Mercurial > hg > CbC > CbC_llvm
comparison clang/lib/Lex/PPMacroExpansion.cpp @ 150:1d019706d866
LLVM10
author | anatofuz |
---|---|
date | Thu, 13 Feb 2020 15:10:13 +0900 |
parents | |
children | 0572611fdcc8 |
comparison
equal
deleted
inserted
replaced
147:c2174574ed3a | 150:1d019706d866 |
---|---|
1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===// | |
2 // | |
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |
4 // See https://llvm.org/LICENSE.txt for license information. | |
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |
6 // | |
7 //===----------------------------------------------------------------------===// | |
8 // | |
9 // This file implements the top level handling of macro expansion for the | |
10 // preprocessor. | |
11 // | |
12 //===----------------------------------------------------------------------===// | |
13 | |
14 #include "clang/Basic/Attributes.h" | |
15 #include "clang/Basic/Builtins.h" | |
16 #include "clang/Basic/FileManager.h" | |
17 #include "clang/Basic/IdentifierTable.h" | |
18 #include "clang/Basic/LLVM.h" | |
19 #include "clang/Basic/LangOptions.h" | |
20 #include "clang/Basic/ObjCRuntime.h" | |
21 #include "clang/Basic/SourceLocation.h" | |
22 #include "clang/Basic/TargetInfo.h" | |
23 #include "clang/Lex/CodeCompletionHandler.h" | |
24 #include "clang/Lex/DirectoryLookup.h" | |
25 #include "clang/Lex/ExternalPreprocessorSource.h" | |
26 #include "clang/Lex/HeaderSearch.h" | |
27 #include "clang/Lex/LexDiagnostic.h" | |
28 #include "clang/Lex/MacroArgs.h" | |
29 #include "clang/Lex/MacroInfo.h" | |
30 #include "clang/Lex/Preprocessor.h" | |
31 #include "clang/Lex/PreprocessorLexer.h" | |
32 #include "clang/Lex/PreprocessorOptions.h" | |
33 #include "clang/Lex/Token.h" | |
34 #include "llvm/ADT/ArrayRef.h" | |
35 #include "llvm/ADT/DenseMap.h" | |
36 #include "llvm/ADT/DenseSet.h" | |
37 #include "llvm/ADT/FoldingSet.h" | |
38 #include "llvm/ADT/None.h" | |
39 #include "llvm/ADT/Optional.h" | |
40 #include "llvm/ADT/STLExtras.h" | |
41 #include "llvm/ADT/SmallString.h" | |
42 #include "llvm/ADT/SmallVector.h" | |
43 #include "llvm/ADT/StringRef.h" | |
44 #include "llvm/ADT/StringSwitch.h" | |
45 #include "llvm/Support/Casting.h" | |
46 #include "llvm/Support/ErrorHandling.h" | |
47 #include "llvm/Support/Format.h" | |
48 #include "llvm/Support/Path.h" | |
49 #include "llvm/Support/raw_ostream.h" | |
50 #include <algorithm> | |
51 #include <cassert> | |
52 #include <cstddef> | |
53 #include <cstring> | |
54 #include <ctime> | |
55 #include <string> | |
56 #include <tuple> | |
57 #include <utility> | |
58 | |
59 using namespace clang; | |
60 | |
61 MacroDirective * | |
62 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const { | |
63 if (!II->hadMacroDefinition()) | |
64 return nullptr; | |
65 auto Pos = CurSubmoduleState->Macros.find(II); | |
66 return Pos == CurSubmoduleState->Macros.end() ? nullptr | |
67 : Pos->second.getLatest(); | |
68 } | |
69 | |
70 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){ | |
71 assert(MD && "MacroDirective should be non-zero!"); | |
72 assert(!MD->getPrevious() && "Already attached to a MacroDirective history."); | |
73 | |
74 MacroState &StoredMD = CurSubmoduleState->Macros[II]; | |
75 auto *OldMD = StoredMD.getLatest(); | |
76 MD->setPrevious(OldMD); | |
77 StoredMD.setLatest(MD); | |
78 StoredMD.overrideActiveModuleMacros(*this, II); | |
79 | |
80 if (needModuleMacros()) { | |
81 // Track that we created a new macro directive, so we know we should | |
82 // consider building a ModuleMacro for it when we get to the end of | |
83 // the module. | |
84 PendingModuleMacroNames.push_back(II); | |
85 } | |
86 | |
87 // Set up the identifier as having associated macro history. | |
88 II->setHasMacroDefinition(true); | |
89 if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end()) | |
90 II->setHasMacroDefinition(false); | |
91 if (II->isFromAST()) | |
92 II->setChangedSinceDeserialization(); | |
93 } | |
94 | |
95 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II, | |
96 MacroDirective *ED, | |
97 MacroDirective *MD) { | |
98 // Normally, when a macro is defined, it goes through appendMacroDirective() | |
99 // above, which chains a macro to previous defines, undefs, etc. | |
100 // However, in a pch, the whole macro history up to the end of the pch is | |
101 // stored, so ASTReader goes through this function instead. | |
102 // However, built-in macros are already registered in the Preprocessor | |
103 // ctor, and ASTWriter stops writing the macro chain at built-in macros, | |
104 // so in that case the chain from the pch needs to be spliced to the existing | |
105 // built-in. | |
106 | |
107 assert(II && MD); | |
108 MacroState &StoredMD = CurSubmoduleState->Macros[II]; | |
109 | |
110 if (auto *OldMD = StoredMD.getLatest()) { | |
111 // shouldIgnoreMacro() in ASTWriter also stops at macros from the | |
112 // predefines buffer in module builds. However, in module builds, modules | |
113 // are loaded completely before predefines are processed, so StoredMD | |
114 // will be nullptr for them when they're loaded. StoredMD should only be | |
115 // non-nullptr for builtins read from a pch file. | |
116 assert(OldMD->getMacroInfo()->isBuiltinMacro() && | |
117 "only built-ins should have an entry here"); | |
118 assert(!OldMD->getPrevious() && "builtin should only have a single entry"); | |
119 ED->setPrevious(OldMD); | |
120 StoredMD.setLatest(MD); | |
121 } else { | |
122 StoredMD = MD; | |
123 } | |
124 | |
125 // Setup the identifier as having associated macro history. | |
126 II->setHasMacroDefinition(true); | |
127 if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end()) | |
128 II->setHasMacroDefinition(false); | |
129 } | |
130 | |
131 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II, | |
132 MacroInfo *Macro, | |
133 ArrayRef<ModuleMacro *> Overrides, | |
134 bool &New) { | |
135 llvm::FoldingSetNodeID ID; | |
136 ModuleMacro::Profile(ID, Mod, II); | |
137 | |
138 void *InsertPos; | |
139 if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) { | |
140 New = false; | |
141 return MM; | |
142 } | |
143 | |
144 auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides); | |
145 ModuleMacros.InsertNode(MM, InsertPos); | |
146 | |
147 // Each overridden macro is now overridden by one more macro. | |
148 bool HidAny = false; | |
149 for (auto *O : Overrides) { | |
150 HidAny |= (O->NumOverriddenBy == 0); | |
151 ++O->NumOverriddenBy; | |
152 } | |
153 | |
154 // If we were the first overrider for any macro, it's no longer a leaf. | |
155 auto &LeafMacros = LeafModuleMacros[II]; | |
156 if (HidAny) { | |
157 LeafMacros.erase(std::remove_if(LeafMacros.begin(), LeafMacros.end(), | |
158 [](ModuleMacro *MM) { | |
159 return MM->NumOverriddenBy != 0; | |
160 }), | |
161 LeafMacros.end()); | |
162 } | |
163 | |
164 // The new macro is always a leaf macro. | |
165 LeafMacros.push_back(MM); | |
166 // The identifier now has defined macros (that may or may not be visible). | |
167 II->setHasMacroDefinition(true); | |
168 | |
169 New = true; | |
170 return MM; | |
171 } | |
172 | |
173 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, IdentifierInfo *II) { | |
174 llvm::FoldingSetNodeID ID; | |
175 ModuleMacro::Profile(ID, Mod, II); | |
176 | |
177 void *InsertPos; | |
178 return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos); | |
179 } | |
180 | |
181 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II, | |
182 ModuleMacroInfo &Info) { | |
183 assert(Info.ActiveModuleMacrosGeneration != | |
184 CurSubmoduleState->VisibleModules.getGeneration() && | |
185 "don't need to update this macro name info"); | |
186 Info.ActiveModuleMacrosGeneration = | |
187 CurSubmoduleState->VisibleModules.getGeneration(); | |
188 | |
189 auto Leaf = LeafModuleMacros.find(II); | |
190 if (Leaf == LeafModuleMacros.end()) { | |
191 // No imported macros at all: nothing to do. | |
192 return; | |
193 } | |
194 | |
195 Info.ActiveModuleMacros.clear(); | |
196 | |
197 // Every macro that's locally overridden is overridden by a visible macro. | |
198 llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides; | |
199 for (auto *O : Info.OverriddenMacros) | |
200 NumHiddenOverrides[O] = -1; | |
201 | |
202 // Collect all macros that are not overridden by a visible macro. | |
203 llvm::SmallVector<ModuleMacro *, 16> Worklist; | |
204 for (auto *LeafMM : Leaf->second) { | |
205 assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden"); | |
206 if (NumHiddenOverrides.lookup(LeafMM) == 0) | |
207 Worklist.push_back(LeafMM); | |
208 } | |
209 while (!Worklist.empty()) { | |
210 auto *MM = Worklist.pop_back_val(); | |
211 if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) { | |
212 // We only care about collecting definitions; undefinitions only act | |
213 // to override other definitions. | |
214 if (MM->getMacroInfo()) | |
215 Info.ActiveModuleMacros.push_back(MM); | |
216 } else { | |
217 for (auto *O : MM->overrides()) | |
218 if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros()) | |
219 Worklist.push_back(O); | |
220 } | |
221 } | |
222 // Our reverse postorder walk found the macros in reverse order. | |
223 std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end()); | |
224 | |
225 // Determine whether the macro name is ambiguous. | |
226 MacroInfo *MI = nullptr; | |
227 bool IsSystemMacro = true; | |
228 bool IsAmbiguous = false; | |
229 if (auto *MD = Info.MD) { | |
230 while (MD && isa<VisibilityMacroDirective>(MD)) | |
231 MD = MD->getPrevious(); | |
232 if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) { | |
233 MI = DMD->getInfo(); | |
234 IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation()); | |
235 } | |
236 } | |
237 for (auto *Active : Info.ActiveModuleMacros) { | |
238 auto *NewMI = Active->getMacroInfo(); | |
239 | |
240 // Before marking the macro as ambiguous, check if this is a case where | |
241 // both macros are in system headers. If so, we trust that the system | |
242 // did not get it wrong. This also handles cases where Clang's own | |
243 // headers have a different spelling of certain system macros: | |
244 // #define LONG_MAX __LONG_MAX__ (clang's limits.h) | |
245 // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h) | |
246 // | |
247 // FIXME: Remove the defined-in-system-headers check. clang's limits.h | |
248 // overrides the system limits.h's macros, so there's no conflict here. | |
249 if (MI && NewMI != MI && | |
250 !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true)) | |
251 IsAmbiguous = true; | |
252 IsSystemMacro &= Active->getOwningModule()->IsSystem || | |
253 SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc()); | |
254 MI = NewMI; | |
255 } | |
256 Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro; | |
257 } | |
258 | |
259 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) { | |
260 ArrayRef<ModuleMacro*> Leaf; | |
261 auto LeafIt = LeafModuleMacros.find(II); | |
262 if (LeafIt != LeafModuleMacros.end()) | |
263 Leaf = LeafIt->second; | |
264 const MacroState *State = nullptr; | |
265 auto Pos = CurSubmoduleState->Macros.find(II); | |
266 if (Pos != CurSubmoduleState->Macros.end()) | |
267 State = &Pos->second; | |
268 | |
269 llvm::errs() << "MacroState " << State << " " << II->getNameStart(); | |
270 if (State && State->isAmbiguous(*this, II)) | |
271 llvm::errs() << " ambiguous"; | |
272 if (State && !State->getOverriddenMacros().empty()) { | |
273 llvm::errs() << " overrides"; | |
274 for (auto *O : State->getOverriddenMacros()) | |
275 llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); | |
276 } | |
277 llvm::errs() << "\n"; | |
278 | |
279 // Dump local macro directives. | |
280 for (auto *MD = State ? State->getLatest() : nullptr; MD; | |
281 MD = MD->getPrevious()) { | |
282 llvm::errs() << " "; | |
283 MD->dump(); | |
284 } | |
285 | |
286 // Dump module macros. | |
287 llvm::DenseSet<ModuleMacro*> Active; | |
288 for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None) | |
289 Active.insert(MM); | |
290 llvm::DenseSet<ModuleMacro*> Visited; | |
291 llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end()); | |
292 while (!Worklist.empty()) { | |
293 auto *MM = Worklist.pop_back_val(); | |
294 llvm::errs() << " ModuleMacro " << MM << " " | |
295 << MM->getOwningModule()->getFullModuleName(); | |
296 if (!MM->getMacroInfo()) | |
297 llvm::errs() << " undef"; | |
298 | |
299 if (Active.count(MM)) | |
300 llvm::errs() << " active"; | |
301 else if (!CurSubmoduleState->VisibleModules.isVisible( | |
302 MM->getOwningModule())) | |
303 llvm::errs() << " hidden"; | |
304 else if (MM->getMacroInfo()) | |
305 llvm::errs() << " overridden"; | |
306 | |
307 if (!MM->overrides().empty()) { | |
308 llvm::errs() << " overrides"; | |
309 for (auto *O : MM->overrides()) { | |
310 llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); | |
311 if (Visited.insert(O).second) | |
312 Worklist.push_back(O); | |
313 } | |
314 } | |
315 llvm::errs() << "\n"; | |
316 if (auto *MI = MM->getMacroInfo()) { | |
317 llvm::errs() << " "; | |
318 MI->dump(); | |
319 llvm::errs() << "\n"; | |
320 } | |
321 } | |
322 } | |
323 | |
324 /// RegisterBuiltinMacro - Register the specified identifier in the identifier | |
325 /// table and mark it as a builtin macro to be expanded. | |
326 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){ | |
327 // Get the identifier. | |
328 IdentifierInfo *Id = PP.getIdentifierInfo(Name); | |
329 | |
330 // Mark it as being a macro that is builtin. | |
331 MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation()); | |
332 MI->setIsBuiltinMacro(); | |
333 PP.appendDefMacroDirective(Id, MI); | |
334 return Id; | |
335 } | |
336 | |
337 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the | |
338 /// identifier table. | |
339 void Preprocessor::RegisterBuiltinMacros() { | |
340 Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__"); | |
341 Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__"); | |
342 Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__"); | |
343 Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__"); | |
344 Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__"); | |
345 Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma"); | |
346 | |
347 // C++ Standing Document Extensions. | |
348 if (LangOpts.CPlusPlus) | |
349 Ident__has_cpp_attribute = | |
350 RegisterBuiltinMacro(*this, "__has_cpp_attribute"); | |
351 else | |
352 Ident__has_cpp_attribute = nullptr; | |
353 | |
354 // GCC Extensions. | |
355 Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__"); | |
356 Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__"); | |
357 Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__"); | |
358 | |
359 // Microsoft Extensions. | |
360 if (LangOpts.MicrosoftExt) { | |
361 Ident__identifier = RegisterBuiltinMacro(*this, "__identifier"); | |
362 Ident__pragma = RegisterBuiltinMacro(*this, "__pragma"); | |
363 } else { | |
364 Ident__identifier = nullptr; | |
365 Ident__pragma = nullptr; | |
366 } | |
367 | |
368 // Clang Extensions. | |
369 Ident__FILE_NAME__ = RegisterBuiltinMacro(*this, "__FILE_NAME__"); | |
370 Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature"); | |
371 Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension"); | |
372 Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin"); | |
373 Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute"); | |
374 if (!LangOpts.CPlusPlus) | |
375 Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute"); | |
376 else | |
377 Ident__has_c_attribute = nullptr; | |
378 | |
379 Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute"); | |
380 Ident__has_include = RegisterBuiltinMacro(*this, "__has_include"); | |
381 Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next"); | |
382 Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning"); | |
383 Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier"); | |
384 Ident__is_target_arch = RegisterBuiltinMacro(*this, "__is_target_arch"); | |
385 Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor"); | |
386 Ident__is_target_os = RegisterBuiltinMacro(*this, "__is_target_os"); | |
387 Ident__is_target_environment = | |
388 RegisterBuiltinMacro(*this, "__is_target_environment"); | |
389 | |
390 // Modules. | |
391 Ident__building_module = RegisterBuiltinMacro(*this, "__building_module"); | |
392 if (!LangOpts.CurrentModule.empty()) | |
393 Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__"); | |
394 else | |
395 Ident__MODULE__ = nullptr; | |
396 } | |
397 | |
398 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token | |
399 /// in its expansion, currently expands to that token literally. | |
400 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, | |
401 const IdentifierInfo *MacroIdent, | |
402 Preprocessor &PP) { | |
403 IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo(); | |
404 | |
405 // If the token isn't an identifier, it's always literally expanded. | |
406 if (!II) return true; | |
407 | |
408 // If the information about this identifier is out of date, update it from | |
409 // the external source. | |
410 if (II->isOutOfDate()) | |
411 PP.getExternalSource()->updateOutOfDateIdentifier(*II); | |
412 | |
413 // If the identifier is a macro, and if that macro is enabled, it may be | |
414 // expanded so it's not a trivial expansion. | |
415 if (auto *ExpansionMI = PP.getMacroInfo(II)) | |
416 if (ExpansionMI->isEnabled() && | |
417 // Fast expanding "#define X X" is ok, because X would be disabled. | |
418 II != MacroIdent) | |
419 return false; | |
420 | |
421 // If this is an object-like macro invocation, it is safe to trivially expand | |
422 // it. | |
423 if (MI->isObjectLike()) return true; | |
424 | |
425 // If this is a function-like macro invocation, it's safe to trivially expand | |
426 // as long as the identifier is not a macro argument. | |
427 return std::find(MI->param_begin(), MI->param_end(), II) == MI->param_end(); | |
428 } | |
429 | |
430 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be | |
431 /// lexed is a '('. If so, consume the token and return true, if not, this | |
432 /// method should have no observable side-effect on the lexed tokens. | |
433 bool Preprocessor::isNextPPTokenLParen() { | |
434 // Do some quick tests for rejection cases. | |
435 unsigned Val; | |
436 if (CurLexer) | |
437 Val = CurLexer->isNextPPTokenLParen(); | |
438 else | |
439 Val = CurTokenLexer->isNextTokenLParen(); | |
440 | |
441 if (Val == 2) { | |
442 // We have run off the end. If it's a source file we don't | |
443 // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the | |
444 // macro stack. | |
445 if (CurPPLexer) | |
446 return false; | |
447 for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) { | |
448 if (Entry.TheLexer) | |
449 Val = Entry.TheLexer->isNextPPTokenLParen(); | |
450 else | |
451 Val = Entry.TheTokenLexer->isNextTokenLParen(); | |
452 | |
453 if (Val != 2) | |
454 break; | |
455 | |
456 // Ran off the end of a source file? | |
457 if (Entry.ThePPLexer) | |
458 return false; | |
459 } | |
460 } | |
461 | |
462 // Okay, if we know that the token is a '(', lex it and return. Otherwise we | |
463 // have found something that isn't a '(' or we found the end of the | |
464 // translation unit. In either case, return false. | |
465 return Val == 1; | |
466 } | |
467 | |
468 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be | |
469 /// expanded as a macro, handle it and return the next token as 'Identifier'. | |
470 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, | |
471 const MacroDefinition &M) { | |
472 MacroInfo *MI = M.getMacroInfo(); | |
473 | |
474 // If this is a macro expansion in the "#if !defined(x)" line for the file, | |
475 // then the macro could expand to different things in other contexts, we need | |
476 // to disable the optimization in this case. | |
477 if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro(); | |
478 | |
479 // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. | |
480 if (MI->isBuiltinMacro()) { | |
481 if (Callbacks) | |
482 Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(), | |
483 /*Args=*/nullptr); | |
484 ExpandBuiltinMacro(Identifier); | |
485 return true; | |
486 } | |
487 | |
488 /// Args - If this is a function-like macro expansion, this contains, | |
489 /// for each macro argument, the list of tokens that were provided to the | |
490 /// invocation. | |
491 MacroArgs *Args = nullptr; | |
492 | |
493 // Remember where the end of the expansion occurred. For an object-like | |
494 // macro, this is the identifier. For a function-like macro, this is the ')'. | |
495 SourceLocation ExpansionEnd = Identifier.getLocation(); | |
496 | |
497 // If this is a function-like macro, read the arguments. | |
498 if (MI->isFunctionLike()) { | |
499 // Remember that we are now parsing the arguments to a macro invocation. | |
500 // Preprocessor directives used inside macro arguments are not portable, and | |
501 // this enables the warning. | |
502 InMacroArgs = true; | |
503 ArgMacro = &Identifier; | |
504 | |
505 Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd); | |
506 | |
507 // Finished parsing args. | |
508 InMacroArgs = false; | |
509 ArgMacro = nullptr; | |
510 | |
511 // If there was an error parsing the arguments, bail out. | |
512 if (!Args) return true; | |
513 | |
514 ++NumFnMacroExpanded; | |
515 } else { | |
516 ++NumMacroExpanded; | |
517 } | |
518 | |
519 // Notice that this macro has been used. | |
520 markMacroAsUsed(MI); | |
521 | |
522 // Remember where the token is expanded. | |
523 SourceLocation ExpandLoc = Identifier.getLocation(); | |
524 SourceRange ExpansionRange(ExpandLoc, ExpansionEnd); | |
525 | |
526 if (Callbacks) { | |
527 if (InMacroArgs) { | |
528 // We can have macro expansion inside a conditional directive while | |
529 // reading the function macro arguments. To ensure, in that case, that | |
530 // MacroExpands callbacks still happen in source order, queue this | |
531 // callback to have it happen after the function macro callback. | |
532 DelayedMacroExpandsCallbacks.push_back( | |
533 MacroExpandsInfo(Identifier, M, ExpansionRange)); | |
534 } else { | |
535 Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args); | |
536 if (!DelayedMacroExpandsCallbacks.empty()) { | |
537 for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) { | |
538 // FIXME: We lose macro args info with delayed callback. | |
539 Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range, | |
540 /*Args=*/nullptr); | |
541 } | |
542 DelayedMacroExpandsCallbacks.clear(); | |
543 } | |
544 } | |
545 } | |
546 | |
547 // If the macro definition is ambiguous, complain. | |
548 if (M.isAmbiguous()) { | |
549 Diag(Identifier, diag::warn_pp_ambiguous_macro) | |
550 << Identifier.getIdentifierInfo(); | |
551 Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen) | |
552 << Identifier.getIdentifierInfo(); | |
553 M.forAllDefinitions([&](const MacroInfo *OtherMI) { | |
554 if (OtherMI != MI) | |
555 Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other) | |
556 << Identifier.getIdentifierInfo(); | |
557 }); | |
558 } | |
559 | |
560 // If we started lexing a macro, enter the macro expansion body. | |
561 | |
562 // If this macro expands to no tokens, don't bother to push it onto the | |
563 // expansion stack, only to take it right back off. | |
564 if (MI->getNumTokens() == 0) { | |
565 // No need for arg info. | |
566 if (Args) Args->destroy(*this); | |
567 | |
568 // Propagate whitespace info as if we had pushed, then popped, | |
569 // a macro context. | |
570 Identifier.setFlag(Token::LeadingEmptyMacro); | |
571 PropagateLineStartLeadingSpaceInfo(Identifier); | |
572 ++NumFastMacroExpanded; | |
573 return false; | |
574 } else if (MI->getNumTokens() == 1 && | |
575 isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(), | |
576 *this)) { | |
577 // Otherwise, if this macro expands into a single trivially-expanded | |
578 // token: expand it now. This handles common cases like | |
579 // "#define VAL 42". | |
580 | |
581 // No need for arg info. | |
582 if (Args) Args->destroy(*this); | |
583 | |
584 // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro | |
585 // identifier to the expanded token. | |
586 bool isAtStartOfLine = Identifier.isAtStartOfLine(); | |
587 bool hasLeadingSpace = Identifier.hasLeadingSpace(); | |
588 | |
589 // Replace the result token. | |
590 Identifier = MI->getReplacementToken(0); | |
591 | |
592 // Restore the StartOfLine/LeadingSpace markers. | |
593 Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine); | |
594 Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace); | |
595 | |
596 // Update the tokens location to include both its expansion and physical | |
597 // locations. | |
598 SourceLocation Loc = | |
599 SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc, | |
600 ExpansionEnd,Identifier.getLength()); | |
601 Identifier.setLocation(Loc); | |
602 | |
603 // If this is a disabled macro or #define X X, we must mark the result as | |
604 // unexpandable. | |
605 if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) { | |
606 if (MacroInfo *NewMI = getMacroInfo(NewII)) | |
607 if (!NewMI->isEnabled() || NewMI == MI) { | |
608 Identifier.setFlag(Token::DisableExpand); | |
609 // Don't warn for "#define X X" like "#define bool bool" from | |
610 // stdbool.h. | |
611 if (NewMI != MI || MI->isFunctionLike()) | |
612 Diag(Identifier, diag::pp_disabled_macro_expansion); | |
613 } | |
614 } | |
615 | |
616 // Since this is not an identifier token, it can't be macro expanded, so | |
617 // we're done. | |
618 ++NumFastMacroExpanded; | |
619 return true; | |
620 } | |
621 | |
622 // Start expanding the macro. | |
623 EnterMacro(Identifier, ExpansionEnd, MI, Args); | |
624 return false; | |
625 } | |
626 | |
627 enum Bracket { | |
628 Brace, | |
629 Paren | |
630 }; | |
631 | |
632 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the | |
633 /// token vector are properly nested. | |
634 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) { | |
635 SmallVector<Bracket, 8> Brackets; | |
636 for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(), | |
637 E = Tokens.end(); | |
638 I != E; ++I) { | |
639 if (I->is(tok::l_paren)) { | |
640 Brackets.push_back(Paren); | |
641 } else if (I->is(tok::r_paren)) { | |
642 if (Brackets.empty() || Brackets.back() == Brace) | |
643 return false; | |
644 Brackets.pop_back(); | |
645 } else if (I->is(tok::l_brace)) { | |
646 Brackets.push_back(Brace); | |
647 } else if (I->is(tok::r_brace)) { | |
648 if (Brackets.empty() || Brackets.back() == Paren) | |
649 return false; | |
650 Brackets.pop_back(); | |
651 } | |
652 } | |
653 return Brackets.empty(); | |
654 } | |
655 | |
656 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new | |
657 /// vector of tokens in NewTokens. The new number of arguments will be placed | |
658 /// in NumArgs and the ranges which need to surrounded in parentheses will be | |
659 /// in ParenHints. | |
660 /// Returns false if the token stream cannot be changed. If this is because | |
661 /// of an initializer list starting a macro argument, the range of those | |
662 /// initializer lists will be place in InitLists. | |
663 static bool GenerateNewArgTokens(Preprocessor &PP, | |
664 SmallVectorImpl<Token> &OldTokens, | |
665 SmallVectorImpl<Token> &NewTokens, | |
666 unsigned &NumArgs, | |
667 SmallVectorImpl<SourceRange> &ParenHints, | |
668 SmallVectorImpl<SourceRange> &InitLists) { | |
669 if (!CheckMatchedBrackets(OldTokens)) | |
670 return false; | |
671 | |
672 // Once it is known that the brackets are matched, only a simple count of the | |
673 // braces is needed. | |
674 unsigned Braces = 0; | |
675 | |
676 // First token of a new macro argument. | |
677 SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin(); | |
678 | |
679 // First closing brace in a new macro argument. Used to generate | |
680 // SourceRanges for InitLists. | |
681 SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end(); | |
682 NumArgs = 0; | |
683 Token TempToken; | |
684 // Set to true when a macro separator token is found inside a braced list. | |
685 // If true, the fixed argument spans multiple old arguments and ParenHints | |
686 // will be updated. | |
687 bool FoundSeparatorToken = false; | |
688 for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(), | |
689 E = OldTokens.end(); | |
690 I != E; ++I) { | |
691 if (I->is(tok::l_brace)) { | |
692 ++Braces; | |
693 } else if (I->is(tok::r_brace)) { | |
694 --Braces; | |
695 if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken) | |
696 ClosingBrace = I; | |
697 } else if (I->is(tok::eof)) { | |
698 // EOF token is used to separate macro arguments | |
699 if (Braces != 0) { | |
700 // Assume comma separator is actually braced list separator and change | |
701 // it back to a comma. | |
702 FoundSeparatorToken = true; | |
703 I->setKind(tok::comma); | |
704 I->setLength(1); | |
705 } else { // Braces == 0 | |
706 // Separator token still separates arguments. | |
707 ++NumArgs; | |
708 | |
709 // If the argument starts with a brace, it can't be fixed with | |
710 // parentheses. A different diagnostic will be given. | |
711 if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) { | |
712 InitLists.push_back( | |
713 SourceRange(ArgStartIterator->getLocation(), | |
714 PP.getLocForEndOfToken(ClosingBrace->getLocation()))); | |
715 ClosingBrace = E; | |
716 } | |
717 | |
718 // Add left paren | |
719 if (FoundSeparatorToken) { | |
720 TempToken.startToken(); | |
721 TempToken.setKind(tok::l_paren); | |
722 TempToken.setLocation(ArgStartIterator->getLocation()); | |
723 TempToken.setLength(0); | |
724 NewTokens.push_back(TempToken); | |
725 } | |
726 | |
727 // Copy over argument tokens | |
728 NewTokens.insert(NewTokens.end(), ArgStartIterator, I); | |
729 | |
730 // Add right paren and store the paren locations in ParenHints | |
731 if (FoundSeparatorToken) { | |
732 SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation()); | |
733 TempToken.startToken(); | |
734 TempToken.setKind(tok::r_paren); | |
735 TempToken.setLocation(Loc); | |
736 TempToken.setLength(0); | |
737 NewTokens.push_back(TempToken); | |
738 ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(), | |
739 Loc)); | |
740 } | |
741 | |
742 // Copy separator token | |
743 NewTokens.push_back(*I); | |
744 | |
745 // Reset values | |
746 ArgStartIterator = I + 1; | |
747 FoundSeparatorToken = false; | |
748 } | |
749 } | |
750 } | |
751 | |
752 return !ParenHints.empty() && InitLists.empty(); | |
753 } | |
754 | |
755 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next | |
756 /// token is the '(' of the macro, this method is invoked to read all of the | |
757 /// actual arguments specified for the macro invocation. This returns null on | |
758 /// error. | |
759 MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName, | |
760 MacroInfo *MI, | |
761 SourceLocation &MacroEnd) { | |
762 // The number of fixed arguments to parse. | |
763 unsigned NumFixedArgsLeft = MI->getNumParams(); | |
764 bool isVariadic = MI->isVariadic(); | |
765 | |
766 // Outer loop, while there are more arguments, keep reading them. | |
767 Token Tok; | |
768 | |
769 // Read arguments as unexpanded tokens. This avoids issues, e.g., where | |
770 // an argument value in a macro could expand to ',' or '(' or ')'. | |
771 LexUnexpandedToken(Tok); | |
772 assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?"); | |
773 | |
774 // ArgTokens - Build up a list of tokens that make up each argument. Each | |
775 // argument is separated by an EOF token. Use a SmallVector so we can avoid | |
776 // heap allocations in the common case. | |
777 SmallVector<Token, 64> ArgTokens; | |
778 bool ContainsCodeCompletionTok = false; | |
779 bool FoundElidedComma = false; | |
780 | |
781 SourceLocation TooManyArgsLoc; | |
782 | |
783 unsigned NumActuals = 0; | |
784 while (Tok.isNot(tok::r_paren)) { | |
785 if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod)) | |
786 break; | |
787 | |
788 assert(Tok.isOneOf(tok::l_paren, tok::comma) && | |
789 "only expect argument separators here"); | |
790 | |
791 size_t ArgTokenStart = ArgTokens.size(); | |
792 SourceLocation ArgStartLoc = Tok.getLocation(); | |
793 | |
794 // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note | |
795 // that we already consumed the first one. | |
796 unsigned NumParens = 0; | |
797 | |
798 while (true) { | |
799 // Read arguments as unexpanded tokens. This avoids issues, e.g., where | |
800 // an argument value in a macro could expand to ',' or '(' or ')'. | |
801 LexUnexpandedToken(Tok); | |
802 | |
803 if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n" | |
804 if (!ContainsCodeCompletionTok) { | |
805 Diag(MacroName, diag::err_unterm_macro_invoc); | |
806 Diag(MI->getDefinitionLoc(), diag::note_macro_here) | |
807 << MacroName.getIdentifierInfo(); | |
808 // Do not lose the EOF/EOD. Return it to the client. | |
809 MacroName = Tok; | |
810 return nullptr; | |
811 } | |
812 // Do not lose the EOF/EOD. | |
813 auto Toks = std::make_unique<Token[]>(1); | |
814 Toks[0] = Tok; | |
815 EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false); | |
816 break; | |
817 } else if (Tok.is(tok::r_paren)) { | |
818 // If we found the ) token, the macro arg list is done. | |
819 if (NumParens-- == 0) { | |
820 MacroEnd = Tok.getLocation(); | |
821 if (!ArgTokens.empty() && | |
822 ArgTokens.back().commaAfterElided()) { | |
823 FoundElidedComma = true; | |
824 } | |
825 break; | |
826 } | |
827 } else if (Tok.is(tok::l_paren)) { | |
828 ++NumParens; | |
829 } else if (Tok.is(tok::comma)) { | |
830 // In Microsoft-compatibility mode, single commas from nested macro | |
831 // expansions should not be considered as argument separators. We test | |
832 // for this with the IgnoredComma token flag. | |
833 if (Tok.getFlags() & Token::IgnoredComma) { | |
834 // However, in MSVC's preprocessor, subsequent expansions do treat | |
835 // these commas as argument separators. This leads to a common | |
836 // workaround used in macros that need to work in both MSVC and | |
837 // compliant preprocessors. Therefore, the IgnoredComma flag can only | |
838 // apply once to any given token. | |
839 Tok.clearFlag(Token::IgnoredComma); | |
840 } else if (NumParens == 0) { | |
841 // Comma ends this argument if there are more fixed arguments | |
842 // expected. However, if this is a variadic macro, and this is part of | |
843 // the variadic part, then the comma is just an argument token. | |
844 if (!isVariadic) | |
845 break; | |
846 if (NumFixedArgsLeft > 1) | |
847 break; | |
848 } | |
849 } else if (Tok.is(tok::comment) && !KeepMacroComments) { | |
850 // If this is a comment token in the argument list and we're just in | |
851 // -C mode (not -CC mode), discard the comment. | |
852 continue; | |
853 } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) { | |
854 // Reading macro arguments can cause macros that we are currently | |
855 // expanding from to be popped off the expansion stack. Doing so causes | |
856 // them to be reenabled for expansion. Here we record whether any | |
857 // identifiers we lex as macro arguments correspond to disabled macros. | |
858 // If so, we mark the token as noexpand. This is a subtle aspect of | |
859 // C99 6.10.3.4p2. | |
860 if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo())) | |
861 if (!MI->isEnabled()) | |
862 Tok.setFlag(Token::DisableExpand); | |
863 } else if (Tok.is(tok::code_completion)) { | |
864 ContainsCodeCompletionTok = true; | |
865 if (CodeComplete) | |
866 CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(), | |
867 MI, NumActuals); | |
868 // Don't mark that we reached the code-completion point because the | |
869 // parser is going to handle the token and there will be another | |
870 // code-completion callback. | |
871 } | |
872 | |
873 ArgTokens.push_back(Tok); | |
874 } | |
875 | |
876 // If this was an empty argument list foo(), don't add this as an empty | |
877 // argument. | |
878 if (ArgTokens.empty() && Tok.getKind() == tok::r_paren) | |
879 break; | |
880 | |
881 // If this is not a variadic macro, and too many args were specified, emit | |
882 // an error. | |
883 if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) { | |
884 if (ArgTokens.size() != ArgTokenStart) | |
885 TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation(); | |
886 else | |
887 TooManyArgsLoc = ArgStartLoc; | |
888 } | |
889 | |
890 // Empty arguments are standard in C99 and C++0x, and are supported as an | |
891 // extension in other modes. | |
892 if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99) | |
893 Diag(Tok, LangOpts.CPlusPlus11 ? | |
894 diag::warn_cxx98_compat_empty_fnmacro_arg : | |
895 diag::ext_empty_fnmacro_arg); | |
896 | |
897 // Add a marker EOF token to the end of the token list for this argument. | |
898 Token EOFTok; | |
899 EOFTok.startToken(); | |
900 EOFTok.setKind(tok::eof); | |
901 EOFTok.setLocation(Tok.getLocation()); | |
902 EOFTok.setLength(0); | |
903 ArgTokens.push_back(EOFTok); | |
904 ++NumActuals; | |
905 if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0) | |
906 --NumFixedArgsLeft; | |
907 } | |
908 | |
909 // Okay, we either found the r_paren. Check to see if we parsed too few | |
910 // arguments. | |
911 unsigned MinArgsExpected = MI->getNumParams(); | |
912 | |
913 // If this is not a variadic macro, and too many args were specified, emit | |
914 // an error. | |
915 if (!isVariadic && NumActuals > MinArgsExpected && | |
916 !ContainsCodeCompletionTok) { | |
917 // Emit the diagnostic at the macro name in case there is a missing ). | |
918 // Emitting it at the , could be far away from the macro name. | |
919 Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc); | |
920 Diag(MI->getDefinitionLoc(), diag::note_macro_here) | |
921 << MacroName.getIdentifierInfo(); | |
922 | |
923 // Commas from braced initializer lists will be treated as argument | |
924 // separators inside macros. Attempt to correct for this with parentheses. | |
925 // TODO: See if this can be generalized to angle brackets for templates | |
926 // inside macro arguments. | |
927 | |
928 SmallVector<Token, 4> FixedArgTokens; | |
929 unsigned FixedNumArgs = 0; | |
930 SmallVector<SourceRange, 4> ParenHints, InitLists; | |
931 if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs, | |
932 ParenHints, InitLists)) { | |
933 if (!InitLists.empty()) { | |
934 DiagnosticBuilder DB = | |
935 Diag(MacroName, | |
936 diag::note_init_list_at_beginning_of_macro_argument); | |
937 for (SourceRange Range : InitLists) | |
938 DB << Range; | |
939 } | |
940 return nullptr; | |
941 } | |
942 if (FixedNumArgs != MinArgsExpected) | |
943 return nullptr; | |
944 | |
945 DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro); | |
946 for (SourceRange ParenLocation : ParenHints) { | |
947 DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "("); | |
948 DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")"); | |
949 } | |
950 ArgTokens.swap(FixedArgTokens); | |
951 NumActuals = FixedNumArgs; | |
952 } | |
953 | |
954 // See MacroArgs instance var for description of this. | |
955 bool isVarargsElided = false; | |
956 | |
957 if (ContainsCodeCompletionTok) { | |
958 // Recover from not-fully-formed macro invocation during code-completion. | |
959 Token EOFTok; | |
960 EOFTok.startToken(); | |
961 EOFTok.setKind(tok::eof); | |
962 EOFTok.setLocation(Tok.getLocation()); | |
963 EOFTok.setLength(0); | |
964 for (; NumActuals < MinArgsExpected; ++NumActuals) | |
965 ArgTokens.push_back(EOFTok); | |
966 } | |
967 | |
968 if (NumActuals < MinArgsExpected) { | |
969 // There are several cases where too few arguments is ok, handle them now. | |
970 if (NumActuals == 0 && MinArgsExpected == 1) { | |
971 // #define A(X) or #define A(...) ---> A() | |
972 | |
973 // If there is exactly one argument, and that argument is missing, | |
974 // then we have an empty "()" argument empty list. This is fine, even if | |
975 // the macro expects one argument (the argument is just empty). | |
976 isVarargsElided = MI->isVariadic(); | |
977 } else if ((FoundElidedComma || MI->isVariadic()) && | |
978 (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X) | |
979 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A() | |
980 // Varargs where the named vararg parameter is missing: OK as extension. | |
981 // #define A(x, ...) | |
982 // A("blah") | |
983 // | |
984 // If the macro contains the comma pasting extension, the diagnostic | |
985 // is suppressed; we know we'll get another diagnostic later. | |
986 if (!MI->hasCommaPasting()) { | |
987 Diag(Tok, diag::ext_missing_varargs_arg); | |
988 Diag(MI->getDefinitionLoc(), diag::note_macro_here) | |
989 << MacroName.getIdentifierInfo(); | |
990 } | |
991 | |
992 // Remember this occurred, allowing us to elide the comma when used for | |
993 // cases like: | |
994 // #define A(x, foo...) blah(a, ## foo) | |
995 // #define B(x, ...) blah(a, ## __VA_ARGS__) | |
996 // #define C(...) blah(a, ## __VA_ARGS__) | |
997 // A(x) B(x) C() | |
998 isVarargsElided = true; | |
999 } else if (!ContainsCodeCompletionTok) { | |
1000 // Otherwise, emit the error. | |
1001 Diag(Tok, diag::err_too_few_args_in_macro_invoc); | |
1002 Diag(MI->getDefinitionLoc(), diag::note_macro_here) | |
1003 << MacroName.getIdentifierInfo(); | |
1004 return nullptr; | |
1005 } | |
1006 | |
1007 // Add a marker EOF token to the end of the token list for this argument. | |
1008 SourceLocation EndLoc = Tok.getLocation(); | |
1009 Tok.startToken(); | |
1010 Tok.setKind(tok::eof); | |
1011 Tok.setLocation(EndLoc); | |
1012 Tok.setLength(0); | |
1013 ArgTokens.push_back(Tok); | |
1014 | |
1015 // If we expect two arguments, add both as empty. | |
1016 if (NumActuals == 0 && MinArgsExpected == 2) | |
1017 ArgTokens.push_back(Tok); | |
1018 | |
1019 } else if (NumActuals > MinArgsExpected && !MI->isVariadic() && | |
1020 !ContainsCodeCompletionTok) { | |
1021 // Emit the diagnostic at the macro name in case there is a missing ). | |
1022 // Emitting it at the , could be far away from the macro name. | |
1023 Diag(MacroName, diag::err_too_many_args_in_macro_invoc); | |
1024 Diag(MI->getDefinitionLoc(), diag::note_macro_here) | |
1025 << MacroName.getIdentifierInfo(); | |
1026 return nullptr; | |
1027 } | |
1028 | |
1029 return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this); | |
1030 } | |
1031 | |
1032 /// Keeps macro expanded tokens for TokenLexers. | |
1033 // | |
1034 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is | |
1035 /// going to lex in the cache and when it finishes the tokens are removed | |
1036 /// from the end of the cache. | |
1037 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer, | |
1038 ArrayRef<Token> tokens) { | |
1039 assert(tokLexer); | |
1040 if (tokens.empty()) | |
1041 return nullptr; | |
1042 | |
1043 size_t newIndex = MacroExpandedTokens.size(); | |
1044 bool cacheNeedsToGrow = tokens.size() > | |
1045 MacroExpandedTokens.capacity()-MacroExpandedTokens.size(); | |
1046 MacroExpandedTokens.append(tokens.begin(), tokens.end()); | |
1047 | |
1048 if (cacheNeedsToGrow) { | |
1049 // Go through all the TokenLexers whose 'Tokens' pointer points in the | |
1050 // buffer and update the pointers to the (potential) new buffer array. | |
1051 for (const auto &Lexer : MacroExpandingLexersStack) { | |
1052 TokenLexer *prevLexer; | |
1053 size_t tokIndex; | |
1054 std::tie(prevLexer, tokIndex) = Lexer; | |
1055 prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex; | |
1056 } | |
1057 } | |
1058 | |
1059 MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex)); | |
1060 return MacroExpandedTokens.data() + newIndex; | |
1061 } | |
1062 | |
1063 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() { | |
1064 assert(!MacroExpandingLexersStack.empty()); | |
1065 size_t tokIndex = MacroExpandingLexersStack.back().second; | |
1066 assert(tokIndex < MacroExpandedTokens.size()); | |
1067 // Pop the cached macro expanded tokens from the end. | |
1068 MacroExpandedTokens.resize(tokIndex); | |
1069 MacroExpandingLexersStack.pop_back(); | |
1070 } | |
1071 | |
1072 /// ComputeDATE_TIME - Compute the current time, enter it into the specified | |
1073 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of | |
1074 /// the identifier tokens inserted. | |
1075 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, | |
1076 Preprocessor &PP) { | |
1077 time_t TT = time(nullptr); | |
1078 struct tm *TM = localtime(&TT); | |
1079 | |
1080 static const char * const Months[] = { | |
1081 "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" | |
1082 }; | |
1083 | |
1084 { | |
1085 SmallString<32> TmpBuffer; | |
1086 llvm::raw_svector_ostream TmpStream(TmpBuffer); | |
1087 TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon], | |
1088 TM->tm_mday, TM->tm_year + 1900); | |
1089 Token TmpTok; | |
1090 TmpTok.startToken(); | |
1091 PP.CreateString(TmpStream.str(), TmpTok); | |
1092 DATELoc = TmpTok.getLocation(); | |
1093 } | |
1094 | |
1095 { | |
1096 SmallString<32> TmpBuffer; | |
1097 llvm::raw_svector_ostream TmpStream(TmpBuffer); | |
1098 TmpStream << llvm::format("\"%02d:%02d:%02d\"", | |
1099 TM->tm_hour, TM->tm_min, TM->tm_sec); | |
1100 Token TmpTok; | |
1101 TmpTok.startToken(); | |
1102 PP.CreateString(TmpStream.str(), TmpTok); | |
1103 TIMELoc = TmpTok.getLocation(); | |
1104 } | |
1105 } | |
1106 | |
1107 /// HasFeature - Return true if we recognize and implement the feature | |
1108 /// specified by the identifier as a standard language feature. | |
1109 static bool HasFeature(const Preprocessor &PP, StringRef Feature) { | |
1110 const LangOptions &LangOpts = PP.getLangOpts(); | |
1111 | |
1112 // Normalize the feature name, __foo__ becomes foo. | |
1113 if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4) | |
1114 Feature = Feature.substr(2, Feature.size() - 4); | |
1115 | |
1116 #define FEATURE(Name, Predicate) .Case(#Name, Predicate) | |
1117 return llvm::StringSwitch<bool>(Feature) | |
1118 #include "clang/Basic/Features.def" | |
1119 .Default(false); | |
1120 #undef FEATURE | |
1121 } | |
1122 | |
1123 /// HasExtension - Return true if we recognize and implement the feature | |
1124 /// specified by the identifier, either as an extension or a standard language | |
1125 /// feature. | |
1126 static bool HasExtension(const Preprocessor &PP, StringRef Extension) { | |
1127 if (HasFeature(PP, Extension)) | |
1128 return true; | |
1129 | |
1130 // If the use of an extension results in an error diagnostic, extensions are | |
1131 // effectively unavailable, so just return false here. | |
1132 if (PP.getDiagnostics().getExtensionHandlingBehavior() >= | |
1133 diag::Severity::Error) | |
1134 return false; | |
1135 | |
1136 const LangOptions &LangOpts = PP.getLangOpts(); | |
1137 | |
1138 // Normalize the extension name, __foo__ becomes foo. | |
1139 if (Extension.startswith("__") && Extension.endswith("__") && | |
1140 Extension.size() >= 4) | |
1141 Extension = Extension.substr(2, Extension.size() - 4); | |
1142 | |
1143 // Because we inherit the feature list from HasFeature, this string switch | |
1144 // must be less restrictive than HasFeature's. | |
1145 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate) | |
1146 return llvm::StringSwitch<bool>(Extension) | |
1147 #include "clang/Basic/Features.def" | |
1148 .Default(false); | |
1149 #undef EXTENSION | |
1150 } | |
1151 | |
1152 /// EvaluateHasIncludeCommon - Process a '__has_include("path")' | |
1153 /// or '__has_include_next("path")' expression. | |
1154 /// Returns true if successful. | |
1155 static bool EvaluateHasIncludeCommon(Token &Tok, | |
1156 IdentifierInfo *II, Preprocessor &PP, | |
1157 const DirectoryLookup *LookupFrom, | |
1158 const FileEntry *LookupFromFile) { | |
1159 // Save the location of the current token. If a '(' is later found, use | |
1160 // that location. If not, use the end of this location instead. | |
1161 SourceLocation LParenLoc = Tok.getLocation(); | |
1162 | |
1163 // These expressions are only allowed within a preprocessor directive. | |
1164 if (!PP.isParsingIfOrElifDirective()) { | |
1165 PP.Diag(LParenLoc, diag::err_pp_directive_required) << II; | |
1166 // Return a valid identifier token. | |
1167 assert(Tok.is(tok::identifier)); | |
1168 Tok.setIdentifierInfo(II); | |
1169 return false; | |
1170 } | |
1171 | |
1172 // Get '('. If we don't have a '(', try to form a header-name token. | |
1173 do { | |
1174 if (PP.LexHeaderName(Tok)) | |
1175 return false; | |
1176 } while (Tok.getKind() == tok::comment); | |
1177 | |
1178 // Ensure we have a '('. | |
1179 if (Tok.isNot(tok::l_paren)) { | |
1180 // No '(', use end of last token. | |
1181 LParenLoc = PP.getLocForEndOfToken(LParenLoc); | |
1182 PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren; | |
1183 // If the next token looks like a filename or the start of one, | |
1184 // assume it is and process it as such. | |
1185 if (Tok.isNot(tok::header_name)) | |
1186 return false; | |
1187 } else { | |
1188 // Save '(' location for possible missing ')' message. | |
1189 LParenLoc = Tok.getLocation(); | |
1190 if (PP.LexHeaderName(Tok)) | |
1191 return false; | |
1192 } | |
1193 | |
1194 if (Tok.isNot(tok::header_name)) { | |
1195 PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename); | |
1196 return false; | |
1197 } | |
1198 | |
1199 // Reserve a buffer to get the spelling. | |
1200 SmallString<128> FilenameBuffer; | |
1201 bool Invalid = false; | |
1202 StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid); | |
1203 if (Invalid) | |
1204 return false; | |
1205 | |
1206 SourceLocation FilenameLoc = Tok.getLocation(); | |
1207 | |
1208 // Get ')'. | |
1209 PP.LexNonComment(Tok); | |
1210 | |
1211 // Ensure we have a trailing ). | |
1212 if (Tok.isNot(tok::r_paren)) { | |
1213 PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after) | |
1214 << II << tok::r_paren; | |
1215 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; | |
1216 return false; | |
1217 } | |
1218 | |
1219 bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename); | |
1220 // If GetIncludeFilenameSpelling set the start ptr to null, there was an | |
1221 // error. | |
1222 if (Filename.empty()) | |
1223 return false; | |
1224 | |
1225 // Search include directories. | |
1226 const DirectoryLookup *CurDir; | |
1227 Optional<FileEntryRef> File = | |
1228 PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile, | |
1229 CurDir, nullptr, nullptr, nullptr, nullptr, nullptr); | |
1230 | |
1231 if (PPCallbacks *Callbacks = PP.getPPCallbacks()) { | |
1232 SrcMgr::CharacteristicKind FileType = SrcMgr::C_User; | |
1233 if (File) | |
1234 FileType = | |
1235 PP.getHeaderSearchInfo().getFileDirFlavor(&File->getFileEntry()); | |
1236 Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType); | |
1237 } | |
1238 | |
1239 // Get the result value. A result of true means the file exists. | |
1240 return File.hasValue(); | |
1241 } | |
1242 | |
1243 /// EvaluateHasInclude - Process a '__has_include("path")' expression. | |
1244 /// Returns true if successful. | |
1245 static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II, | |
1246 Preprocessor &PP) { | |
1247 return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr); | |
1248 } | |
1249 | |
1250 /// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression. | |
1251 /// Returns true if successful. | |
1252 static bool EvaluateHasIncludeNext(Token &Tok, | |
1253 IdentifierInfo *II, Preprocessor &PP) { | |
1254 // __has_include_next is like __has_include, except that we start | |
1255 // searching after the current found directory. If we can't do this, | |
1256 // issue a diagnostic. | |
1257 // FIXME: Factor out duplication with | |
1258 // Preprocessor::HandleIncludeNextDirective. | |
1259 const DirectoryLookup *Lookup = PP.GetCurDirLookup(); | |
1260 const FileEntry *LookupFromFile = nullptr; | |
1261 if (PP.isInPrimaryFile() && PP.getLangOpts().IsHeaderFile) { | |
1262 // If the main file is a header, then it's either for PCH/AST generation, | |
1263 // or libclang opened it. Either way, handle it as a normal include below | |
1264 // and do not complain about __has_include_next. | |
1265 } else if (PP.isInPrimaryFile()) { | |
1266 Lookup = nullptr; | |
1267 PP.Diag(Tok, diag::pp_include_next_in_primary); | |
1268 } else if (PP.getCurrentLexerSubmodule()) { | |
1269 // Start looking up in the directory *after* the one in which the current | |
1270 // file would be found, if any. | |
1271 assert(PP.getCurrentLexer() && "#include_next directive in macro?"); | |
1272 LookupFromFile = PP.getCurrentLexer()->getFileEntry(); | |
1273 Lookup = nullptr; | |
1274 } else if (!Lookup) { | |
1275 PP.Diag(Tok, diag::pp_include_next_absolute_path); | |
1276 } else { | |
1277 // Start looking up in the next directory. | |
1278 ++Lookup; | |
1279 } | |
1280 | |
1281 return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile); | |
1282 } | |
1283 | |
1284 /// Process single-argument builtin feature-like macros that return | |
1285 /// integer values. | |
1286 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS, | |
1287 Token &Tok, IdentifierInfo *II, | |
1288 Preprocessor &PP, | |
1289 llvm::function_ref< | |
1290 int(Token &Tok, | |
1291 bool &HasLexedNextTok)> Op) { | |
1292 // Parse the initial '('. | |
1293 PP.LexUnexpandedToken(Tok); | |
1294 if (Tok.isNot(tok::l_paren)) { | |
1295 PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II | |
1296 << tok::l_paren; | |
1297 | |
1298 // Provide a dummy '0' value on output stream to elide further errors. | |
1299 if (!Tok.isOneOf(tok::eof, tok::eod)) { | |
1300 OS << 0; | |
1301 Tok.setKind(tok::numeric_constant); | |
1302 } | |
1303 return; | |
1304 } | |
1305 | |
1306 unsigned ParenDepth = 1; | |
1307 SourceLocation LParenLoc = Tok.getLocation(); | |
1308 llvm::Optional<int> Result; | |
1309 | |
1310 Token ResultTok; | |
1311 bool SuppressDiagnostic = false; | |
1312 while (true) { | |
1313 // Parse next token. | |
1314 PP.LexUnexpandedToken(Tok); | |
1315 | |
1316 already_lexed: | |
1317 switch (Tok.getKind()) { | |
1318 case tok::eof: | |
1319 case tok::eod: | |
1320 // Don't provide even a dummy value if the eod or eof marker is | |
1321 // reached. Simply provide a diagnostic. | |
1322 PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc); | |
1323 return; | |
1324 | |
1325 case tok::comma: | |
1326 if (!SuppressDiagnostic) { | |
1327 PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc); | |
1328 SuppressDiagnostic = true; | |
1329 } | |
1330 continue; | |
1331 | |
1332 case tok::l_paren: | |
1333 ++ParenDepth; | |
1334 if (Result.hasValue()) | |
1335 break; | |
1336 if (!SuppressDiagnostic) { | |
1337 PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II; | |
1338 SuppressDiagnostic = true; | |
1339 } | |
1340 continue; | |
1341 | |
1342 case tok::r_paren: | |
1343 if (--ParenDepth > 0) | |
1344 continue; | |
1345 | |
1346 // The last ')' has been reached; return the value if one found or | |
1347 // a diagnostic and a dummy value. | |
1348 if (Result.hasValue()) { | |
1349 OS << Result.getValue(); | |
1350 // For strict conformance to __has_cpp_attribute rules, use 'L' | |
1351 // suffix for dated literals. | |
1352 if (Result.getValue() > 1) | |
1353 OS << 'L'; | |
1354 } else { | |
1355 OS << 0; | |
1356 if (!SuppressDiagnostic) | |
1357 PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc); | |
1358 } | |
1359 Tok.setKind(tok::numeric_constant); | |
1360 return; | |
1361 | |
1362 default: { | |
1363 // Parse the macro argument, if one not found so far. | |
1364 if (Result.hasValue()) | |
1365 break; | |
1366 | |
1367 bool HasLexedNextToken = false; | |
1368 Result = Op(Tok, HasLexedNextToken); | |
1369 ResultTok = Tok; | |
1370 if (HasLexedNextToken) | |
1371 goto already_lexed; | |
1372 continue; | |
1373 } | |
1374 } | |
1375 | |
1376 // Diagnose missing ')'. | |
1377 if (!SuppressDiagnostic) { | |
1378 if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) { | |
1379 if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo()) | |
1380 Diag << LastII; | |
1381 else | |
1382 Diag << ResultTok.getKind(); | |
1383 Diag << tok::r_paren << ResultTok.getLocation(); | |
1384 } | |
1385 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; | |
1386 SuppressDiagnostic = true; | |
1387 } | |
1388 } | |
1389 } | |
1390 | |
1391 /// Helper function to return the IdentifierInfo structure of a Token | |
1392 /// or generate a diagnostic if none available. | |
1393 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok, | |
1394 Preprocessor &PP, | |
1395 signed DiagID) { | |
1396 IdentifierInfo *II; | |
1397 if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo())) | |
1398 return II; | |
1399 | |
1400 PP.Diag(Tok.getLocation(), DiagID); | |
1401 return nullptr; | |
1402 } | |
1403 | |
1404 /// Implements the __is_target_arch builtin macro. | |
1405 static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) { | |
1406 std::string ArchName = II->getName().lower() + "--"; | |
1407 llvm::Triple Arch(ArchName); | |
1408 const llvm::Triple &TT = TI.getTriple(); | |
1409 if (TT.isThumb()) { | |
1410 // arm matches thumb or thumbv7. armv7 matches thumbv7. | |
1411 if ((Arch.getSubArch() == llvm::Triple::NoSubArch || | |
1412 Arch.getSubArch() == TT.getSubArch()) && | |
1413 ((TT.getArch() == llvm::Triple::thumb && | |
1414 Arch.getArch() == llvm::Triple::arm) || | |
1415 (TT.getArch() == llvm::Triple::thumbeb && | |
1416 Arch.getArch() == llvm::Triple::armeb))) | |
1417 return true; | |
1418 } | |
1419 // Check the parsed arch when it has no sub arch to allow Clang to | |
1420 // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7. | |
1421 return (Arch.getSubArch() == llvm::Triple::NoSubArch || | |
1422 Arch.getSubArch() == TT.getSubArch()) && | |
1423 Arch.getArch() == TT.getArch(); | |
1424 } | |
1425 | |
1426 /// Implements the __is_target_vendor builtin macro. | |
1427 static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) { | |
1428 StringRef VendorName = TI.getTriple().getVendorName(); | |
1429 if (VendorName.empty()) | |
1430 VendorName = "unknown"; | |
1431 return VendorName.equals_lower(II->getName()); | |
1432 } | |
1433 | |
1434 /// Implements the __is_target_os builtin macro. | |
1435 static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) { | |
1436 std::string OSName = | |
1437 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); | |
1438 llvm::Triple OS(OSName); | |
1439 if (OS.getOS() == llvm::Triple::Darwin) { | |
1440 // Darwin matches macos, ios, etc. | |
1441 return TI.getTriple().isOSDarwin(); | |
1442 } | |
1443 return TI.getTriple().getOS() == OS.getOS(); | |
1444 } | |
1445 | |
1446 /// Implements the __is_target_environment builtin macro. | |
1447 static bool isTargetEnvironment(const TargetInfo &TI, | |
1448 const IdentifierInfo *II) { | |
1449 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); | |
1450 llvm::Triple Env(EnvName); | |
1451 return TI.getTriple().getEnvironment() == Env.getEnvironment(); | |
1452 } | |
1453 | |
1454 static void remapMacroPath( | |
1455 SmallString<256> &Path, | |
1456 const std::map<std::string, std::string, std::greater<std::string>> | |
1457 &MacroPrefixMap) { | |
1458 for (const auto &Entry : MacroPrefixMap) | |
1459 if (Path.startswith(Entry.first)) { | |
1460 Path = (Twine(Entry.second) + Path.substr(Entry.first.size())).str(); | |
1461 break; | |
1462 } | |
1463 } | |
1464 | |
1465 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded | |
1466 /// as a builtin macro, handle it and return the next token as 'Tok'. | |
1467 void Preprocessor::ExpandBuiltinMacro(Token &Tok) { | |
1468 // Figure out which token this is. | |
1469 IdentifierInfo *II = Tok.getIdentifierInfo(); | |
1470 assert(II && "Can't be a macro without id info!"); | |
1471 | |
1472 // If this is an _Pragma or Microsoft __pragma directive, expand it, | |
1473 // invoke the pragma handler, then lex the token after it. | |
1474 if (II == Ident_Pragma) | |
1475 return Handle_Pragma(Tok); | |
1476 else if (II == Ident__pragma) // in non-MS mode this is null | |
1477 return HandleMicrosoft__pragma(Tok); | |
1478 | |
1479 ++NumBuiltinMacroExpanded; | |
1480 | |
1481 SmallString<128> TmpBuffer; | |
1482 llvm::raw_svector_ostream OS(TmpBuffer); | |
1483 | |
1484 // Set up the return result. | |
1485 Tok.setIdentifierInfo(nullptr); | |
1486 Tok.clearFlag(Token::NeedsCleaning); | |
1487 bool IsAtStartOfLine = Tok.isAtStartOfLine(); | |
1488 bool HasLeadingSpace = Tok.hasLeadingSpace(); | |
1489 | |
1490 if (II == Ident__LINE__) { | |
1491 // C99 6.10.8: "__LINE__: The presumed line number (within the current | |
1492 // source file) of the current source line (an integer constant)". This can | |
1493 // be affected by #line. | |
1494 SourceLocation Loc = Tok.getLocation(); | |
1495 | |
1496 // Advance to the location of the first _, this might not be the first byte | |
1497 // of the token if it starts with an escaped newline. | |
1498 Loc = AdvanceToTokenCharacter(Loc, 0); | |
1499 | |
1500 // One wrinkle here is that GCC expands __LINE__ to location of the *end* of | |
1501 // a macro expansion. This doesn't matter for object-like macros, but | |
1502 // can matter for a function-like macro that expands to contain __LINE__. | |
1503 // Skip down through expansion points until we find a file loc for the | |
1504 // end of the expansion history. | |
1505 Loc = SourceMgr.getExpansionRange(Loc).getEnd(); | |
1506 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc); | |
1507 | |
1508 // __LINE__ expands to a simple numeric value. | |
1509 OS << (PLoc.isValid()? PLoc.getLine() : 1); | |
1510 Tok.setKind(tok::numeric_constant); | |
1511 } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ || | |
1512 II == Ident__FILE_NAME__) { | |
1513 // C99 6.10.8: "__FILE__: The presumed name of the current source file (a | |
1514 // character string literal)". This can be affected by #line. | |
1515 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); | |
1516 | |
1517 // __BASE_FILE__ is a GNU extension that returns the top of the presumed | |
1518 // #include stack instead of the current file. | |
1519 if (II == Ident__BASE_FILE__ && PLoc.isValid()) { | |
1520 SourceLocation NextLoc = PLoc.getIncludeLoc(); | |
1521 while (NextLoc.isValid()) { | |
1522 PLoc = SourceMgr.getPresumedLoc(NextLoc); | |
1523 if (PLoc.isInvalid()) | |
1524 break; | |
1525 | |
1526 NextLoc = PLoc.getIncludeLoc(); | |
1527 } | |
1528 } | |
1529 | |
1530 // Escape this filename. Turn '\' -> '\\' '"' -> '\"' | |
1531 SmallString<256> FN; | |
1532 if (PLoc.isValid()) { | |
1533 // __FILE_NAME__ is a Clang-specific extension that expands to the | |
1534 // the last part of __FILE__. | |
1535 if (II == Ident__FILE_NAME__) { | |
1536 // Try to get the last path component, failing that return the original | |
1537 // presumed location. | |
1538 StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename()); | |
1539 if (PLFileName != "") | |
1540 FN += PLFileName; | |
1541 else | |
1542 FN += PLoc.getFilename(); | |
1543 } else { | |
1544 FN += PLoc.getFilename(); | |
1545 } | |
1546 Lexer::Stringify(FN); | |
1547 remapMacroPath(FN, PPOpts->MacroPrefixMap); | |
1548 OS << '"' << FN << '"'; | |
1549 } | |
1550 Tok.setKind(tok::string_literal); | |
1551 } else if (II == Ident__DATE__) { | |
1552 Diag(Tok.getLocation(), diag::warn_pp_date_time); | |
1553 if (!DATELoc.isValid()) | |
1554 ComputeDATE_TIME(DATELoc, TIMELoc, *this); | |
1555 Tok.setKind(tok::string_literal); | |
1556 Tok.setLength(strlen("\"Mmm dd yyyy\"")); | |
1557 Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(), | |
1558 Tok.getLocation(), | |
1559 Tok.getLength())); | |
1560 return; | |
1561 } else if (II == Ident__TIME__) { | |
1562 Diag(Tok.getLocation(), diag::warn_pp_date_time); | |
1563 if (!TIMELoc.isValid()) | |
1564 ComputeDATE_TIME(DATELoc, TIMELoc, *this); | |
1565 Tok.setKind(tok::string_literal); | |
1566 Tok.setLength(strlen("\"hh:mm:ss\"")); | |
1567 Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(), | |
1568 Tok.getLocation(), | |
1569 Tok.getLength())); | |
1570 return; | |
1571 } else if (II == Ident__INCLUDE_LEVEL__) { | |
1572 // Compute the presumed include depth of this token. This can be affected | |
1573 // by GNU line markers. | |
1574 unsigned Depth = 0; | |
1575 | |
1576 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); | |
1577 if (PLoc.isValid()) { | |
1578 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); | |
1579 for (; PLoc.isValid(); ++Depth) | |
1580 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); | |
1581 } | |
1582 | |
1583 // __INCLUDE_LEVEL__ expands to a simple numeric value. | |
1584 OS << Depth; | |
1585 Tok.setKind(tok::numeric_constant); | |
1586 } else if (II == Ident__TIMESTAMP__) { | |
1587 Diag(Tok.getLocation(), diag::warn_pp_date_time); | |
1588 // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be | |
1589 // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. | |
1590 | |
1591 // Get the file that we are lexing out of. If we're currently lexing from | |
1592 // a macro, dig into the include stack. | |
1593 const FileEntry *CurFile = nullptr; | |
1594 PreprocessorLexer *TheLexer = getCurrentFileLexer(); | |
1595 | |
1596 if (TheLexer) | |
1597 CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID()); | |
1598 | |
1599 const char *Result; | |
1600 if (CurFile) { | |
1601 time_t TT = CurFile->getModificationTime(); | |
1602 struct tm *TM = localtime(&TT); | |
1603 Result = asctime(TM); | |
1604 } else { | |
1605 Result = "??? ??? ?? ??:??:?? ????\n"; | |
1606 } | |
1607 // Surround the string with " and strip the trailing newline. | |
1608 OS << '"' << StringRef(Result).drop_back() << '"'; | |
1609 Tok.setKind(tok::string_literal); | |
1610 } else if (II == Ident__COUNTER__) { | |
1611 // __COUNTER__ expands to a simple numeric value. | |
1612 OS << CounterValue++; | |
1613 Tok.setKind(tok::numeric_constant); | |
1614 } else if (II == Ident__has_feature) { | |
1615 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, | |
1616 [this](Token &Tok, bool &HasLexedNextToken) -> int { | |
1617 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, | |
1618 diag::err_feature_check_malformed); | |
1619 return II && HasFeature(*this, II->getName()); | |
1620 }); | |
1621 } else if (II == Ident__has_extension) { | |
1622 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, | |
1623 [this](Token &Tok, bool &HasLexedNextToken) -> int { | |
1624 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, | |
1625 diag::err_feature_check_malformed); | |
1626 return II && HasExtension(*this, II->getName()); | |
1627 }); | |
1628 } else if (II == Ident__has_builtin) { | |
1629 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, | |
1630 [this](Token &Tok, bool &HasLexedNextToken) -> int { | |
1631 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, | |
1632 diag::err_feature_check_malformed); | |
1633 const LangOptions &LangOpts = getLangOpts(); | |
1634 if (!II) | |
1635 return false; | |
1636 else if (II->getBuiltinID() != 0) { | |
1637 switch (II->getBuiltinID()) { | |
1638 case Builtin::BI__builtin_operator_new: | |
1639 case Builtin::BI__builtin_operator_delete: | |
1640 // denotes date of behavior change to support calling arbitrary | |
1641 // usual allocation and deallocation functions. Required by libc++ | |
1642 return 201802; | |
1643 default: | |
1644 return true; | |
1645 } | |
1646 return true; | |
1647 } else if (II->getTokenID() != tok::identifier || | |
1648 II->hasRevertedTokenIDToIdentifier()) { | |
1649 // Treat all keywords that introduce a custom syntax of the form | |
1650 // | |
1651 // '__some_keyword' '(' [...] ')' | |
1652 // | |
1653 // as being "builtin functions", even if the syntax isn't a valid | |
1654 // function call (for example, because the builtin takes a type | |
1655 // argument). | |
1656 if (II->getName().startswith("__builtin_") || | |
1657 II->getName().startswith("__is_") || | |
1658 II->getName().startswith("__has_")) | |
1659 return true; | |
1660 return llvm::StringSwitch<bool>(II->getName()) | |
1661 .Case("__array_rank", true) | |
1662 .Case("__array_extent", true) | |
1663 .Case("__reference_binds_to_temporary", true) | |
1664 .Case("__underlying_type", true) | |
1665 .Default(false); | |
1666 } else { | |
1667 return llvm::StringSwitch<bool>(II->getName()) | |
1668 // Report builtin templates as being builtins. | |
1669 .Case("__make_integer_seq", LangOpts.CPlusPlus) | |
1670 .Case("__type_pack_element", LangOpts.CPlusPlus) | |
1671 // Likewise for some builtin preprocessor macros. | |
1672 // FIXME: This is inconsistent; we usually suggest detecting | |
1673 // builtin macros via #ifdef. Don't add more cases here. | |
1674 .Case("__is_target_arch", true) | |
1675 .Case("__is_target_vendor", true) | |
1676 .Case("__is_target_os", true) | |
1677 .Case("__is_target_environment", true) | |
1678 .Default(false); | |
1679 } | |
1680 }); | |
1681 } else if (II == Ident__is_identifier) { | |
1682 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, | |
1683 [](Token &Tok, bool &HasLexedNextToken) -> int { | |
1684 return Tok.is(tok::identifier); | |
1685 }); | |
1686 } else if (II == Ident__has_attribute) { | |
1687 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, | |
1688 [this](Token &Tok, bool &HasLexedNextToken) -> int { | |
1689 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, | |
1690 diag::err_feature_check_malformed); | |
1691 return II ? hasAttribute(AttrSyntax::GNU, nullptr, II, | |
1692 getTargetInfo(), getLangOpts()) : 0; | |
1693 }); | |
1694 } else if (II == Ident__has_declspec) { | |
1695 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, | |
1696 [this](Token &Tok, bool &HasLexedNextToken) -> int { | |
1697 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, | |
1698 diag::err_feature_check_malformed); | |
1699 return II ? hasAttribute(AttrSyntax::Declspec, nullptr, II, | |
1700 getTargetInfo(), getLangOpts()) : 0; | |
1701 }); | |
1702 } else if (II == Ident__has_cpp_attribute || | |
1703 II == Ident__has_c_attribute) { | |
1704 bool IsCXX = II == Ident__has_cpp_attribute; | |
1705 EvaluateFeatureLikeBuiltinMacro( | |
1706 OS, Tok, II, *this, [&](Token &Tok, bool &HasLexedNextToken) -> int { | |
1707 IdentifierInfo *ScopeII = nullptr; | |
1708 IdentifierInfo *II = ExpectFeatureIdentifierInfo( | |
1709 Tok, *this, diag::err_feature_check_malformed); | |
1710 if (!II) | |
1711 return false; | |
1712 | |
1713 // It is possible to receive a scope token. Read the "::", if it is | |
1714 // available, and the subsequent identifier. | |
1715 LexUnexpandedToken(Tok); | |
1716 if (Tok.isNot(tok::coloncolon)) | |
1717 HasLexedNextToken = true; | |
1718 else { | |
1719 ScopeII = II; | |
1720 LexUnexpandedToken(Tok); | |
1721 II = ExpectFeatureIdentifierInfo(Tok, *this, | |
1722 diag::err_feature_check_malformed); | |
1723 } | |
1724 | |
1725 AttrSyntax Syntax = IsCXX ? AttrSyntax::CXX : AttrSyntax::C; | |
1726 return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(), | |
1727 getLangOpts()) | |
1728 : 0; | |
1729 }); | |
1730 } else if (II == Ident__has_include || | |
1731 II == Ident__has_include_next) { | |
1732 // The argument to these two builtins should be a parenthesized | |
1733 // file name string literal using angle brackets (<>) or | |
1734 // double-quotes (""). | |
1735 bool Value; | |
1736 if (II == Ident__has_include) | |
1737 Value = EvaluateHasInclude(Tok, II, *this); | |
1738 else | |
1739 Value = EvaluateHasIncludeNext(Tok, II, *this); | |
1740 | |
1741 if (Tok.isNot(tok::r_paren)) | |
1742 return; | |
1743 OS << (int)Value; | |
1744 Tok.setKind(tok::numeric_constant); | |
1745 } else if (II == Ident__has_warning) { | |
1746 // The argument should be a parenthesized string literal. | |
1747 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, | |
1748 [this](Token &Tok, bool &HasLexedNextToken) -> int { | |
1749 std::string WarningName; | |
1750 SourceLocation StrStartLoc = Tok.getLocation(); | |
1751 | |
1752 HasLexedNextToken = Tok.is(tok::string_literal); | |
1753 if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'", | |
1754 /*AllowMacroExpansion=*/false)) | |
1755 return false; | |
1756 | |
1757 // FIXME: Should we accept "-R..." flags here, or should that be | |
1758 // handled by a separate __has_remark? | |
1759 if (WarningName.size() < 3 || WarningName[0] != '-' || | |
1760 WarningName[1] != 'W') { | |
1761 Diag(StrStartLoc, diag::warn_has_warning_invalid_option); | |
1762 return false; | |
1763 } | |
1764 | |
1765 // Finally, check if the warning flags maps to a diagnostic group. | |
1766 // We construct a SmallVector here to talk to getDiagnosticIDs(). | |
1767 // Although we don't use the result, this isn't a hot path, and not | |
1768 // worth special casing. | |
1769 SmallVector<diag::kind, 10> Diags; | |
1770 return !getDiagnostics().getDiagnosticIDs()-> | |
1771 getDiagnosticsInGroup(diag::Flavor::WarningOrError, | |
1772 WarningName.substr(2), Diags); | |
1773 }); | |
1774 } else if (II == Ident__building_module) { | |
1775 // The argument to this builtin should be an identifier. The | |
1776 // builtin evaluates to 1 when that identifier names the module we are | |
1777 // currently building. | |
1778 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, | |
1779 [this](Token &Tok, bool &HasLexedNextToken) -> int { | |
1780 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, | |
1781 diag::err_expected_id_building_module); | |
1782 return getLangOpts().isCompilingModule() && II && | |
1783 (II->getName() == getLangOpts().CurrentModule); | |
1784 }); | |
1785 } else if (II == Ident__MODULE__) { | |
1786 // The current module as an identifier. | |
1787 OS << getLangOpts().CurrentModule; | |
1788 IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule); | |
1789 Tok.setIdentifierInfo(ModuleII); | |
1790 Tok.setKind(ModuleII->getTokenID()); | |
1791 } else if (II == Ident__identifier) { | |
1792 SourceLocation Loc = Tok.getLocation(); | |
1793 | |
1794 // We're expecting '__identifier' '(' identifier ')'. Try to recover | |
1795 // if the parens are missing. | |
1796 LexNonComment(Tok); | |
1797 if (Tok.isNot(tok::l_paren)) { | |
1798 // No '(', use end of last token. | |
1799 Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after) | |
1800 << II << tok::l_paren; | |
1801 // If the next token isn't valid as our argument, we can't recover. | |
1802 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) | |
1803 Tok.setKind(tok::identifier); | |
1804 return; | |
1805 } | |
1806 | |
1807 SourceLocation LParenLoc = Tok.getLocation(); | |
1808 LexNonComment(Tok); | |
1809 | |
1810 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) | |
1811 Tok.setKind(tok::identifier); | |
1812 else { | |
1813 Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier) | |
1814 << Tok.getKind(); | |
1815 // Don't walk past anything that's not a real token. | |
1816 if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation()) | |
1817 return; | |
1818 } | |
1819 | |
1820 // Discard the ')', preserving 'Tok' as our result. | |
1821 Token RParen; | |
1822 LexNonComment(RParen); | |
1823 if (RParen.isNot(tok::r_paren)) { | |
1824 Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after) | |
1825 << Tok.getKind() << tok::r_paren; | |
1826 Diag(LParenLoc, diag::note_matching) << tok::l_paren; | |
1827 } | |
1828 return; | |
1829 } else if (II == Ident__is_target_arch) { | |
1830 EvaluateFeatureLikeBuiltinMacro( | |
1831 OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { | |
1832 IdentifierInfo *II = ExpectFeatureIdentifierInfo( | |
1833 Tok, *this, diag::err_feature_check_malformed); | |
1834 return II && isTargetArch(getTargetInfo(), II); | |
1835 }); | |
1836 } else if (II == Ident__is_target_vendor) { | |
1837 EvaluateFeatureLikeBuiltinMacro( | |
1838 OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { | |
1839 IdentifierInfo *II = ExpectFeatureIdentifierInfo( | |
1840 Tok, *this, diag::err_feature_check_malformed); | |
1841 return II && isTargetVendor(getTargetInfo(), II); | |
1842 }); | |
1843 } else if (II == Ident__is_target_os) { | |
1844 EvaluateFeatureLikeBuiltinMacro( | |
1845 OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { | |
1846 IdentifierInfo *II = ExpectFeatureIdentifierInfo( | |
1847 Tok, *this, diag::err_feature_check_malformed); | |
1848 return II && isTargetOS(getTargetInfo(), II); | |
1849 }); | |
1850 } else if (II == Ident__is_target_environment) { | |
1851 EvaluateFeatureLikeBuiltinMacro( | |
1852 OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { | |
1853 IdentifierInfo *II = ExpectFeatureIdentifierInfo( | |
1854 Tok, *this, diag::err_feature_check_malformed); | |
1855 return II && isTargetEnvironment(getTargetInfo(), II); | |
1856 }); | |
1857 } else { | |
1858 llvm_unreachable("Unknown identifier!"); | |
1859 } | |
1860 CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation()); | |
1861 Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine); | |
1862 Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace); | |
1863 } | |
1864 | |
1865 void Preprocessor::markMacroAsUsed(MacroInfo *MI) { | |
1866 // If the 'used' status changed, and the macro requires 'unused' warning, | |
1867 // remove its SourceLocation from the warn-for-unused-macro locations. | |
1868 if (MI->isWarnIfUnused() && !MI->isUsed()) | |
1869 WarnUnusedMacroLocs.erase(MI->getDefinitionLoc()); | |
1870 MI->setIsUsed(true); | |
1871 } |