *this, [&](Token &Tok, bool &HasLexedNextToken) -> int {
1707 IdentifierInfo *ScopeII = nullptr;
1708 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1709 Tok, *this, diag::err_feature_check_malformed);
1710 if (!II)
1711 return false;
1712
1713 // It is possible to receive a scope token. Read the "::", if it is
1714 // available, and the subsequent identifier.
1715 LexUnexpandedToken(Tok);
1716 if (Tok.isNot(tok::coloncolon))
1717 HasLexedNextToken = true;
1718 else {
1719 ScopeII = II;
1720 LexUnexpandedToken(Tok);
1721 II = ExpectFeatureIdentifierInfo(Tok, *this,
1722 diag::err_feature_check_malformed);
1723 }
1724
1725 AttrSyntax Syntax = IsCXX ? AttrSyntax::CXX : AttrSyntax::C;
1726 return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(),
1727 getLangOpts())
1728 : 0;
1729 });
1730 } else if (II == Ident__has_include ||
1731 II == Ident__has_include_next) {
1732 // The argument to these two builtins should be a parenthesized
1733 // file name string literal using angle brackets (<>) or
1734 // double-quotes ("").
1735 bool Value;
1736 if (II == Ident__has_include)
1737 Value = EvaluateHasInclude(Tok, II, *this);
1738 else
1739 Value = EvaluateHasIncludeNext(Tok, II, *this);
1740
1741 if (Tok.isNot(tok::r_paren))
1742 return;
1743 OS << (int)Value;
1744 Tok.setKind(tok::numeric_constant);
1745 } else if (II == Ident__has_warning) {
1746 // The argument should be a parenthesized string literal.
1747 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1748 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1749 std::string WarningName;
1750 SourceLocation StrStartLoc = Tok.getLocation();
1751
1752 HasLexedNextToken = Tok.is(tok::string_literal);
1753 if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
1754 /*AllowMacroExpansion=*/false))
1755 return false;
1756
1757 // FIXME: Should we accept "-R..." flags here, or should that be
1758 // handled by a separate __has_remark?
1759 if (WarningName.size() < 3 || WarningName[0] != '-' ||
1760 WarningName[1] != 'W') {
1761 Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
1762 return false;
1763 }
1764
1765 // Finally, check if the warning flags maps to a diagnostic group.
1766 // We construct a SmallVector here to talk to getDiagnosticIDs().
1767 // Although we don't use the result, this isn't a hot path, and not
1768 // worth special casing.
1769 SmallVector<diag::kind, 10> Diags;
1770 return !getDiagnostics().getDiagnosticIDs()->
1771 getDiagnosticsInGroup(diag::Flavor::WarningOrError,
1772 WarningName.substr(2), Diags);
1773 });
1774 } else if (II == Ident__building_module) {
1775 // The argument to this builtin should be an identifier. The
1776 // builtin evaluates to 1 when that identifier names the module we are
1777 // currently building.
1778 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1779 [this](Token &Tok, bool &HasLexedNextToken) -> int {
1780 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1781 diag::err_expected_id_building_module);
1782 return getLangOpts().isCompilingModule() && II &&
1783 (II->getName() == getLangOpts().CurrentModule);
1784 });
1785 } else if (II == Ident__MODULE__) {
1786 // The current module as an identifier.
1787 OS << getLangOpts().CurrentModule;
1788 IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
1789 Tok.setIdentifierInfo(ModuleII);
1790 Tok.setKind(ModuleII->getTokenID());
1791 } else if (II == Ident__identifier) {
1792 SourceLocation Loc = Tok.getLocation();
1793
1794 // We're expecting '__identifier' '(' identifier ')'. Try to recover
1795 // if the parens are missing.
1796 LexNonComment(Tok);
1797 if (Tok.isNot(tok::l_paren)) {
1798 // No '(', use end of last token.
1799 Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after)
1800 << II << tok::l_paren;
1801 // If the next token isn't valid as our argument, we can't recover.
1802 if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1803 Tok.setKind(tok::identifier);
1804 return;
1805 }
1806
1807 SourceLocation LParenLoc = Tok.getLocation();
1808 LexNonComment(Tok);
1809
1810 if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1811 Tok.setKind(tok::identifier);
1812 else {
1813 Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier)
1814 << Tok.getKind();
1815 // Don't walk past anything that's not a real token.
1816 if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation())
1817 return;
1818 }
1819
1820 // Discard the ')', preserving 'Tok' as our result.
1821 Token RParen;
1822 LexNonComment(RParen);
1823 if (RParen.isNot(tok::r_paren)) {
1824 Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after)
1825 << Tok.getKind() << tok::r_paren;
1826 Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1827 }
1828 return;
1829 } else if (II == Ident__is_target_arch) {
1830 EvaluateFeatureLikeBuiltinMacro(
1831 OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
1832 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1833 Tok, *this, diag::err_feature_check_malformed);
1834 return II && isTargetArch(getTargetInfo(), II);
1835 });
1836 } else if (II == Ident__is_target_vendor) {
1837 EvaluateFeatureLikeBuiltinMacro(
1838 OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
1839 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1840 Tok, *this, diag::err_feature_check_malformed);
1841 return II && isTargetVendor(getTargetInfo(), II);
1842 });
1843 } else if (II == Ident__is_target_os) {
1844 EvaluateFeatureLikeBuiltinMacro(
1845 OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
1846 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1847 Tok, *this, diag::err_feature_check_malformed);
1848 return II && isTargetOS(getTargetInfo(), II);
1849 });
1850 } else if (II == Ident__is_target_environment) {
1851 EvaluateFeatureLikeBuiltinMacro(
1852 OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
1853 IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1854 Tok, *this, diag::err_feature_check_malformed);
1855 return II && isTargetEnvironment(getTargetInfo(), II);
1856 });
1857 } else {
1858 llvm_unreachable("Unknown identifier!");
1859 }
1860 CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
1861 Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine);
1862 Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
1863 }
1864
1865 void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
1866 // If the 'used' status changed, and the macro requires 'unused' warning,
1867 // remove its SourceLocation from the warn-for-unused-macro locations.
1868 if (MI->isWarnIfUnused() && !MI->isUsed())
1869 WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
1870 MI->setIsUsed(true);
1871 }