comparison lld/ELF/Writer.cpp @ 150:1d019706d866

LLVM10
author anatofuz
date Thu, 13 Feb 2020 15:10:13 +0900
parents
children 0572611fdcc8
comparison
equal deleted inserted replaced
147:c2174574ed3a 150:1d019706d866
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Writer.h"
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
13 #include "Config.h"
14 #include "LinkerScript.h"
15 #include "MapFile.h"
16 #include "OutputSections.h"
17 #include "Relocations.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "SyntheticSections.h"
21 #include "Target.h"
22 #include "lld/Common/Filesystem.h"
23 #include "lld/Common/Memory.h"
24 #include "lld/Common/Strings.h"
25 #include "lld/Common/Threads.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/Support/RandomNumberGenerator.h"
29 #include "llvm/Support/SHA1.h"
30 #include "llvm/Support/TimeProfiler.h"
31 #include "llvm/Support/xxhash.h"
32 #include <climits>
33
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::support;
38 using namespace llvm::support::endian;
39
40 namespace lld {
41 namespace elf {
42 namespace {
43 // The writer writes a SymbolTable result to a file.
44 template <class ELFT> class Writer {
45 public:
46 Writer() : buffer(errorHandler().outputBuffer) {}
47 using Elf_Shdr = typename ELFT::Shdr;
48 using Elf_Ehdr = typename ELFT::Ehdr;
49 using Elf_Phdr = typename ELFT::Phdr;
50
51 void run();
52
53 private:
54 void copyLocalSymbols();
55 void addSectionSymbols();
56 void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
57 void sortSections();
58 void resolveShfLinkOrder();
59 void finalizeAddressDependentContent();
60 void sortInputSections();
61 void finalizeSections();
62 void checkExecuteOnly();
63 void setReservedSymbolSections();
64
65 std::vector<PhdrEntry *> createPhdrs(Partition &part);
66 void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
67 unsigned pFlags);
68 void assignFileOffsets();
69 void assignFileOffsetsBinary();
70 void setPhdrs(Partition &part);
71 void checkSections();
72 void fixSectionAlignments();
73 void openFile();
74 void writeTrapInstr();
75 void writeHeader();
76 void writeSections();
77 void writeSectionsBinary();
78 void writeBuildId();
79
80 std::unique_ptr<FileOutputBuffer> &buffer;
81
82 void addRelIpltSymbols();
83 void addStartEndSymbols();
84 void addStartStopSymbols(OutputSection *sec);
85
86 uint64_t fileSize;
87 uint64_t sectionHeaderOff;
88 };
89 } // anonymous namespace
90
91 static bool isSectionPrefix(StringRef prefix, StringRef name) {
92 return name.startswith(prefix) || name == prefix.drop_back();
93 }
94
95 StringRef getOutputSectionName(const InputSectionBase *s) {
96 if (config->relocatable)
97 return s->name;
98
99 // This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
100 // to emit .rela.text.foo as .rela.text.bar for consistency (this is not
101 // technically required, but not doing it is odd). This code guarantees that.
102 if (auto *isec = dyn_cast<InputSection>(s)) {
103 if (InputSectionBase *rel = isec->getRelocatedSection()) {
104 OutputSection *out = rel->getOutputSection();
105 if (s->type == SHT_RELA)
106 return saver.save(".rela" + out->name);
107 return saver.save(".rel" + out->name);
108 }
109 }
110
111 // This check is for -z keep-text-section-prefix. This option separates text
112 // sections with prefix ".text.hot", ".text.unlikely", ".text.startup" or
113 // ".text.exit".
114 // When enabled, this allows identifying the hot code region (.text.hot) in
115 // the final binary which can be selectively mapped to huge pages or mlocked,
116 // for instance.
117 if (config->zKeepTextSectionPrefix)
118 for (StringRef v :
119 {".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."})
120 if (isSectionPrefix(v, s->name))
121 return v.drop_back();
122
123 for (StringRef v :
124 {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
125 ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
126 ".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
127 if (isSectionPrefix(v, s->name))
128 return v.drop_back();
129
130 // CommonSection is identified as "COMMON" in linker scripts.
131 // By default, it should go to .bss section.
132 if (s->name == "COMMON")
133 return ".bss";
134
135 return s->name;
136 }
137
138 static bool needsInterpSection() {
139 return !config->relocatable && !config->shared &&
140 !config->dynamicLinker.empty() && script->needsInterpSection();
141 }
142
143 template <class ELFT> void writeResult() {
144 llvm::TimeTraceScope timeScope("Write output file");
145 Writer<ELFT>().run();
146 }
147
148 static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
149 llvm::erase_if(phdrs, [&](const PhdrEntry *p) {
150 if (p->p_type != PT_LOAD)
151 return false;
152 if (!p->firstSec)
153 return true;
154 uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
155 return size == 0;
156 });
157 }
158
159 void copySectionsIntoPartitions() {
160 std::vector<InputSectionBase *> newSections;
161 for (unsigned part = 2; part != partitions.size() + 1; ++part) {
162 for (InputSectionBase *s : inputSections) {
163 if (!(s->flags & SHF_ALLOC) || !s->isLive())
164 continue;
165 InputSectionBase *copy;
166 if (s->type == SHT_NOTE)
167 copy = make<InputSection>(cast<InputSection>(*s));
168 else if (auto *es = dyn_cast<EhInputSection>(s))
169 copy = make<EhInputSection>(*es);
170 else
171 continue;
172 copy->partition = part;
173 newSections.push_back(copy);
174 }
175 }
176
177 inputSections.insert(inputSections.end(), newSections.begin(),
178 newSections.end());
179 }
180
181 void combineEhSections() {
182 for (InputSectionBase *&s : inputSections) {
183 // Ignore dead sections and the partition end marker (.part.end),
184 // whose partition number is out of bounds.
185 if (!s->isLive() || s->partition == 255)
186 continue;
187
188 Partition &part = s->getPartition();
189 if (auto *es = dyn_cast<EhInputSection>(s)) {
190 part.ehFrame->addSection(es);
191 s = nullptr;
192 } else if (s->kind() == SectionBase::Regular && part.armExidx &&
193 part.armExidx->addSection(cast<InputSection>(s))) {
194 s = nullptr;
195 }
196 }
197
198 std::vector<InputSectionBase *> &v = inputSections;
199 v.erase(std::remove(v.begin(), v.end(), nullptr), v.end());
200 }
201
202 static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
203 uint64_t val, uint8_t stOther = STV_HIDDEN,
204 uint8_t binding = STB_GLOBAL) {
205 Symbol *s = symtab->find(name);
206 if (!s || s->isDefined())
207 return nullptr;
208
209 s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val,
210 /*size=*/0, sec});
211 return cast<Defined>(s);
212 }
213
214 static Defined *addAbsolute(StringRef name) {
215 Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
216 STT_NOTYPE, 0, 0, nullptr});
217 return cast<Defined>(sym);
218 }
219
220 // The linker is expected to define some symbols depending on
221 // the linking result. This function defines such symbols.
222 void addReservedSymbols() {
223 if (config->emachine == EM_MIPS) {
224 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
225 // so that it points to an absolute address which by default is relative
226 // to GOT. Default offset is 0x7ff0.
227 // See "Global Data Symbols" in Chapter 6 in the following document:
228 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
229 ElfSym::mipsGp = addAbsolute("_gp");
230
231 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
232 // start of function and 'gp' pointer into GOT.
233 if (symtab->find("_gp_disp"))
234 ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
235
236 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
237 // pointer. This symbol is used in the code generated by .cpload pseudo-op
238 // in case of using -mno-shared option.
239 // https://sourceware.org/ml/binutils/2004-12/msg00094.html
240 if (symtab->find("__gnu_local_gp"))
241 ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
242 } else if (config->emachine == EM_PPC) {
243 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
244 // support Small Data Area, define it arbitrarily as 0.
245 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
246 }
247
248 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
249 // combines the typical ELF GOT with the small data sections. It commonly
250 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
251 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
252 // represent the TOC base which is offset by 0x8000 bytes from the start of
253 // the .got section.
254 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
255 // correctness of some relocations depends on its value.
256 StringRef gotSymName =
257 (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
258
259 if (Symbol *s = symtab->find(gotSymName)) {
260 if (s->isDefined()) {
261 error(toString(s->file) + " cannot redefine linker defined symbol '" +
262 gotSymName + "'");
263 return;
264 }
265
266 uint64_t gotOff = 0;
267 if (config->emachine == EM_PPC64)
268 gotOff = 0x8000;
269
270 s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
271 STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
272 ElfSym::globalOffsetTable = cast<Defined>(s);
273 }
274
275 // __ehdr_start is the location of ELF file headers. Note that we define
276 // this symbol unconditionally even when using a linker script, which
277 // differs from the behavior implemented by GNU linker which only define
278 // this symbol if ELF headers are in the memory mapped segment.
279 addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
280
281 // __executable_start is not documented, but the expectation of at
282 // least the Android libc is that it points to the ELF header.
283 addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
284
285 // __dso_handle symbol is passed to cxa_finalize as a marker to identify
286 // each DSO. The address of the symbol doesn't matter as long as they are
287 // different in different DSOs, so we chose the start address of the DSO.
288 addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
289
290 // If linker script do layout we do not need to create any standard symbols.
291 if (script->hasSectionsCommand)
292 return;
293
294 auto add = [](StringRef s, int64_t pos) {
295 return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
296 };
297
298 ElfSym::bss = add("__bss_start", 0);
299 ElfSym::end1 = add("end", -1);
300 ElfSym::end2 = add("_end", -1);
301 ElfSym::etext1 = add("etext", -1);
302 ElfSym::etext2 = add("_etext", -1);
303 ElfSym::edata1 = add("edata", -1);
304 ElfSym::edata2 = add("_edata", -1);
305 }
306
307 static OutputSection *findSection(StringRef name, unsigned partition = 1) {
308 for (BaseCommand *base : script->sectionCommands)
309 if (auto *sec = dyn_cast<OutputSection>(base))
310 if (sec->name == name && sec->partition == partition)
311 return sec;
312 return nullptr;
313 }
314
315 template <class ELFT> void createSyntheticSections() {
316 // Initialize all pointers with NULL. This is needed because
317 // you can call lld::elf::main more than once as a library.
318 memset(&Out::first, 0, sizeof(Out));
319
320 // Add the .interp section first because it is not a SyntheticSection.
321 // The removeUnusedSyntheticSections() function relies on the
322 // SyntheticSections coming last.
323 if (needsInterpSection()) {
324 for (size_t i = 1; i <= partitions.size(); ++i) {
325 InputSection *sec = createInterpSection();
326 sec->partition = i;
327 inputSections.push_back(sec);
328 }
329 }
330
331 auto add = [](SyntheticSection *sec) { inputSections.push_back(sec); };
332
333 in.shStrTab = make<StringTableSection>(".shstrtab", false);
334
335 Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
336 Out::programHeaders->alignment = config->wordsize;
337
338 if (config->strip != StripPolicy::All) {
339 in.strTab = make<StringTableSection>(".strtab", false);
340 in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
341 in.symTabShndx = make<SymtabShndxSection>();
342 }
343
344 in.bss = make<BssSection>(".bss", 0, 1);
345 add(in.bss);
346
347 // If there is a SECTIONS command and a .data.rel.ro section name use name
348 // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
349 // This makes sure our relro is contiguous.
350 bool hasDataRelRo =
351 script->hasSectionsCommand && findSection(".data.rel.ro", 0);
352 in.bssRelRo =
353 make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
354 add(in.bssRelRo);
355
356 // Add MIPS-specific sections.
357 if (config->emachine == EM_MIPS) {
358 if (!config->shared && config->hasDynSymTab) {
359 in.mipsRldMap = make<MipsRldMapSection>();
360 add(in.mipsRldMap);
361 }
362 if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
363 add(sec);
364 if (auto *sec = MipsOptionsSection<ELFT>::create())
365 add(sec);
366 if (auto *sec = MipsReginfoSection<ELFT>::create())
367 add(sec);
368 }
369
370 StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
371
372 for (Partition &part : partitions) {
373 auto add = [&](SyntheticSection *sec) {
374 sec->partition = part.getNumber();
375 inputSections.push_back(sec);
376 };
377
378 if (!part.name.empty()) {
379 part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
380 part.elfHeader->name = part.name;
381 add(part.elfHeader);
382
383 part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
384 add(part.programHeaders);
385 }
386
387 if (config->buildId != BuildIdKind::None) {
388 part.buildId = make<BuildIdSection>();
389 add(part.buildId);
390 }
391
392 part.dynStrTab = make<StringTableSection>(".dynstr", true);
393 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
394 part.dynamic = make<DynamicSection<ELFT>>();
395 if (config->androidPackDynRelocs)
396 part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName);
397 else
398 part.relaDyn =
399 make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc);
400
401 if (config->hasDynSymTab) {
402 part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
403 add(part.dynSymTab);
404
405 part.verSym = make<VersionTableSection>();
406 add(part.verSym);
407
408 if (!namedVersionDefs().empty()) {
409 part.verDef = make<VersionDefinitionSection>();
410 add(part.verDef);
411 }
412
413 part.verNeed = make<VersionNeedSection<ELFT>>();
414 add(part.verNeed);
415
416 if (config->gnuHash) {
417 part.gnuHashTab = make<GnuHashTableSection>();
418 add(part.gnuHashTab);
419 }
420
421 if (config->sysvHash) {
422 part.hashTab = make<HashTableSection>();
423 add(part.hashTab);
424 }
425
426 add(part.dynamic);
427 add(part.dynStrTab);
428 add(part.relaDyn);
429 }
430
431 if (config->relrPackDynRelocs) {
432 part.relrDyn = make<RelrSection<ELFT>>();
433 add(part.relrDyn);
434 }
435
436 if (!config->relocatable) {
437 if (config->ehFrameHdr) {
438 part.ehFrameHdr = make<EhFrameHeader>();
439 add(part.ehFrameHdr);
440 }
441 part.ehFrame = make<EhFrameSection>();
442 add(part.ehFrame);
443 }
444
445 if (config->emachine == EM_ARM && !config->relocatable) {
446 // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
447 // InputSections.
448 part.armExidx = make<ARMExidxSyntheticSection>();
449 add(part.armExidx);
450 }
451 }
452
453 if (partitions.size() != 1) {
454 // Create the partition end marker. This needs to be in partition number 255
455 // so that it is sorted after all other partitions. It also has other
456 // special handling (see createPhdrs() and combineEhSections()).
457 in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
458 in.partEnd->partition = 255;
459 add(in.partEnd);
460
461 in.partIndex = make<PartitionIndexSection>();
462 addOptionalRegular("__part_index_begin", in.partIndex, 0);
463 addOptionalRegular("__part_index_end", in.partIndex,
464 in.partIndex->getSize());
465 add(in.partIndex);
466 }
467
468 // Add .got. MIPS' .got is so different from the other archs,
469 // it has its own class.
470 if (config->emachine == EM_MIPS) {
471 in.mipsGot = make<MipsGotSection>();
472 add(in.mipsGot);
473 } else {
474 in.got = make<GotSection>();
475 add(in.got);
476 }
477
478 if (config->emachine == EM_PPC) {
479 in.ppc32Got2 = make<PPC32Got2Section>();
480 add(in.ppc32Got2);
481 }
482
483 if (config->emachine == EM_PPC64) {
484 in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
485 add(in.ppc64LongBranchTarget);
486 }
487
488 in.gotPlt = make<GotPltSection>();
489 add(in.gotPlt);
490 in.igotPlt = make<IgotPltSection>();
491 add(in.igotPlt);
492
493 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
494 // it as a relocation and ensure the referenced section is created.
495 if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
496 if (target->gotBaseSymInGotPlt)
497 in.gotPlt->hasGotPltOffRel = true;
498 else
499 in.got->hasGotOffRel = true;
500 }
501
502 if (config->gdbIndex)
503 add(GdbIndexSection::create<ELFT>());
504
505 // We always need to add rel[a].plt to output if it has entries.
506 // Even for static linking it can contain R_[*]_IRELATIVE relocations.
507 in.relaPlt = make<RelocationSection<ELFT>>(
508 config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
509 add(in.relaPlt);
510
511 // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
512 // relocations are processed last by the dynamic loader. We cannot place the
513 // iplt section in .rel.dyn when Android relocation packing is enabled because
514 // that would cause a section type mismatch. However, because the Android
515 // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
516 // behaviour by placing the iplt section in .rel.plt.
517 in.relaIplt = make<RelocationSection<ELFT>>(
518 config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
519 /*sort=*/false);
520 add(in.relaIplt);
521
522 if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
523 (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
524 in.ibtPlt = make<IBTPltSection>();
525 add(in.ibtPlt);
526 }
527
528 in.plt = make<PltSection>();
529 add(in.plt);
530 in.iplt = make<IpltSection>();
531 add(in.iplt);
532
533 if (config->andFeatures)
534 add(make<GnuPropertySection>());
535
536 // .note.GNU-stack is always added when we are creating a re-linkable
537 // object file. Other linkers are using the presence of this marker
538 // section to control the executable-ness of the stack area, but that
539 // is irrelevant these days. Stack area should always be non-executable
540 // by default. So we emit this section unconditionally.
541 if (config->relocatable)
542 add(make<GnuStackSection>());
543
544 if (in.symTab)
545 add(in.symTab);
546 if (in.symTabShndx)
547 add(in.symTabShndx);
548 add(in.shStrTab);
549 if (in.strTab)
550 add(in.strTab);
551 }
552
553 // The main function of the writer.
554 template <class ELFT> void Writer<ELFT>::run() {
555 if (config->discard != DiscardPolicy::All)
556 copyLocalSymbols();
557
558 if (config->copyRelocs)
559 addSectionSymbols();
560
561 // Now that we have a complete set of output sections. This function
562 // completes section contents. For example, we need to add strings
563 // to the string table, and add entries to .got and .plt.
564 // finalizeSections does that.
565 finalizeSections();
566 checkExecuteOnly();
567 if (errorCount())
568 return;
569
570 // If -compressed-debug-sections is specified, we need to compress
571 // .debug_* sections. Do it right now because it changes the size of
572 // output sections.
573 for (OutputSection *sec : outputSections)
574 sec->maybeCompress<ELFT>();
575
576 if (script->hasSectionsCommand)
577 script->allocateHeaders(mainPart->phdrs);
578
579 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
580 // 0 sized region. This has to be done late since only after assignAddresses
581 // we know the size of the sections.
582 for (Partition &part : partitions)
583 removeEmptyPTLoad(part.phdrs);
584
585 if (!config->oFormatBinary)
586 assignFileOffsets();
587 else
588 assignFileOffsetsBinary();
589
590 for (Partition &part : partitions)
591 setPhdrs(part);
592
593 if (config->relocatable)
594 for (OutputSection *sec : outputSections)
595 sec->addr = 0;
596
597 if (config->checkSections)
598 checkSections();
599
600 // It does not make sense try to open the file if we have error already.
601 if (errorCount())
602 return;
603 // Write the result down to a file.
604 openFile();
605 if (errorCount())
606 return;
607
608 if (!config->oFormatBinary) {
609 if (config->zSeparate != SeparateSegmentKind::None)
610 writeTrapInstr();
611 writeHeader();
612 writeSections();
613 } else {
614 writeSectionsBinary();
615 }
616
617 // Backfill .note.gnu.build-id section content. This is done at last
618 // because the content is usually a hash value of the entire output file.
619 writeBuildId();
620 if (errorCount())
621 return;
622
623 // Handle -Map and -cref options.
624 writeMapFile();
625 writeCrossReferenceTable();
626 if (errorCount())
627 return;
628
629 if (auto e = buffer->commit())
630 error("failed to write to the output file: " + toString(std::move(e)));
631 }
632
633 static bool shouldKeepInSymtab(const Defined &sym) {
634 if (sym.isSection())
635 return false;
636
637 if (config->discard == DiscardPolicy::None)
638 return true;
639
640 // If -emit-reloc is given, all symbols including local ones need to be
641 // copied because they may be referenced by relocations.
642 if (config->emitRelocs)
643 return true;
644
645 // In ELF assembly .L symbols are normally discarded by the assembler.
646 // If the assembler fails to do so, the linker discards them if
647 // * --discard-locals is used.
648 // * The symbol is in a SHF_MERGE section, which is normally the reason for
649 // the assembler keeping the .L symbol.
650 StringRef name = sym.getName();
651 bool isLocal = name.startswith(".L") || name.empty();
652 if (!isLocal)
653 return true;
654
655 if (config->discard == DiscardPolicy::Locals)
656 return false;
657
658 SectionBase *sec = sym.section;
659 return !sec || !(sec->flags & SHF_MERGE);
660 }
661
662 static bool includeInSymtab(const Symbol &b) {
663 if (!b.isLocal() && !b.isUsedInRegularObj)
664 return false;
665
666 if (auto *d = dyn_cast<Defined>(&b)) {
667 // Always include absolute symbols.
668 SectionBase *sec = d->section;
669 if (!sec)
670 return true;
671 sec = sec->repl;
672
673 // Exclude symbols pointing to garbage-collected sections.
674 if (isa<InputSectionBase>(sec) && !sec->isLive())
675 return false;
676
677 if (auto *s = dyn_cast<MergeInputSection>(sec))
678 if (!s->getSectionPiece(d->value)->live)
679 return false;
680 return true;
681 }
682 return b.used;
683 }
684
685 // Local symbols are not in the linker's symbol table. This function scans
686 // each object file's symbol table to copy local symbols to the output.
687 template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
688 if (!in.symTab)
689 return;
690 for (InputFile *file : objectFiles) {
691 ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
692 for (Symbol *b : f->getLocalSymbols()) {
693 if (!b->isLocal())
694 fatal(toString(f) +
695 ": broken object: getLocalSymbols returns a non-local symbol");
696 auto *dr = dyn_cast<Defined>(b);
697
698 // No reason to keep local undefined symbol in symtab.
699 if (!dr)
700 continue;
701 if (!includeInSymtab(*b))
702 continue;
703 if (!shouldKeepInSymtab(*dr))
704 continue;
705 in.symTab->addSymbol(b);
706 }
707 }
708 }
709
710 // Create a section symbol for each output section so that we can represent
711 // relocations that point to the section. If we know that no relocation is
712 // referring to a section (that happens if the section is a synthetic one), we
713 // don't create a section symbol for that section.
714 template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
715 for (BaseCommand *base : script->sectionCommands) {
716 auto *sec = dyn_cast<OutputSection>(base);
717 if (!sec)
718 continue;
719 auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) {
720 if (auto *isd = dyn_cast<InputSectionDescription>(base))
721 return !isd->sections.empty();
722 return false;
723 });
724 if (i == sec->sectionCommands.end())
725 continue;
726 InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0];
727
728 // Relocations are not using REL[A] section symbols.
729 if (isec->type == SHT_REL || isec->type == SHT_RELA)
730 continue;
731
732 // Unlike other synthetic sections, mergeable output sections contain data
733 // copied from input sections, and there may be a relocation pointing to its
734 // contents if -r or -emit-reloc are given.
735 if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
736 continue;
737
738 auto *sym =
739 make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
740 /*value=*/0, /*size=*/0, isec);
741 in.symTab->addSymbol(sym);
742 }
743 }
744
745 // Today's loaders have a feature to make segments read-only after
746 // processing dynamic relocations to enhance security. PT_GNU_RELRO
747 // is defined for that.
748 //
749 // This function returns true if a section needs to be put into a
750 // PT_GNU_RELRO segment.
751 static bool isRelroSection(const OutputSection *sec) {
752 if (!config->zRelro)
753 return false;
754
755 uint64_t flags = sec->flags;
756
757 // Non-allocatable or non-writable sections don't need RELRO because
758 // they are not writable or not even mapped to memory in the first place.
759 // RELRO is for sections that are essentially read-only but need to
760 // be writable only at process startup to allow dynamic linker to
761 // apply relocations.
762 if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
763 return false;
764
765 // Once initialized, TLS data segments are used as data templates
766 // for a thread-local storage. For each new thread, runtime
767 // allocates memory for a TLS and copy templates there. No thread
768 // are supposed to use templates directly. Thus, it can be in RELRO.
769 if (flags & SHF_TLS)
770 return true;
771
772 // .init_array, .preinit_array and .fini_array contain pointers to
773 // functions that are executed on process startup or exit. These
774 // pointers are set by the static linker, and they are not expected
775 // to change at runtime. But if you are an attacker, you could do
776 // interesting things by manipulating pointers in .fini_array, for
777 // example. So they are put into RELRO.
778 uint32_t type = sec->type;
779 if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
780 type == SHT_PREINIT_ARRAY)
781 return true;
782
783 // .got contains pointers to external symbols. They are resolved by
784 // the dynamic linker when a module is loaded into memory, and after
785 // that they are not expected to change. So, it can be in RELRO.
786 if (in.got && sec == in.got->getParent())
787 return true;
788
789 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
790 // through r2 register, which is reserved for that purpose. Since r2 is used
791 // for accessing .got as well, .got and .toc need to be close enough in the
792 // virtual address space. Usually, .toc comes just after .got. Since we place
793 // .got into RELRO, .toc needs to be placed into RELRO too.
794 if (sec->name.equals(".toc"))
795 return true;
796
797 // .got.plt contains pointers to external function symbols. They are
798 // by default resolved lazily, so we usually cannot put it into RELRO.
799 // However, if "-z now" is given, the lazy symbol resolution is
800 // disabled, which enables us to put it into RELRO.
801 if (sec == in.gotPlt->getParent())
802 return config->zNow;
803
804 // .dynamic section contains data for the dynamic linker, and
805 // there's no need to write to it at runtime, so it's better to put
806 // it into RELRO.
807 if (sec->name == ".dynamic")
808 return true;
809
810 // Sections with some special names are put into RELRO. This is a
811 // bit unfortunate because section names shouldn't be significant in
812 // ELF in spirit. But in reality many linker features depend on
813 // magic section names.
814 StringRef s = sec->name;
815 return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
816 s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
817 s == ".openbsd.randomdata";
818 }
819
820 // We compute a rank for each section. The rank indicates where the
821 // section should be placed in the file. Instead of using simple
822 // numbers (0,1,2...), we use a series of flags. One for each decision
823 // point when placing the section.
824 // Using flags has two key properties:
825 // * It is easy to check if a give branch was taken.
826 // * It is easy two see how similar two ranks are (see getRankProximity).
827 enum RankFlags {
828 RF_NOT_ADDR_SET = 1 << 27,
829 RF_NOT_ALLOC = 1 << 26,
830 RF_PARTITION = 1 << 18, // Partition number (8 bits)
831 RF_NOT_PART_EHDR = 1 << 17,
832 RF_NOT_PART_PHDR = 1 << 16,
833 RF_NOT_INTERP = 1 << 15,
834 RF_NOT_NOTE = 1 << 14,
835 RF_WRITE = 1 << 13,
836 RF_EXEC_WRITE = 1 << 12,
837 RF_EXEC = 1 << 11,
838 RF_RODATA = 1 << 10,
839 RF_NOT_RELRO = 1 << 9,
840 RF_NOT_TLS = 1 << 8,
841 RF_BSS = 1 << 7,
842 RF_PPC_NOT_TOCBSS = 1 << 6,
843 RF_PPC_TOCL = 1 << 5,
844 RF_PPC_TOC = 1 << 4,
845 RF_PPC_GOT = 1 << 3,
846 RF_PPC_BRANCH_LT = 1 << 2,
847 RF_MIPS_GPREL = 1 << 1,
848 RF_MIPS_NOT_GOT = 1 << 0
849 };
850
851 static unsigned getSectionRank(const OutputSection *sec) {
852 unsigned rank = sec->partition * RF_PARTITION;
853
854 // We want to put section specified by -T option first, so we
855 // can start assigning VA starting from them later.
856 if (config->sectionStartMap.count(sec->name))
857 return rank;
858 rank |= RF_NOT_ADDR_SET;
859
860 // Allocatable sections go first to reduce the total PT_LOAD size and
861 // so debug info doesn't change addresses in actual code.
862 if (!(sec->flags & SHF_ALLOC))
863 return rank | RF_NOT_ALLOC;
864
865 if (sec->type == SHT_LLVM_PART_EHDR)
866 return rank;
867 rank |= RF_NOT_PART_EHDR;
868
869 if (sec->type == SHT_LLVM_PART_PHDR)
870 return rank;
871 rank |= RF_NOT_PART_PHDR;
872
873 // Put .interp first because some loaders want to see that section
874 // on the first page of the executable file when loaded into memory.
875 if (sec->name == ".interp")
876 return rank;
877 rank |= RF_NOT_INTERP;
878
879 // Put .note sections (which make up one PT_NOTE) at the beginning so that
880 // they are likely to be included in a core file even if core file size is
881 // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
882 // included in a core to match core files with executables.
883 if (sec->type == SHT_NOTE)
884 return rank;
885 rank |= RF_NOT_NOTE;
886
887 // Sort sections based on their access permission in the following
888 // order: R, RX, RWX, RW. This order is based on the following
889 // considerations:
890 // * Read-only sections come first such that they go in the
891 // PT_LOAD covering the program headers at the start of the file.
892 // * Read-only, executable sections come next.
893 // * Writable, executable sections follow such that .plt on
894 // architectures where it needs to be writable will be placed
895 // between .text and .data.
896 // * Writable sections come last, such that .bss lands at the very
897 // end of the last PT_LOAD.
898 bool isExec = sec->flags & SHF_EXECINSTR;
899 bool isWrite = sec->flags & SHF_WRITE;
900
901 if (isExec) {
902 if (isWrite)
903 rank |= RF_EXEC_WRITE;
904 else
905 rank |= RF_EXEC;
906 } else if (isWrite) {
907 rank |= RF_WRITE;
908 } else if (sec->type == SHT_PROGBITS) {
909 // Make non-executable and non-writable PROGBITS sections (e.g .rodata
910 // .eh_frame) closer to .text. They likely contain PC or GOT relative
911 // relocations and there could be relocation overflow if other huge sections
912 // (.dynstr .dynsym) were placed in between.
913 rank |= RF_RODATA;
914 }
915
916 // Place RelRo sections first. After considering SHT_NOBITS below, the
917 // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
918 // where | marks where page alignment happens. An alternative ordering is
919 // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
920 // waste more bytes due to 2 alignment places.
921 if (!isRelroSection(sec))
922 rank |= RF_NOT_RELRO;
923
924 // If we got here we know that both A and B are in the same PT_LOAD.
925
926 // The TLS initialization block needs to be a single contiguous block in a R/W
927 // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
928 // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
929 // after PROGBITS.
930 if (!(sec->flags & SHF_TLS))
931 rank |= RF_NOT_TLS;
932
933 // Within TLS sections, or within other RelRo sections, or within non-RelRo
934 // sections, place non-NOBITS sections first.
935 if (sec->type == SHT_NOBITS)
936 rank |= RF_BSS;
937
938 // Some architectures have additional ordering restrictions for sections
939 // within the same PT_LOAD.
940 if (config->emachine == EM_PPC64) {
941 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
942 // that we would like to make sure appear is a specific order to maximize
943 // their coverage by a single signed 16-bit offset from the TOC base
944 // pointer. Conversely, the special .tocbss section should be first among
945 // all SHT_NOBITS sections. This will put it next to the loaded special
946 // PPC64 sections (and, thus, within reach of the TOC base pointer).
947 StringRef name = sec->name;
948 if (name != ".tocbss")
949 rank |= RF_PPC_NOT_TOCBSS;
950
951 if (name == ".toc1")
952 rank |= RF_PPC_TOCL;
953
954 if (name == ".toc")
955 rank |= RF_PPC_TOC;
956
957 if (name == ".got")
958 rank |= RF_PPC_GOT;
959
960 if (name == ".branch_lt")
961 rank |= RF_PPC_BRANCH_LT;
962 }
963
964 if (config->emachine == EM_MIPS) {
965 // All sections with SHF_MIPS_GPREL flag should be grouped together
966 // because data in these sections is addressable with a gp relative address.
967 if (sec->flags & SHF_MIPS_GPREL)
968 rank |= RF_MIPS_GPREL;
969
970 if (sec->name != ".got")
971 rank |= RF_MIPS_NOT_GOT;
972 }
973
974 return rank;
975 }
976
977 static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) {
978 const OutputSection *a = cast<OutputSection>(aCmd);
979 const OutputSection *b = cast<OutputSection>(bCmd);
980
981 if (a->sortRank != b->sortRank)
982 return a->sortRank < b->sortRank;
983
984 if (!(a->sortRank & RF_NOT_ADDR_SET))
985 return config->sectionStartMap.lookup(a->name) <
986 config->sectionStartMap.lookup(b->name);
987 return false;
988 }
989
990 void PhdrEntry::add(OutputSection *sec) {
991 lastSec = sec;
992 if (!firstSec)
993 firstSec = sec;
994 p_align = std::max(p_align, sec->alignment);
995 if (p_type == PT_LOAD)
996 sec->ptLoad = this;
997 }
998
999 // The beginning and the ending of .rel[a].plt section are marked
1000 // with __rel[a]_iplt_{start,end} symbols if it is a statically linked
1001 // executable. The runtime needs these symbols in order to resolve
1002 // all IRELATIVE relocs on startup. For dynamic executables, we don't
1003 // need these symbols, since IRELATIVE relocs are resolved through GOT
1004 // and PLT. For details, see http://www.airs.com/blog/archives/403.
1005 template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
1006 if (config->relocatable || needsInterpSection())
1007 return;
1008
1009 // By default, __rela_iplt_{start,end} belong to a dummy section 0
1010 // because .rela.plt might be empty and thus removed from output.
1011 // We'll override Out::elfHeader with In.relaIplt later when we are
1012 // sure that .rela.plt exists in output.
1013 ElfSym::relaIpltStart = addOptionalRegular(
1014 config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
1015 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1016
1017 ElfSym::relaIpltEnd = addOptionalRegular(
1018 config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
1019 Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
1020 }
1021
1022 template <class ELFT>
1023 void Writer<ELFT>::forEachRelSec(
1024 llvm::function_ref<void(InputSectionBase &)> fn) {
1025 // Scan all relocations. Each relocation goes through a series
1026 // of tests to determine if it needs special treatment, such as
1027 // creating GOT, PLT, copy relocations, etc.
1028 // Note that relocations for non-alloc sections are directly
1029 // processed by InputSection::relocateNonAlloc.
1030 for (InputSectionBase *isec : inputSections)
1031 if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
1032 fn(*isec);
1033 for (Partition &part : partitions) {
1034 for (EhInputSection *es : part.ehFrame->sections)
1035 fn(*es);
1036 if (part.armExidx && part.armExidx->isLive())
1037 for (InputSection *ex : part.armExidx->exidxSections)
1038 fn(*ex);
1039 }
1040 }
1041
1042 // This function generates assignments for predefined symbols (e.g. _end or
1043 // _etext) and inserts them into the commands sequence to be processed at the
1044 // appropriate time. This ensures that the value is going to be correct by the
1045 // time any references to these symbols are processed and is equivalent to
1046 // defining these symbols explicitly in the linker script.
1047 template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
1048 if (ElfSym::globalOffsetTable) {
1049 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
1050 // to the start of the .got or .got.plt section.
1051 InputSection *gotSection = in.gotPlt;
1052 if (!target->gotBaseSymInGotPlt)
1053 gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
1054 : cast<InputSection>(in.got);
1055 ElfSym::globalOffsetTable->section = gotSection;
1056 }
1057
1058 // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
1059 if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
1060 ElfSym::relaIpltStart->section = in.relaIplt;
1061 ElfSym::relaIpltEnd->section = in.relaIplt;
1062 ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
1063 }
1064
1065 PhdrEntry *last = nullptr;
1066 PhdrEntry *lastRO = nullptr;
1067
1068 for (Partition &part : partitions) {
1069 for (PhdrEntry *p : part.phdrs) {
1070 if (p->p_type != PT_LOAD)
1071 continue;
1072 last = p;
1073 if (!(p->p_flags & PF_W))
1074 lastRO = p;
1075 }
1076 }
1077
1078 if (lastRO) {
1079 // _etext is the first location after the last read-only loadable segment.
1080 if (ElfSym::etext1)
1081 ElfSym::etext1->section = lastRO->lastSec;
1082 if (ElfSym::etext2)
1083 ElfSym::etext2->section = lastRO->lastSec;
1084 }
1085
1086 if (last) {
1087 // _edata points to the end of the last mapped initialized section.
1088 OutputSection *edata = nullptr;
1089 for (OutputSection *os : outputSections) {
1090 if (os->type != SHT_NOBITS)
1091 edata = os;
1092 if (os == last->lastSec)
1093 break;
1094 }
1095
1096 if (ElfSym::edata1)
1097 ElfSym::edata1->section = edata;
1098 if (ElfSym::edata2)
1099 ElfSym::edata2->section = edata;
1100
1101 // _end is the first location after the uninitialized data region.
1102 if (ElfSym::end1)
1103 ElfSym::end1->section = last->lastSec;
1104 if (ElfSym::end2)
1105 ElfSym::end2->section = last->lastSec;
1106 }
1107
1108 if (ElfSym::bss)
1109 ElfSym::bss->section = findSection(".bss");
1110
1111 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
1112 // be equal to the _gp symbol's value.
1113 if (ElfSym::mipsGp) {
1114 // Find GP-relative section with the lowest address
1115 // and use this address to calculate default _gp value.
1116 for (OutputSection *os : outputSections) {
1117 if (os->flags & SHF_MIPS_GPREL) {
1118 ElfSym::mipsGp->section = os;
1119 ElfSym::mipsGp->value = 0x7ff0;
1120 break;
1121 }
1122 }
1123 }
1124 }
1125
1126 // We want to find how similar two ranks are.
1127 // The more branches in getSectionRank that match, the more similar they are.
1128 // Since each branch corresponds to a bit flag, we can just use
1129 // countLeadingZeros.
1130 static int getRankProximityAux(OutputSection *a, OutputSection *b) {
1131 return countLeadingZeros(a->sortRank ^ b->sortRank);
1132 }
1133
1134 static int getRankProximity(OutputSection *a, BaseCommand *b) {
1135 auto *sec = dyn_cast<OutputSection>(b);
1136 return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
1137 }
1138
1139 // When placing orphan sections, we want to place them after symbol assignments
1140 // so that an orphan after
1141 // begin_foo = .;
1142 // foo : { *(foo) }
1143 // end_foo = .;
1144 // doesn't break the intended meaning of the begin/end symbols.
1145 // We don't want to go over sections since findOrphanPos is the
1146 // one in charge of deciding the order of the sections.
1147 // We don't want to go over changes to '.', since doing so in
1148 // rx_sec : { *(rx_sec) }
1149 // . = ALIGN(0x1000);
1150 // /* The RW PT_LOAD starts here*/
1151 // rw_sec : { *(rw_sec) }
1152 // would mean that the RW PT_LOAD would become unaligned.
1153 static bool shouldSkip(BaseCommand *cmd) {
1154 if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
1155 return assign->name != ".";
1156 return false;
1157 }
1158
1159 // We want to place orphan sections so that they share as much
1160 // characteristics with their neighbors as possible. For example, if
1161 // both are rw, or both are tls.
1162 static std::vector<BaseCommand *>::iterator
1163 findOrphanPos(std::vector<BaseCommand *>::iterator b,
1164 std::vector<BaseCommand *>::iterator e) {
1165 OutputSection *sec = cast<OutputSection>(*e);
1166
1167 // Find the first element that has as close a rank as possible.
1168 auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) {
1169 return getRankProximity(sec, a) < getRankProximity(sec, b);
1170 });
1171 if (i == e)
1172 return e;
1173
1174 // Consider all existing sections with the same proximity.
1175 int proximity = getRankProximity(sec, *i);
1176 for (; i != e; ++i) {
1177 auto *curSec = dyn_cast<OutputSection>(*i);
1178 if (!curSec || !curSec->hasInputSections)
1179 continue;
1180 if (getRankProximity(sec, curSec) != proximity ||
1181 sec->sortRank < curSec->sortRank)
1182 break;
1183 }
1184
1185 auto isOutputSecWithInputSections = [](BaseCommand *cmd) {
1186 auto *os = dyn_cast<OutputSection>(cmd);
1187 return os && os->hasInputSections;
1188 };
1189 auto j = std::find_if(llvm::make_reverse_iterator(i),
1190 llvm::make_reverse_iterator(b),
1191 isOutputSecWithInputSections);
1192 i = j.base();
1193
1194 // As a special case, if the orphan section is the last section, put
1195 // it at the very end, past any other commands.
1196 // This matches bfd's behavior and is convenient when the linker script fully
1197 // specifies the start of the file, but doesn't care about the end (the non
1198 // alloc sections for example).
1199 auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
1200 if (nextSec == e)
1201 return e;
1202
1203 while (i != e && shouldSkip(*i))
1204 ++i;
1205 return i;
1206 }
1207
1208 // Builds section order for handling --symbol-ordering-file.
1209 static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
1210 DenseMap<const InputSectionBase *, int> sectionOrder;
1211 // Use the rarely used option -call-graph-ordering-file to sort sections.
1212 if (!config->callGraphProfile.empty())
1213 return computeCallGraphProfileOrder();
1214
1215 if (config->symbolOrderingFile.empty())
1216 return sectionOrder;
1217
1218 struct SymbolOrderEntry {
1219 int priority;
1220 bool present;
1221 };
1222
1223 // Build a map from symbols to their priorities. Symbols that didn't
1224 // appear in the symbol ordering file have the lowest priority 0.
1225 // All explicitly mentioned symbols have negative (higher) priorities.
1226 DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
1227 int priority = -config->symbolOrderingFile.size();
1228 for (StringRef s : config->symbolOrderingFile)
1229 symbolOrder.insert({s, {priority++, false}});
1230
1231 // Build a map from sections to their priorities.
1232 auto addSym = [&](Symbol &sym) {
1233 auto it = symbolOrder.find(sym.getName());
1234 if (it == symbolOrder.end())
1235 return;
1236 SymbolOrderEntry &ent = it->second;
1237 ent.present = true;
1238
1239 maybeWarnUnorderableSymbol(&sym);
1240
1241 if (auto *d = dyn_cast<Defined>(&sym)) {
1242 if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
1243 int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
1244 priority = std::min(priority, ent.priority);
1245 }
1246 }
1247 };
1248
1249 // We want both global and local symbols. We get the global ones from the
1250 // symbol table and iterate the object files for the local ones.
1251 for (Symbol *sym : symtab->symbols())
1252 if (!sym->isLazy())
1253 addSym(*sym);
1254
1255 for (InputFile *file : objectFiles)
1256 for (Symbol *sym : file->getSymbols())
1257 if (sym->isLocal())
1258 addSym(*sym);
1259
1260 if (config->warnSymbolOrdering)
1261 for (auto orderEntry : symbolOrder)
1262 if (!orderEntry.second.present)
1263 warn("symbol ordering file: no such symbol: " + orderEntry.first);
1264
1265 return sectionOrder;
1266 }
1267
1268 // Sorts the sections in ISD according to the provided section order.
1269 static void
1270 sortISDBySectionOrder(InputSectionDescription *isd,
1271 const DenseMap<const InputSectionBase *, int> &order) {
1272 std::vector<InputSection *> unorderedSections;
1273 std::vector<std::pair<InputSection *, int>> orderedSections;
1274 uint64_t unorderedSize = 0;
1275
1276 for (InputSection *isec : isd->sections) {
1277 auto i = order.find(isec);
1278 if (i == order.end()) {
1279 unorderedSections.push_back(isec);
1280 unorderedSize += isec->getSize();
1281 continue;
1282 }
1283 orderedSections.push_back({isec, i->second});
1284 }
1285 llvm::sort(orderedSections, llvm::less_second());
1286
1287 // Find an insertion point for the ordered section list in the unordered
1288 // section list. On targets with limited-range branches, this is the mid-point
1289 // of the unordered section list. This decreases the likelihood that a range
1290 // extension thunk will be needed to enter or exit the ordered region. If the
1291 // ordered section list is a list of hot functions, we can generally expect
1292 // the ordered functions to be called more often than the unordered functions,
1293 // making it more likely that any particular call will be within range, and
1294 // therefore reducing the number of thunks required.
1295 //
1296 // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1297 // If the layout is:
1298 //
1299 // 8MB hot
1300 // 32MB cold
1301 //
1302 // only the first 8-16MB of the cold code (depending on which hot function it
1303 // is actually calling) can call the hot code without a range extension thunk.
1304 // However, if we use this layout:
1305 //
1306 // 16MB cold
1307 // 8MB hot
1308 // 16MB cold
1309 //
1310 // both the last 8-16MB of the first block of cold code and the first 8-16MB
1311 // of the second block of cold code can call the hot code without a thunk. So
1312 // we effectively double the amount of code that could potentially call into
1313 // the hot code without a thunk.
1314 size_t insPt = 0;
1315 if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
1316 uint64_t unorderedPos = 0;
1317 for (; insPt != unorderedSections.size(); ++insPt) {
1318 unorderedPos += unorderedSections[insPt]->getSize();
1319 if (unorderedPos > unorderedSize / 2)
1320 break;
1321 }
1322 }
1323
1324 isd->sections.clear();
1325 for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
1326 isd->sections.push_back(isec);
1327 for (std::pair<InputSection *, int> p : orderedSections)
1328 isd->sections.push_back(p.first);
1329 for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
1330 isd->sections.push_back(isec);
1331 }
1332
1333 static void sortSection(OutputSection *sec,
1334 const DenseMap<const InputSectionBase *, int> &order) {
1335 StringRef name = sec->name;
1336
1337 // Sort input sections by section name suffixes for
1338 // __attribute__((init_priority(N))).
1339 if (name == ".init_array" || name == ".fini_array") {
1340 if (!script->hasSectionsCommand)
1341 sec->sortInitFini();
1342 return;
1343 }
1344
1345 // Sort input sections by the special rule for .ctors and .dtors.
1346 if (name == ".ctors" || name == ".dtors") {
1347 if (!script->hasSectionsCommand)
1348 sec->sortCtorsDtors();
1349 return;
1350 }
1351
1352 // Never sort these.
1353 if (name == ".init" || name == ".fini")
1354 return;
1355
1356 // .toc is allocated just after .got and is accessed using GOT-relative
1357 // relocations. Object files compiled with small code model have an
1358 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1359 // To reduce the risk of relocation overflow, .toc contents are sorted so that
1360 // sections having smaller relocation offsets are at beginning of .toc
1361 if (config->emachine == EM_PPC64 && name == ".toc") {
1362 if (script->hasSectionsCommand)
1363 return;
1364 assert(sec->sectionCommands.size() == 1);
1365 auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]);
1366 llvm::stable_sort(isd->sections,
1367 [](const InputSection *a, const InputSection *b) -> bool {
1368 return a->file->ppc64SmallCodeModelTocRelocs &&
1369 !b->file->ppc64SmallCodeModelTocRelocs;
1370 });
1371 return;
1372 }
1373
1374 // Sort input sections by priority using the list provided
1375 // by --symbol-ordering-file.
1376 if (!order.empty())
1377 for (BaseCommand *b : sec->sectionCommands)
1378 if (auto *isd = dyn_cast<InputSectionDescription>(b))
1379 sortISDBySectionOrder(isd, order);
1380 }
1381
1382 // If no layout was provided by linker script, we want to apply default
1383 // sorting for special input sections. This also handles --symbol-ordering-file.
1384 template <class ELFT> void Writer<ELFT>::sortInputSections() {
1385 // Build the order once since it is expensive.
1386 DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
1387 for (BaseCommand *base : script->sectionCommands)
1388 if (auto *sec = dyn_cast<OutputSection>(base))
1389 sortSection(sec, order);
1390 }
1391
1392 template <class ELFT> void Writer<ELFT>::sortSections() {
1393 script->adjustSectionsBeforeSorting();
1394
1395 // Don't sort if using -r. It is not necessary and we want to preserve the
1396 // relative order for SHF_LINK_ORDER sections.
1397 if (config->relocatable)
1398 return;
1399
1400 sortInputSections();
1401
1402 for (BaseCommand *base : script->sectionCommands) {
1403 auto *os = dyn_cast<OutputSection>(base);
1404 if (!os)
1405 continue;
1406 os->sortRank = getSectionRank(os);
1407
1408 // We want to assign rude approximation values to outSecOff fields
1409 // to know the relative order of the input sections. We use it for
1410 // sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
1411 uint64_t i = 0;
1412 for (InputSection *sec : getInputSections(os))
1413 sec->outSecOff = i++;
1414 }
1415
1416 if (!script->hasSectionsCommand) {
1417 // We know that all the OutputSections are contiguous in this case.
1418 auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); };
1419 std::stable_sort(
1420 llvm::find_if(script->sectionCommands, isSection),
1421 llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
1422 compareSections);
1423
1424 // Process INSERT commands. From this point onwards the order of
1425 // script->sectionCommands is fixed.
1426 script->processInsertCommands();
1427 return;
1428 }
1429
1430 script->processInsertCommands();
1431
1432 // Orphan sections are sections present in the input files which are
1433 // not explicitly placed into the output file by the linker script.
1434 //
1435 // The sections in the linker script are already in the correct
1436 // order. We have to figuere out where to insert the orphan
1437 // sections.
1438 //
1439 // The order of the sections in the script is arbitrary and may not agree with
1440 // compareSections. This means that we cannot easily define a strict weak
1441 // ordering. To see why, consider a comparison of a section in the script and
1442 // one not in the script. We have a two simple options:
1443 // * Make them equivalent (a is not less than b, and b is not less than a).
1444 // The problem is then that equivalence has to be transitive and we can
1445 // have sections a, b and c with only b in a script and a less than c
1446 // which breaks this property.
1447 // * Use compareSectionsNonScript. Given that the script order doesn't have
1448 // to match, we can end up with sections a, b, c, d where b and c are in the
1449 // script and c is compareSectionsNonScript less than b. In which case d
1450 // can be equivalent to c, a to b and d < a. As a concrete example:
1451 // .a (rx) # not in script
1452 // .b (rx) # in script
1453 // .c (ro) # in script
1454 // .d (ro) # not in script
1455 //
1456 // The way we define an order then is:
1457 // * Sort only the orphan sections. They are in the end right now.
1458 // * Move each orphan section to its preferred position. We try
1459 // to put each section in the last position where it can share
1460 // a PT_LOAD.
1461 //
1462 // There is some ambiguity as to where exactly a new entry should be
1463 // inserted, because Commands contains not only output section
1464 // commands but also other types of commands such as symbol assignment
1465 // expressions. There's no correct answer here due to the lack of the
1466 // formal specification of the linker script. We use heuristics to
1467 // determine whether a new output command should be added before or
1468 // after another commands. For the details, look at shouldSkip
1469 // function.
1470
1471 auto i = script->sectionCommands.begin();
1472 auto e = script->sectionCommands.end();
1473 auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) {
1474 if (auto *sec = dyn_cast<OutputSection>(base))
1475 return sec->sectionIndex == UINT32_MAX;
1476 return false;
1477 });
1478
1479 // Sort the orphan sections.
1480 std::stable_sort(nonScriptI, e, compareSections);
1481
1482 // As a horrible special case, skip the first . assignment if it is before any
1483 // section. We do this because it is common to set a load address by starting
1484 // the script with ". = 0xabcd" and the expectation is that every section is
1485 // after that.
1486 auto firstSectionOrDotAssignment =
1487 std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); });
1488 if (firstSectionOrDotAssignment != e &&
1489 isa<SymbolAssignment>(**firstSectionOrDotAssignment))
1490 ++firstSectionOrDotAssignment;
1491 i = firstSectionOrDotAssignment;
1492
1493 while (nonScriptI != e) {
1494 auto pos = findOrphanPos(i, nonScriptI);
1495 OutputSection *orphan = cast<OutputSection>(*nonScriptI);
1496
1497 // As an optimization, find all sections with the same sort rank
1498 // and insert them with one rotate.
1499 unsigned rank = orphan->sortRank;
1500 auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) {
1501 return cast<OutputSection>(cmd)->sortRank != rank;
1502 });
1503 std::rotate(pos, nonScriptI, end);
1504 nonScriptI = end;
1505 }
1506
1507 script->adjustSectionsAfterSorting();
1508 }
1509
1510 static bool compareByFilePosition(InputSection *a, InputSection *b) {
1511 InputSection *la = a->getLinkOrderDep();
1512 InputSection *lb = b->getLinkOrderDep();
1513 OutputSection *aOut = la->getParent();
1514 OutputSection *bOut = lb->getParent();
1515
1516 if (aOut != bOut)
1517 return aOut->sectionIndex < bOut->sectionIndex;
1518 return la->outSecOff < lb->outSecOff;
1519 }
1520
1521 template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
1522 for (OutputSection *sec : outputSections) {
1523 if (!(sec->flags & SHF_LINK_ORDER))
1524 continue;
1525
1526 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1527 // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1528 if (!config->relocatable && config->emachine == EM_ARM &&
1529 sec->type == SHT_ARM_EXIDX)
1530 continue;
1531
1532 // Link order may be distributed across several InputSectionDescriptions
1533 // but sort must consider them all at once.
1534 std::vector<InputSection **> scriptSections;
1535 std::vector<InputSection *> sections;
1536 for (BaseCommand *base : sec->sectionCommands) {
1537 if (auto *isd = dyn_cast<InputSectionDescription>(base)) {
1538 for (InputSection *&isec : isd->sections) {
1539 scriptSections.push_back(&isec);
1540 sections.push_back(isec);
1541
1542 InputSection *link = isec->getLinkOrderDep();
1543 if (!link->getParent())
1544 error(toString(isec) + ": sh_link points to discarded section " +
1545 toString(link));
1546 }
1547 }
1548 }
1549
1550 if (errorCount())
1551 continue;
1552
1553 llvm::stable_sort(sections, compareByFilePosition);
1554
1555 for (int i = 0, n = sections.size(); i < n; ++i)
1556 *scriptSections[i] = sections[i];
1557 }
1558 }
1559
1560 // We need to generate and finalize the content that depends on the address of
1561 // InputSections. As the generation of the content may also alter InputSection
1562 // addresses we must converge to a fixed point. We do that here. See the comment
1563 // in Writer<ELFT>::finalizeSections().
1564 template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
1565 ThunkCreator tc;
1566 AArch64Err843419Patcher a64p;
1567 ARMErr657417Patcher a32p;
1568 script->assignAddresses();
1569
1570 int assignPasses = 0;
1571 for (;;) {
1572 bool changed = target->needsThunks && tc.createThunks(outputSections);
1573
1574 // With Thunk Size much smaller than branch range we expect to
1575 // converge quickly; if we get to 10 something has gone wrong.
1576 if (changed && tc.pass >= 10) {
1577 error("thunk creation not converged");
1578 break;
1579 }
1580
1581 if (config->fixCortexA53Errata843419) {
1582 if (changed)
1583 script->assignAddresses();
1584 changed |= a64p.createFixes();
1585 }
1586 if (config->fixCortexA8) {
1587 if (changed)
1588 script->assignAddresses();
1589 changed |= a32p.createFixes();
1590 }
1591
1592 if (in.mipsGot)
1593 in.mipsGot->updateAllocSize();
1594
1595 for (Partition &part : partitions) {
1596 changed |= part.relaDyn->updateAllocSize();
1597 if (part.relrDyn)
1598 changed |= part.relrDyn->updateAllocSize();
1599 }
1600
1601 const Defined *changedSym = script->assignAddresses();
1602 if (!changed) {
1603 // Some symbols may be dependent on section addresses. When we break the
1604 // loop, the symbol values are finalized because a previous
1605 // assignAddresses() finalized section addresses.
1606 if (!changedSym)
1607 break;
1608 if (++assignPasses == 5) {
1609 errorOrWarn("assignment to symbol " + toString(*changedSym) +
1610 " does not converge");
1611 break;
1612 }
1613 }
1614 }
1615 }
1616
1617 static void finalizeSynthetic(SyntheticSection *sec) {
1618 if (sec && sec->isNeeded() && sec->getParent())
1619 sec->finalizeContents();
1620 }
1621
1622 // In order to allow users to manipulate linker-synthesized sections,
1623 // we had to add synthetic sections to the input section list early,
1624 // even before we make decisions whether they are needed. This allows
1625 // users to write scripts like this: ".mygot : { .got }".
1626 //
1627 // Doing it has an unintended side effects. If it turns out that we
1628 // don't need a .got (for example) at all because there's no
1629 // relocation that needs a .got, we don't want to emit .got.
1630 //
1631 // To deal with the above problem, this function is called after
1632 // scanRelocations is called to remove synthetic sections that turn
1633 // out to be empty.
1634 static void removeUnusedSyntheticSections() {
1635 // All input synthetic sections that can be empty are placed after
1636 // all regular ones. We iterate over them all and exit at first
1637 // non-synthetic.
1638 for (InputSectionBase *s : llvm::reverse(inputSections)) {
1639 SyntheticSection *ss = dyn_cast<SyntheticSection>(s);
1640 if (!ss)
1641 return;
1642 OutputSection *os = ss->getParent();
1643 if (!os || ss->isNeeded())
1644 continue;
1645
1646 // If we reach here, then SS is an unused synthetic section and we want to
1647 // remove it from corresponding input section description of output section.
1648 for (BaseCommand *b : os->sectionCommands)
1649 if (auto *isd = dyn_cast<InputSectionDescription>(b))
1650 llvm::erase_if(isd->sections,
1651 [=](InputSection *isec) { return isec == ss; });
1652 }
1653 }
1654
1655 // Create output section objects and add them to OutputSections.
1656 template <class ELFT> void Writer<ELFT>::finalizeSections() {
1657 Out::preinitArray = findSection(".preinit_array");
1658 Out::initArray = findSection(".init_array");
1659 Out::finiArray = findSection(".fini_array");
1660
1661 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1662 // symbols for sections, so that the runtime can get the start and end
1663 // addresses of each section by section name. Add such symbols.
1664 if (!config->relocatable) {
1665 addStartEndSymbols();
1666 for (BaseCommand *base : script->sectionCommands)
1667 if (auto *sec = dyn_cast<OutputSection>(base))
1668 addStartStopSymbols(sec);
1669 }
1670
1671 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1672 // It should be okay as no one seems to care about the type.
1673 // Even the author of gold doesn't remember why gold behaves that way.
1674 // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1675 if (mainPart->dynamic->parent)
1676 symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
1677 STV_HIDDEN, STT_NOTYPE,
1678 /*value=*/0, /*size=*/0, mainPart->dynamic});
1679
1680 // Define __rel[a]_iplt_{start,end} symbols if needed.
1681 addRelIpltSymbols();
1682
1683 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1684 // should only be defined in an executable. If .sdata does not exist, its
1685 // value/section does not matter but it has to be relative, so set its
1686 // st_shndx arbitrarily to 1 (Out::elfHeader).
1687 if (config->emachine == EM_RISCV && !config->shared) {
1688 OutputSection *sec = findSection(".sdata");
1689 ElfSym::riscvGlobalPointer =
1690 addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader,
1691 0x800, STV_DEFAULT, STB_GLOBAL);
1692 }
1693
1694 if (config->emachine == EM_X86_64) {
1695 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1696 // way that:
1697 //
1698 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1699 // computes 0.
1700 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
1701 // the TLS block).
1702 //
1703 // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
1704 // an absolute symbol of zero. This is different from GNU linkers which
1705 // define _TLS_MODULE_BASE_ relative to the first TLS section.
1706 Symbol *s = symtab->find("_TLS_MODULE_BASE_");
1707 if (s && s->isUndefined()) {
1708 s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
1709 STT_TLS, /*value=*/0, 0,
1710 /*section=*/nullptr});
1711 ElfSym::tlsModuleBase = cast<Defined>(s);
1712 }
1713 }
1714
1715 // This responsible for splitting up .eh_frame section into
1716 // pieces. The relocation scan uses those pieces, so this has to be
1717 // earlier.
1718 for (Partition &part : partitions)
1719 finalizeSynthetic(part.ehFrame);
1720
1721 for (Symbol *sym : symtab->symbols())
1722 sym->isPreemptible = computeIsPreemptible(*sym);
1723
1724 // Change values of linker-script-defined symbols from placeholders (assigned
1725 // by declareSymbols) to actual definitions.
1726 script->processSymbolAssignments();
1727
1728 // Scan relocations. This must be done after every symbol is declared so that
1729 // we can correctly decide if a dynamic relocation is needed. This is called
1730 // after processSymbolAssignments() because it needs to know whether a
1731 // linker-script-defined symbol is absolute.
1732 if (!config->relocatable) {
1733 forEachRelSec(scanRelocations<ELFT>);
1734 reportUndefinedSymbols<ELFT>();
1735 }
1736
1737 if (in.plt && in.plt->isNeeded())
1738 in.plt->addSymbols();
1739 if (in.iplt && in.iplt->isNeeded())
1740 in.iplt->addSymbols();
1741
1742 if (!config->allowShlibUndefined) {
1743 // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1744 // entries are seen. These cases would otherwise lead to runtime errors
1745 // reported by the dynamic linker.
1746 //
1747 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
1748 // catch more cases. That is too much for us. Our approach resembles the one
1749 // used in ld.gold, achieves a good balance to be useful but not too smart.
1750 for (SharedFile *file : sharedFiles)
1751 file->allNeededIsKnown =
1752 llvm::all_of(file->dtNeeded, [&](StringRef needed) {
1753 return symtab->soNames.count(needed);
1754 });
1755
1756 for (Symbol *sym : symtab->symbols())
1757 if (sym->isUndefined() && !sym->isWeak())
1758 if (auto *f = dyn_cast_or_null<SharedFile>(sym->file))
1759 if (f->allNeededIsKnown)
1760 error(toString(f) + ": undefined reference to " + toString(*sym));
1761 }
1762
1763 // Now that we have defined all possible global symbols including linker-
1764 // synthesized ones. Visit all symbols to give the finishing touches.
1765 for (Symbol *sym : symtab->symbols()) {
1766 if (!includeInSymtab(*sym))
1767 continue;
1768 if (in.symTab)
1769 in.symTab->addSymbol(sym);
1770
1771 if (sym->includeInDynsym()) {
1772 partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
1773 if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
1774 if (file->isNeeded && !sym->isUndefined())
1775 addVerneed(sym);
1776 }
1777 }
1778
1779 // We also need to scan the dynamic relocation tables of the other partitions
1780 // and add any referenced symbols to the partition's dynsym.
1781 for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
1782 DenseSet<Symbol *> syms;
1783 for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
1784 syms.insert(e.sym);
1785 for (DynamicReloc &reloc : part.relaDyn->relocs)
1786 if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second)
1787 part.dynSymTab->addSymbol(reloc.sym);
1788 }
1789
1790 // Do not proceed if there was an undefined symbol.
1791 if (errorCount())
1792 return;
1793
1794 if (in.mipsGot)
1795 in.mipsGot->build();
1796
1797 removeUnusedSyntheticSections();
1798
1799 sortSections();
1800
1801 // Now that we have the final list, create a list of all the
1802 // OutputSections for convenience.
1803 for (BaseCommand *base : script->sectionCommands)
1804 if (auto *sec = dyn_cast<OutputSection>(base))
1805 outputSections.push_back(sec);
1806
1807 // Prefer command line supplied address over other constraints.
1808 for (OutputSection *sec : outputSections) {
1809 auto i = config->sectionStartMap.find(sec->name);
1810 if (i != config->sectionStartMap.end())
1811 sec->addrExpr = [=] { return i->second; };
1812 }
1813
1814 // This is a bit of a hack. A value of 0 means undef, so we set it
1815 // to 1 to make __ehdr_start defined. The section number is not
1816 // particularly relevant.
1817 Out::elfHeader->sectionIndex = 1;
1818
1819 for (size_t i = 0, e = outputSections.size(); i != e; ++i) {
1820 OutputSection *sec = outputSections[i];
1821 sec->sectionIndex = i + 1;
1822 sec->shName = in.shStrTab->addString(sec->name);
1823 }
1824
1825 // Binary and relocatable output does not have PHDRS.
1826 // The headers have to be created before finalize as that can influence the
1827 // image base and the dynamic section on mips includes the image base.
1828 if (!config->relocatable && !config->oFormatBinary) {
1829 for (Partition &part : partitions) {
1830 part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
1831 : createPhdrs(part);
1832 if (config->emachine == EM_ARM) {
1833 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
1834 addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
1835 }
1836 if (config->emachine == EM_MIPS) {
1837 // Add separate segments for MIPS-specific sections.
1838 addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
1839 addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
1840 addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
1841 }
1842 }
1843 Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
1844
1845 // Find the TLS segment. This happens before the section layout loop so that
1846 // Android relocation packing can look up TLS symbol addresses. We only need
1847 // to care about the main partition here because all TLS symbols were moved
1848 // to the main partition (see MarkLive.cpp).
1849 for (PhdrEntry *p : mainPart->phdrs)
1850 if (p->p_type == PT_TLS)
1851 Out::tlsPhdr = p;
1852 }
1853
1854 // Some symbols are defined in term of program headers. Now that we
1855 // have the headers, we can find out which sections they point to.
1856 setReservedSymbolSections();
1857
1858 finalizeSynthetic(in.bss);
1859 finalizeSynthetic(in.bssRelRo);
1860 finalizeSynthetic(in.symTabShndx);
1861 finalizeSynthetic(in.shStrTab);
1862 finalizeSynthetic(in.strTab);
1863 finalizeSynthetic(in.got);
1864 finalizeSynthetic(in.mipsGot);
1865 finalizeSynthetic(in.igotPlt);
1866 finalizeSynthetic(in.gotPlt);
1867 finalizeSynthetic(in.relaIplt);
1868 finalizeSynthetic(in.relaPlt);
1869 finalizeSynthetic(in.plt);
1870 finalizeSynthetic(in.iplt);
1871 finalizeSynthetic(in.ppc32Got2);
1872 finalizeSynthetic(in.partIndex);
1873
1874 // Dynamic section must be the last one in this list and dynamic
1875 // symbol table section (dynSymTab) must be the first one.
1876 for (Partition &part : partitions) {
1877 finalizeSynthetic(part.armExidx);
1878 finalizeSynthetic(part.dynSymTab);
1879 finalizeSynthetic(part.gnuHashTab);
1880 finalizeSynthetic(part.hashTab);
1881 finalizeSynthetic(part.verDef);
1882 finalizeSynthetic(part.relaDyn);
1883 finalizeSynthetic(part.relrDyn);
1884 finalizeSynthetic(part.ehFrameHdr);
1885 finalizeSynthetic(part.verSym);
1886 finalizeSynthetic(part.verNeed);
1887 finalizeSynthetic(part.dynamic);
1888 }
1889
1890 if (!script->hasSectionsCommand && !config->relocatable)
1891 fixSectionAlignments();
1892
1893 // SHFLinkOrder processing must be processed after relative section placements are
1894 // known but before addresses are allocated.
1895 resolveShfLinkOrder();
1896 if (errorCount())
1897 return;
1898
1899 // This is used to:
1900 // 1) Create "thunks":
1901 // Jump instructions in many ISAs have small displacements, and therefore
1902 // they cannot jump to arbitrary addresses in memory. For example, RISC-V
1903 // JAL instruction can target only +-1 MiB from PC. It is a linker's
1904 // responsibility to create and insert small pieces of code between
1905 // sections to extend the ranges if jump targets are out of range. Such
1906 // code pieces are called "thunks".
1907 //
1908 // We add thunks at this stage. We couldn't do this before this point
1909 // because this is the earliest point where we know sizes of sections and
1910 // their layouts (that are needed to determine if jump targets are in
1911 // range).
1912 //
1913 // 2) Update the sections. We need to generate content that depends on the
1914 // address of InputSections. For example, MIPS GOT section content or
1915 // android packed relocations sections content.
1916 //
1917 // 3) Assign the final values for the linker script symbols. Linker scripts
1918 // sometimes using forward symbol declarations. We want to set the correct
1919 // values. They also might change after adding the thunks.
1920 finalizeAddressDependentContent();
1921
1922 // finalizeAddressDependentContent may have added local symbols to the static symbol table.
1923 finalizeSynthetic(in.symTab);
1924 finalizeSynthetic(in.ppc64LongBranchTarget);
1925
1926 // Fill other section headers. The dynamic table is finalized
1927 // at the end because some tags like RELSZ depend on result
1928 // of finalizing other sections.
1929 for (OutputSection *sec : outputSections)
1930 sec->finalize();
1931 }
1932
1933 // Ensure data sections are not mixed with executable sections when
1934 // -execute-only is used. -execute-only is a feature to make pages executable
1935 // but not readable, and the feature is currently supported only on AArch64.
1936 template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
1937 if (!config->executeOnly)
1938 return;
1939
1940 for (OutputSection *os : outputSections)
1941 if (os->flags & SHF_EXECINSTR)
1942 for (InputSection *isec : getInputSections(os))
1943 if (!(isec->flags & SHF_EXECINSTR))
1944 error("cannot place " + toString(isec) + " into " + toString(os->name) +
1945 ": -execute-only does not support intermingling data and code");
1946 }
1947
1948 // The linker is expected to define SECNAME_start and SECNAME_end
1949 // symbols for a few sections. This function defines them.
1950 template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
1951 // If a section does not exist, there's ambiguity as to how we
1952 // define _start and _end symbols for an init/fini section. Since
1953 // the loader assume that the symbols are always defined, we need to
1954 // always define them. But what value? The loader iterates over all
1955 // pointers between _start and _end to run global ctors/dtors, so if
1956 // the section is empty, their symbol values don't actually matter
1957 // as long as _start and _end point to the same location.
1958 //
1959 // That said, we don't want to set the symbols to 0 (which is
1960 // probably the simplest value) because that could cause some
1961 // program to fail to link due to relocation overflow, if their
1962 // program text is above 2 GiB. We use the address of the .text
1963 // section instead to prevent that failure.
1964 //
1965 // In rare situations, the .text section may not exist. If that's the
1966 // case, use the image base address as a last resort.
1967 OutputSection *Default = findSection(".text");
1968 if (!Default)
1969 Default = Out::elfHeader;
1970
1971 auto define = [=](StringRef start, StringRef end, OutputSection *os) {
1972 if (os) {
1973 addOptionalRegular(start, os, 0);
1974 addOptionalRegular(end, os, -1);
1975 } else {
1976 addOptionalRegular(start, Default, 0);
1977 addOptionalRegular(end, Default, 0);
1978 }
1979 };
1980
1981 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
1982 define("__init_array_start", "__init_array_end", Out::initArray);
1983 define("__fini_array_start", "__fini_array_end", Out::finiArray);
1984
1985 if (OutputSection *sec = findSection(".ARM.exidx"))
1986 define("__exidx_start", "__exidx_end", sec);
1987 }
1988
1989 // If a section name is valid as a C identifier (which is rare because of
1990 // the leading '.'), linkers are expected to define __start_<secname> and
1991 // __stop_<secname> symbols. They are at beginning and end of the section,
1992 // respectively. This is not requested by the ELF standard, but GNU ld and
1993 // gold provide the feature, and used by many programs.
1994 template <class ELFT>
1995 void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
1996 StringRef s = sec->name;
1997 if (!isValidCIdentifier(s))
1998 return;
1999 addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED);
2000 addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED);
2001 }
2002
2003 static bool needsPtLoad(OutputSection *sec) {
2004 if (!(sec->flags & SHF_ALLOC) || sec->noload)
2005 return false;
2006
2007 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2008 // responsible for allocating space for them, not the PT_LOAD that
2009 // contains the TLS initialization image.
2010 if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
2011 return false;
2012 return true;
2013 }
2014
2015 // Linker scripts are responsible for aligning addresses. Unfortunately, most
2016 // linker scripts are designed for creating two PT_LOADs only, one RX and one
2017 // RW. This means that there is no alignment in the RO to RX transition and we
2018 // cannot create a PT_LOAD there.
2019 static uint64_t computeFlags(uint64_t flags) {
2020 if (config->omagic)
2021 return PF_R | PF_W | PF_X;
2022 if (config->executeOnly && (flags & PF_X))
2023 return flags & ~PF_R;
2024 if (config->singleRoRx && !(flags & PF_W))
2025 return flags | PF_X;
2026 return flags;
2027 }
2028
2029 // Decide which program headers to create and which sections to include in each
2030 // one.
2031 template <class ELFT>
2032 std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
2033 std::vector<PhdrEntry *> ret;
2034 auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
2035 ret.push_back(make<PhdrEntry>(type, flags));
2036 return ret.back();
2037 };
2038
2039 unsigned partNo = part.getNumber();
2040 bool isMain = partNo == 1;
2041
2042 // Add the first PT_LOAD segment for regular output sections.
2043 uint64_t flags = computeFlags(PF_R);
2044 PhdrEntry *load = nullptr;
2045
2046 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2047 // PT_LOAD.
2048 if (!config->nmagic && !config->omagic) {
2049 // The first phdr entry is PT_PHDR which describes the program header
2050 // itself.
2051 if (isMain)
2052 addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
2053 else
2054 addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
2055
2056 // PT_INTERP must be the second entry if exists.
2057 if (OutputSection *cmd = findSection(".interp", partNo))
2058 addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
2059
2060 // Add the headers. We will remove them if they don't fit.
2061 // In the other partitions the headers are ordinary sections, so they don't
2062 // need to be added here.
2063 if (isMain) {
2064 load = addHdr(PT_LOAD, flags);
2065 load->add(Out::elfHeader);
2066 load->add(Out::programHeaders);
2067 }
2068 }
2069
2070 // PT_GNU_RELRO includes all sections that should be marked as
2071 // read-only by dynamic linker after processing relocations.
2072 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2073 // an error message if more than one PT_GNU_RELRO PHDR is required.
2074 PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
2075 bool inRelroPhdr = false;
2076 OutputSection *relroEnd = nullptr;
2077 for (OutputSection *sec : outputSections) {
2078 if (sec->partition != partNo || !needsPtLoad(sec))
2079 continue;
2080 if (isRelroSection(sec)) {
2081 inRelroPhdr = true;
2082 if (!relroEnd)
2083 relRo->add(sec);
2084 else
2085 error("section: " + sec->name + " is not contiguous with other relro" +
2086 " sections");
2087 } else if (inRelroPhdr) {
2088 inRelroPhdr = false;
2089 relroEnd = sec;
2090 }
2091 }
2092
2093 for (OutputSection *sec : outputSections) {
2094 if (!(sec->flags & SHF_ALLOC))
2095 break;
2096 if (!needsPtLoad(sec))
2097 continue;
2098
2099 // Normally, sections in partitions other than the current partition are
2100 // ignored. But partition number 255 is a special case: it contains the
2101 // partition end marker (.part.end). It needs to be added to the main
2102 // partition so that a segment is created for it in the main partition,
2103 // which will cause the dynamic loader to reserve space for the other
2104 // partitions.
2105 if (sec->partition != partNo) {
2106 if (isMain && sec->partition == 255)
2107 addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
2108 continue;
2109 }
2110
2111 // Segments are contiguous memory regions that has the same attributes
2112 // (e.g. executable or writable). There is one phdr for each segment.
2113 // Therefore, we need to create a new phdr when the next section has
2114 // different flags or is loaded at a discontiguous address or memory
2115 // region using AT or AT> linker script command, respectively. At the same
2116 // time, we don't want to create a separate load segment for the headers,
2117 // even if the first output section has an AT or AT> attribute.
2118 uint64_t newFlags = computeFlags(sec->getPhdrFlags());
2119 bool sameLMARegion =
2120 load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
2121 if (!(load && newFlags == flags && sec != relroEnd &&
2122 sec->memRegion == load->firstSec->memRegion &&
2123 (sameLMARegion || load->lastSec == Out::programHeaders))) {
2124 load = addHdr(PT_LOAD, newFlags);
2125 flags = newFlags;
2126 }
2127
2128 load->add(sec);
2129 }
2130
2131 // Add a TLS segment if any.
2132 PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
2133 for (OutputSection *sec : outputSections)
2134 if (sec->partition == partNo && sec->flags & SHF_TLS)
2135 tlsHdr->add(sec);
2136 if (tlsHdr->firstSec)
2137 ret.push_back(tlsHdr);
2138
2139 // Add an entry for .dynamic.
2140 if (OutputSection *sec = part.dynamic->getParent())
2141 addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
2142
2143 if (relRo->firstSec)
2144 ret.push_back(relRo);
2145
2146 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2147 if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
2148 part.ehFrame->getParent() && part.ehFrameHdr->getParent())
2149 addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
2150 ->add(part.ehFrameHdr->getParent());
2151
2152 // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
2153 // the dynamic linker fill the segment with random data.
2154 if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
2155 addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
2156
2157 if (config->zGnustack != GnuStackKind::None) {
2158 // PT_GNU_STACK is a special section to tell the loader to make the
2159 // pages for the stack non-executable. If you really want an executable
2160 // stack, you can pass -z execstack, but that's not recommended for
2161 // security reasons.
2162 unsigned perm = PF_R | PF_W;
2163 if (config->zGnustack == GnuStackKind::Exec)
2164 perm |= PF_X;
2165 addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
2166 }
2167
2168 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2169 // is expected to perform W^X violations, such as calling mprotect(2) or
2170 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2171 // OpenBSD.
2172 if (config->zWxneeded)
2173 addHdr(PT_OPENBSD_WXNEEDED, PF_X);
2174
2175 if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
2176 addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
2177
2178 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2179 // same alignment.
2180 PhdrEntry *note = nullptr;
2181 for (OutputSection *sec : outputSections) {
2182 if (sec->partition != partNo)
2183 continue;
2184 if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
2185 if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
2186 note = addHdr(PT_NOTE, PF_R);
2187 note->add(sec);
2188 } else {
2189 note = nullptr;
2190 }
2191 }
2192 return ret;
2193 }
2194
2195 template <class ELFT>
2196 void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
2197 unsigned pType, unsigned pFlags) {
2198 unsigned partNo = part.getNumber();
2199 auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
2200 return cmd->partition == partNo && cmd->type == shType;
2201 });
2202 if (i == outputSections.end())
2203 return;
2204
2205 PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
2206 entry->add(*i);
2207 part.phdrs.push_back(entry);
2208 }
2209
2210 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2211 // This is achieved by assigning an alignment expression to addrExpr of each
2212 // such section.
2213 template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
2214 const PhdrEntry *prev;
2215 auto pageAlign = [&](const PhdrEntry *p) {
2216 OutputSection *cmd = p->firstSec;
2217 if (cmd && !cmd->addrExpr) {
2218 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2219 // padding in the file contents.
2220 //
2221 // When -z separate-code is used we must not have any overlap in pages
2222 // between an executable segment and a non-executable segment. We align to
2223 // the next maximum page size boundary on transitions between executable
2224 // and non-executable segments.
2225 //
2226 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2227 // sections will be extracted to a separate file. Align to the next
2228 // maximum page size boundary so that we can find the ELF header at the
2229 // start. We cannot benefit from overlapping p_offset ranges with the
2230 // previous segment anyway.
2231 if (config->zSeparate == SeparateSegmentKind::Loadable ||
2232 (config->zSeparate == SeparateSegmentKind::Code && prev &&
2233 (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
2234 cmd->type == SHT_LLVM_PART_EHDR)
2235 cmd->addrExpr = [] {
2236 return alignTo(script->getDot(), config->maxPageSize);
2237 };
2238 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2239 // it must be the RW. Align to p_align(PT_TLS) to make sure
2240 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2241 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2242 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2243 // be congruent to 0 modulo p_align(PT_TLS).
2244 //
2245 // Technically this is not required, but as of 2019, some dynamic loaders
2246 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2247 // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2248 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2249 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2250 // blocks correctly. We need to keep the workaround for a while.
2251 else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
2252 cmd->addrExpr = [] {
2253 return alignTo(script->getDot(), config->maxPageSize) +
2254 alignTo(script->getDot() % config->maxPageSize,
2255 Out::tlsPhdr->p_align);
2256 };
2257 else
2258 cmd->addrExpr = [] {
2259 return alignTo(script->getDot(), config->maxPageSize) +
2260 script->getDot() % config->maxPageSize;
2261 };
2262 }
2263 };
2264
2265 for (Partition &part : partitions) {
2266 prev = nullptr;
2267 for (const PhdrEntry *p : part.phdrs)
2268 if (p->p_type == PT_LOAD && p->firstSec) {
2269 pageAlign(p);
2270 prev = p;
2271 }
2272 }
2273 }
2274
2275 // Compute an in-file position for a given section. The file offset must be the
2276 // same with its virtual address modulo the page size, so that the loader can
2277 // load executables without any address adjustment.
2278 static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
2279 // The first section in a PT_LOAD has to have congruent offset and address
2280 // modulo the maximum page size.
2281 if (os->ptLoad && os->ptLoad->firstSec == os)
2282 return alignTo(off, os->ptLoad->p_align, os->addr);
2283
2284 // File offsets are not significant for .bss sections other than the first one
2285 // in a PT_LOAD. By convention, we keep section offsets monotonically
2286 // increasing rather than setting to zero.
2287 if (os->type == SHT_NOBITS)
2288 return off;
2289
2290 // If the section is not in a PT_LOAD, we just have to align it.
2291 if (!os->ptLoad)
2292 return alignTo(off, os->alignment);
2293
2294 // If two sections share the same PT_LOAD the file offset is calculated
2295 // using this formula: Off2 = Off1 + (VA2 - VA1).
2296 OutputSection *first = os->ptLoad->firstSec;
2297 return first->offset + os->addr - first->addr;
2298 }
2299
2300 // Set an in-file position to a given section and returns the end position of
2301 // the section.
2302 static uint64_t setFileOffset(OutputSection *os, uint64_t off) {
2303 off = computeFileOffset(os, off);
2304 os->offset = off;
2305
2306 if (os->type == SHT_NOBITS)
2307 return off;
2308 return off + os->size;
2309 }
2310
2311 template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
2312 uint64_t off = 0;
2313 for (OutputSection *sec : outputSections)
2314 if (sec->flags & SHF_ALLOC)
2315 off = setFileOffset(sec, off);
2316 fileSize = alignTo(off, config->wordsize);
2317 }
2318
2319 static std::string rangeToString(uint64_t addr, uint64_t len) {
2320 return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
2321 }
2322
2323 // Assign file offsets to output sections.
2324 template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
2325 uint64_t off = 0;
2326 off = setFileOffset(Out::elfHeader, off);
2327 off = setFileOffset(Out::programHeaders, off);
2328
2329 PhdrEntry *lastRX = nullptr;
2330 for (Partition &part : partitions)
2331 for (PhdrEntry *p : part.phdrs)
2332 if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2333 lastRX = p;
2334
2335 for (OutputSection *sec : outputSections) {
2336 off = setFileOffset(sec, off);
2337
2338 // If this is a last section of the last executable segment and that
2339 // segment is the last loadable segment, align the offset of the
2340 // following section to avoid loading non-segments parts of the file.
2341 if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
2342 lastRX->lastSec == sec)
2343 off = alignTo(off, config->commonPageSize);
2344 }
2345
2346 sectionHeaderOff = alignTo(off, config->wordsize);
2347 fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
2348
2349 // Our logic assumes that sections have rising VA within the same segment.
2350 // With use of linker scripts it is possible to violate this rule and get file
2351 // offset overlaps or overflows. That should never happen with a valid script
2352 // which does not move the location counter backwards and usually scripts do
2353 // not do that. Unfortunately, there are apps in the wild, for example, Linux
2354 // kernel, which control segment distribution explicitly and move the counter
2355 // backwards, so we have to allow doing that to support linking them. We
2356 // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2357 // we want to prevent file size overflows because it would crash the linker.
2358 for (OutputSection *sec : outputSections) {
2359 if (sec->type == SHT_NOBITS)
2360 continue;
2361 if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
2362 error("unable to place section " + sec->name + " at file offset " +
2363 rangeToString(sec->offset, sec->size) +
2364 "; check your linker script for overflows");
2365 }
2366 }
2367
2368 // Finalize the program headers. We call this function after we assign
2369 // file offsets and VAs to all sections.
2370 template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
2371 for (PhdrEntry *p : part.phdrs) {
2372 OutputSection *first = p->firstSec;
2373 OutputSection *last = p->lastSec;
2374
2375 if (first) {
2376 p->p_filesz = last->offset - first->offset;
2377 if (last->type != SHT_NOBITS)
2378 p->p_filesz += last->size;
2379
2380 p->p_memsz = last->addr + last->size - first->addr;
2381 p->p_offset = first->offset;
2382 p->p_vaddr = first->addr;
2383
2384 // File offsets in partitions other than the main partition are relative
2385 // to the offset of the ELF headers. Perform that adjustment now.
2386 if (part.elfHeader)
2387 p->p_offset -= part.elfHeader->getParent()->offset;
2388
2389 if (!p->hasLMA)
2390 p->p_paddr = first->getLMA();
2391 }
2392
2393 if (p->p_type == PT_GNU_RELRO) {
2394 p->p_align = 1;
2395 // musl/glibc ld.so rounds the size down, so we need to round up
2396 // to protect the last page. This is a no-op on FreeBSD which always
2397 // rounds up.
2398 p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) -
2399 p->p_offset;
2400 }
2401 }
2402 }
2403
2404 // A helper struct for checkSectionOverlap.
2405 namespace {
2406 struct SectionOffset {
2407 OutputSection *sec;
2408 uint64_t offset;
2409 };
2410 } // namespace
2411
2412 // Check whether sections overlap for a specific address range (file offsets,
2413 // load and virtual addresses).
2414 static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
2415 bool isVirtualAddr) {
2416 llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
2417 return a.offset < b.offset;
2418 });
2419
2420 // Finding overlap is easy given a vector is sorted by start position.
2421 // If an element starts before the end of the previous element, they overlap.
2422 for (size_t i = 1, end = sections.size(); i < end; ++i) {
2423 SectionOffset a = sections[i - 1];
2424 SectionOffset b = sections[i];
2425 if (b.offset >= a.offset + a.sec->size)
2426 continue;
2427
2428 // If both sections are in OVERLAY we allow the overlapping of virtual
2429 // addresses, because it is what OVERLAY was designed for.
2430 if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
2431 continue;
2432
2433 errorOrWarn("section " + a.sec->name + " " + name +
2434 " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
2435 " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
2436 b.sec->name + " range is " +
2437 rangeToString(b.offset, b.sec->size));
2438 }
2439 }
2440
2441 // Check for overlapping sections and address overflows.
2442 //
2443 // In this function we check that none of the output sections have overlapping
2444 // file offsets. For SHF_ALLOC sections we also check that the load address
2445 // ranges and the virtual address ranges don't overlap
2446 template <class ELFT> void Writer<ELFT>::checkSections() {
2447 // First, check that section's VAs fit in available address space for target.
2448 for (OutputSection *os : outputSections)
2449 if ((os->addr + os->size < os->addr) ||
2450 (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
2451 errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
2452 " of size 0x" + utohexstr(os->size) +
2453 " exceeds available address space");
2454
2455 // Check for overlapping file offsets. In this case we need to skip any
2456 // section marked as SHT_NOBITS. These sections don't actually occupy space in
2457 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2458 // binary is specified only add SHF_ALLOC sections are added to the output
2459 // file so we skip any non-allocated sections in that case.
2460 std::vector<SectionOffset> fileOffs;
2461 for (OutputSection *sec : outputSections)
2462 if (sec->size > 0 && sec->type != SHT_NOBITS &&
2463 (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
2464 fileOffs.push_back({sec, sec->offset});
2465 checkOverlap("file", fileOffs, false);
2466
2467 // When linking with -r there is no need to check for overlapping virtual/load
2468 // addresses since those addresses will only be assigned when the final
2469 // executable/shared object is created.
2470 if (config->relocatable)
2471 return;
2472
2473 // Checking for overlapping virtual and load addresses only needs to take
2474 // into account SHF_ALLOC sections since others will not be loaded.
2475 // Furthermore, we also need to skip SHF_TLS sections since these will be
2476 // mapped to other addresses at runtime and can therefore have overlapping
2477 // ranges in the file.
2478 std::vector<SectionOffset> vmas;
2479 for (OutputSection *sec : outputSections)
2480 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2481 vmas.push_back({sec, sec->addr});
2482 checkOverlap("virtual address", vmas, true);
2483
2484 // Finally, check that the load addresses don't overlap. This will usually be
2485 // the same as the virtual addresses but can be different when using a linker
2486 // script with AT().
2487 std::vector<SectionOffset> lmas;
2488 for (OutputSection *sec : outputSections)
2489 if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
2490 lmas.push_back({sec, sec->getLMA()});
2491 checkOverlap("load address", lmas, false);
2492 }
2493
2494 // The entry point address is chosen in the following ways.
2495 //
2496 // 1. the '-e' entry command-line option;
2497 // 2. the ENTRY(symbol) command in a linker control script;
2498 // 3. the value of the symbol _start, if present;
2499 // 4. the number represented by the entry symbol, if it is a number;
2500 // 5. the address of the first byte of the .text section, if present;
2501 // 6. the address 0.
2502 static uint64_t getEntryAddr() {
2503 // Case 1, 2 or 3
2504 if (Symbol *b = symtab->find(config->entry))
2505 return b->getVA();
2506
2507 // Case 4
2508 uint64_t addr;
2509 if (to_integer(config->entry, addr))
2510 return addr;
2511
2512 // Case 5
2513 if (OutputSection *sec = findSection(".text")) {
2514 if (config->warnMissingEntry)
2515 warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" +
2516 utohexstr(sec->addr));
2517 return sec->addr;
2518 }
2519
2520 // Case 6
2521 if (config->warnMissingEntry)
2522 warn("cannot find entry symbol " + config->entry +
2523 "; not setting start address");
2524 return 0;
2525 }
2526
2527 static uint16_t getELFType() {
2528 if (config->isPic)
2529 return ET_DYN;
2530 if (config->relocatable)
2531 return ET_REL;
2532 return ET_EXEC;
2533 }
2534
2535 template <class ELFT> void Writer<ELFT>::writeHeader() {
2536 writeEhdr<ELFT>(Out::bufferStart, *mainPart);
2537 writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
2538
2539 auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
2540 eHdr->e_type = getELFType();
2541 eHdr->e_entry = getEntryAddr();
2542 eHdr->e_shoff = sectionHeaderOff;
2543
2544 // Write the section header table.
2545 //
2546 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2547 // and e_shstrndx fields. When the value of one of these fields exceeds
2548 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2549 // use fields in the section header at index 0 to store
2550 // the value. The sentinel values and fields are:
2551 // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2552 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2553 auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
2554 size_t num = outputSections.size() + 1;
2555 if (num >= SHN_LORESERVE)
2556 sHdrs->sh_size = num;
2557 else
2558 eHdr->e_shnum = num;
2559
2560 uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
2561 if (strTabIndex >= SHN_LORESERVE) {
2562 sHdrs->sh_link = strTabIndex;
2563 eHdr->e_shstrndx = SHN_XINDEX;
2564 } else {
2565 eHdr->e_shstrndx = strTabIndex;
2566 }
2567
2568 for (OutputSection *sec : outputSections)
2569 sec->writeHeaderTo<ELFT>(++sHdrs);
2570 }
2571
2572 // Open a result file.
2573 template <class ELFT> void Writer<ELFT>::openFile() {
2574 uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
2575 if (fileSize != size_t(fileSize) || maxSize < fileSize) {
2576 error("output file too large: " + Twine(fileSize) + " bytes");
2577 return;
2578 }
2579
2580 unlinkAsync(config->outputFile);
2581 unsigned flags = 0;
2582 if (!config->relocatable)
2583 flags |= FileOutputBuffer::F_executable;
2584 if (!config->mmapOutputFile)
2585 flags |= FileOutputBuffer::F_no_mmap;
2586 Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
2587 FileOutputBuffer::create(config->outputFile, fileSize, flags);
2588
2589 if (!bufferOrErr) {
2590 error("failed to open " + config->outputFile + ": " +
2591 llvm::toString(bufferOrErr.takeError()));
2592 return;
2593 }
2594 buffer = std::move(*bufferOrErr);
2595 Out::bufferStart = buffer->getBufferStart();
2596 }
2597
2598 template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
2599 for (OutputSection *sec : outputSections)
2600 if (sec->flags & SHF_ALLOC)
2601 sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2602 }
2603
2604 static void fillTrap(uint8_t *i, uint8_t *end) {
2605 for (; i + 4 <= end; i += 4)
2606 memcpy(i, &target->trapInstr, 4);
2607 }
2608
2609 // Fill the last page of executable segments with trap instructions
2610 // instead of leaving them as zero. Even though it is not required by any
2611 // standard, it is in general a good thing to do for security reasons.
2612 //
2613 // We'll leave other pages in segments as-is because the rest will be
2614 // overwritten by output sections.
2615 template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
2616 for (Partition &part : partitions) {
2617 // Fill the last page.
2618 for (PhdrEntry *p : part.phdrs)
2619 if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
2620 fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
2621 config->commonPageSize),
2622 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
2623 config->commonPageSize));
2624
2625 // Round up the file size of the last segment to the page boundary iff it is
2626 // an executable segment to ensure that other tools don't accidentally
2627 // trim the instruction padding (e.g. when stripping the file).
2628 PhdrEntry *last = nullptr;
2629 for (PhdrEntry *p : part.phdrs)
2630 if (p->p_type == PT_LOAD)
2631 last = p;
2632
2633 if (last && (last->p_flags & PF_X))
2634 last->p_memsz = last->p_filesz =
2635 alignTo(last->p_filesz, config->commonPageSize);
2636 }
2637 }
2638
2639 // Write section contents to a mmap'ed file.
2640 template <class ELFT> void Writer<ELFT>::writeSections() {
2641 // In -r or -emit-relocs mode, write the relocation sections first as in
2642 // ELf_Rel targets we might find out that we need to modify the relocated
2643 // section while doing it.
2644 for (OutputSection *sec : outputSections)
2645 if (sec->type == SHT_REL || sec->type == SHT_RELA)
2646 sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2647
2648 for (OutputSection *sec : outputSections)
2649 if (sec->type != SHT_REL && sec->type != SHT_RELA)
2650 sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
2651 }
2652
2653 // Split one uint8 array into small pieces of uint8 arrays.
2654 static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr,
2655 size_t chunkSize) {
2656 std::vector<ArrayRef<uint8_t>> ret;
2657 while (arr.size() > chunkSize) {
2658 ret.push_back(arr.take_front(chunkSize));
2659 arr = arr.drop_front(chunkSize);
2660 }
2661 if (!arr.empty())
2662 ret.push_back(arr);
2663 return ret;
2664 }
2665
2666 // Computes a hash value of Data using a given hash function.
2667 // In order to utilize multiple cores, we first split data into 1MB
2668 // chunks, compute a hash for each chunk, and then compute a hash value
2669 // of the hash values.
2670 static void
2671 computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
2672 llvm::ArrayRef<uint8_t> data,
2673 std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
2674 std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
2675 std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());
2676
2677 // Compute hash values.
2678 parallelForEachN(0, chunks.size(), [&](size_t i) {
2679 hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
2680 });
2681
2682 // Write to the final output buffer.
2683 hashFn(hashBuf.data(), hashes);
2684 }
2685
2686 template <class ELFT> void Writer<ELFT>::writeBuildId() {
2687 if (!mainPart->buildId || !mainPart->buildId->getParent())
2688 return;
2689
2690 if (config->buildId == BuildIdKind::Hexstring) {
2691 for (Partition &part : partitions)
2692 part.buildId->writeBuildId(config->buildIdVector);
2693 return;
2694 }
2695
2696 // Compute a hash of all sections of the output file.
2697 size_t hashSize = mainPart->buildId->hashSize;
2698 std::vector<uint8_t> buildId(hashSize);
2699 llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};
2700
2701 switch (config->buildId) {
2702 case BuildIdKind::Fast:
2703 computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
2704 write64le(dest, xxHash64(arr));
2705 });
2706 break;
2707 case BuildIdKind::Md5:
2708 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2709 memcpy(dest, MD5::hash(arr).data(), hashSize);
2710 });
2711 break;
2712 case BuildIdKind::Sha1:
2713 computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
2714 memcpy(dest, SHA1::hash(arr).data(), hashSize);
2715 });
2716 break;
2717 case BuildIdKind::Uuid:
2718 if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
2719 error("entropy source failure: " + ec.message());
2720 break;
2721 default:
2722 llvm_unreachable("unknown BuildIdKind");
2723 }
2724 for (Partition &part : partitions)
2725 part.buildId->writeBuildId(buildId);
2726 }
2727
2728 template void createSyntheticSections<ELF32LE>();
2729 template void createSyntheticSections<ELF32BE>();
2730 template void createSyntheticSections<ELF64LE>();
2731 template void createSyntheticSections<ELF64BE>();
2732
2733 template void writeResult<ELF32LE>();
2734 template void writeResult<ELF32BE>();
2735 template void writeResult<ELF64LE>();
2736 template void writeResult<ELF64BE>();
2737
2738 } // namespace elf
2739 } // namespace lld