comparison lib/Target/PowerPC/PPCReduceCRLogicals.cpp @ 134:3a76565eade5 LLVM5.0.1

update 5.0.1
author mir3636
date Sat, 17 Feb 2018 09:57:20 +0900
parents
children c2174574ed3a
comparison
equal deleted inserted replaced
133:c60214abe0e8 134:3a76565eade5
1 //===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===---------------------------------------------------------------------===//
9 //
10 // This pass aims to reduce the number of logical operations on bits in the CR
11 // register. These instructions have a fairly high latency and only a single
12 // pipeline at their disposal in modern PPC cores. Furthermore, they have a
13 // tendency to occur in fairly small blocks where there's little opportunity
14 // to hide the latency between the CR logical operation and its user.
15 //
16 //===---------------------------------------------------------------------===//
17
18 #include "PPC.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCTargetMachine.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/Support/Debug.h"
28
29 using namespace llvm;
30
31 #define DEBUG_TYPE "ppc-reduce-cr-ops"
32
33 STATISTIC(NumContainedSingleUseBinOps,
34 "Number of single-use binary CR logical ops contained in a block");
35 STATISTIC(NumToSplitBlocks,
36 "Number of binary CR logical ops that can be used to split blocks");
37 STATISTIC(TotalCRLogicals, "Number of CR logical ops.");
38 STATISTIC(TotalNullaryCRLogicals,
39 "Number of nullary CR logical ops (CRSET/CRUNSET).");
40 STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops.");
41 STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops.");
42 STATISTIC(NumBlocksSplitOnBinaryCROp,
43 "Number of blocks split on CR binary logical ops.");
44 STATISTIC(NumNotSplitIdenticalOperands,
45 "Number of blocks not split due to operands being identical.");
46 STATISTIC(NumNotSplitChainCopies,
47 "Number of blocks not split due to operands being chained copies.");
48 STATISTIC(NumNotSplitWrongOpcode,
49 "Number of blocks not split due to the wrong opcode.");
50
51 namespace llvm {
52 void initializePPCReduceCRLogicalsPass(PassRegistry&);
53 }
54
55 /// Given a basic block \p Successor that potentially contains PHIs, this
56 /// function will look for any incoming values in the PHIs that are supposed to
57 /// be coming from \p OrigMBB but whose definition is actually in \p NewMBB.
58 /// Any such PHIs will be updated to reflect reality.
59 static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB,
60 MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) {
61 for (auto &MI : Successor->instrs()) {
62 if (!MI.isPHI())
63 continue;
64 // This is a really ugly-looking loop, but it was pillaged directly from
65 // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
66 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
67 MachineOperand &MO = MI.getOperand(i);
68 if (MO.getMBB() == OrigMBB) {
69 // Check if the instruction is actualy defined in NewMBB.
70 if (MI.getOperand(i - 1).isReg()) {
71 MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(i - 1).getReg());
72 if (DefMI->getParent() == NewMBB ||
73 !OrigMBB->isSuccessor(Successor)) {
74 MO.setMBB(NewMBB);
75 break;
76 }
77 }
78 }
79 }
80 }
81 }
82
83 /// Given a basic block \p Successor that potentially contains PHIs, this
84 /// function will look for PHIs that have an incoming value from \p OrigMBB
85 /// and will add the same incoming value from \p NewMBB.
86 /// NOTE: This should only be used if \p NewMBB is an immediate dominator of
87 /// \p OrigMBB.
88 static void addIncomingValuesToPHIs(MachineBasicBlock *Successor,
89 MachineBasicBlock *OrigMBB,
90 MachineBasicBlock *NewMBB,
91 MachineRegisterInfo *MRI) {
92 assert(OrigMBB->isSuccessor(NewMBB) &&
93 "NewMBB must be a sucessor of OrigMBB");
94 for (auto &MI : Successor->instrs()) {
95 if (!MI.isPHI())
96 continue;
97 // This is a really ugly-looking loop, but it was pillaged directly from
98 // MachineBasicBlock::transferSuccessorsAndUpdatePHIs().
99 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
100 MachineOperand &MO = MI.getOperand(i);
101 if (MO.getMBB() == OrigMBB) {
102 MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI);
103 MIB.addReg(MI.getOperand(i - 1).getReg()).addMBB(NewMBB);
104 break;
105 }
106 }
107 }
108 }
109
110 struct BlockSplitInfo {
111 MachineInstr *OrigBranch;
112 MachineInstr *SplitBefore;
113 MachineInstr *SplitCond;
114 bool InvertNewBranch;
115 bool InvertOrigBranch;
116 bool BranchToFallThrough;
117 const MachineBranchProbabilityInfo *MBPI;
118 MachineInstr *MIToDelete;
119 MachineInstr *NewCond;
120 bool allInstrsInSameMBB() {
121 if (!OrigBranch || !SplitBefore || !SplitCond)
122 return false;
123 MachineBasicBlock *MBB = OrigBranch->getParent();
124 if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB)
125 return false;
126 if (MIToDelete && MIToDelete->getParent() != MBB)
127 return false;
128 if (NewCond && NewCond->getParent() != MBB)
129 return false;
130 return true;
131 }
132 };
133
134 /// Splits a MachineBasicBlock to branch before \p SplitBefore. The original
135 /// branch is \p OrigBranch. The target of the new branch can either be the same
136 /// as the target of the original branch or the fallthrough successor of the
137 /// original block as determined by \p BranchToFallThrough. The branch
138 /// conditions will be inverted according to \p InvertNewBranch and
139 /// \p InvertOrigBranch. If an instruction that previously fed the branch is to
140 /// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as
141 /// the branch condition. The branch probabilities will be set if the
142 /// MachineBranchProbabilityInfo isn't null.
143 static bool splitMBB(BlockSplitInfo &BSI) {
144 assert(BSI.allInstrsInSameMBB() &&
145 "All instructions must be in the same block.");
146
147 MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent();
148 MachineFunction *MF = ThisMBB->getParent();
149 MachineRegisterInfo *MRI = &MF->getRegInfo();
150 assert(MRI->isSSA() && "Can only do this while the function is in SSA form.");
151 if (ThisMBB->succ_size() != 2) {
152 DEBUG(dbgs() << "Don't know how to handle blocks that don't have exactly"
153 << " two succesors.\n");
154 return false;
155 }
156
157 const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
158 unsigned OrigBROpcode = BSI.OrigBranch->getOpcode();
159 unsigned InvertedOpcode =
160 OrigBROpcode == PPC::BC
161 ? PPC::BCn
162 : OrigBROpcode == PPC::BCn
163 ? PPC::BC
164 : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR;
165 unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode;
166 MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(1).getMBB();
167 MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin()
168 ? *ThisMBB->succ_rbegin()
169 : *ThisMBB->succ_begin();
170 MachineBasicBlock *NewBRTarget =
171 BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget;
172 BranchProbability ProbToNewTarget =
173 !BSI.MBPI ? BranchProbability::getUnknown()
174 : BSI.MBPI->getEdgeProbability(ThisMBB, NewBRTarget);
175
176 // Create a new basic block.
177 MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore;
178 const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
179 MachineFunction::iterator It = ThisMBB->getIterator();
180 MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(LLVM_BB);
181 MF->insert(++It, NewMBB);
182
183 // Move everything after SplitBefore into the new block.
184 NewMBB->splice(NewMBB->end(), ThisMBB, InsertPoint, ThisMBB->end());
185 NewMBB->transferSuccessors(ThisMBB);
186
187 // Add the two successors to ThisMBB. The probabilities come from the
188 // existing blocks if available.
189 ThisMBB->addSuccessor(NewBRTarget, ProbToNewTarget);
190 ThisMBB->addSuccessor(NewMBB, ProbToNewTarget.getCompl());
191
192 // Add the branches to ThisMBB.
193 BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
194 TII->get(NewBROpcode))
195 .addReg(BSI.SplitCond->getOperand(0).getReg())
196 .addMBB(NewBRTarget);
197 BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(),
198 TII->get(PPC::B))
199 .addMBB(NewMBB);
200 if (BSI.MIToDelete)
201 BSI.MIToDelete->eraseFromParent();
202
203 // Change the condition on the original branch and invert it if requested.
204 auto FirstTerminator = NewMBB->getFirstTerminator();
205 if (BSI.NewCond) {
206 assert(FirstTerminator->getOperand(0).isReg() &&
207 "Can't update condition of unconditional branch.");
208 FirstTerminator->getOperand(0).setReg(BSI.NewCond->getOperand(0).getReg());
209 }
210 if (BSI.InvertOrigBranch)
211 FirstTerminator->setDesc(TII->get(InvertedOpcode));
212
213 // If any of the PHIs in the successors of NewMBB reference values that
214 // now come from NewMBB, they need to be updated.
215 for (auto *Succ : NewMBB->successors()) {
216 updatePHIs(Succ, ThisMBB, NewMBB, MRI);
217 }
218 addIncomingValuesToPHIs(NewBRTarget, ThisMBB, NewMBB, MRI);
219
220 DEBUG(dbgs() << "After splitting, ThisMBB:\n"; ThisMBB->dump());
221 DEBUG(dbgs() << "NewMBB:\n"; NewMBB->dump());
222 DEBUG(dbgs() << "New branch-to block:\n"; NewBRTarget->dump());
223 return true;
224 }
225
226 static bool isBinary(MachineInstr &MI) {
227 return MI.getNumOperands() == 3;
228 }
229
230 static bool isNullary(MachineInstr &MI) {
231 return MI.getNumOperands() == 1;
232 }
233
234 /// Given a CR logical operation \p CROp, branch opcode \p BROp as well as
235 /// a flag to indicate if the first operand of \p CROp is used as the
236 /// SplitBefore operand, determines whether either of the branches are to be
237 /// inverted as well as whether the new target should be the original
238 /// fall-through block.
239 static void
240 computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1,
241 bool &InvertNewBranch, bool &InvertOrigBranch,
242 bool &TargetIsFallThrough) {
243 // The conditions under which each of the output operands should be [un]set
244 // can certainly be written much more concisely with just 3 if statements or
245 // ternary expressions. However, this provides a much clearer overview to the
246 // reader as to what is set for each <CROp, BROp, OpUsed> combination.
247 if (BROp == PPC::BC || BROp == PPC::BCLR) {
248 // Regular branches.
249 switch (CROp) {
250 default:
251 llvm_unreachable("Don't know how to handle this CR logical.");
252 case PPC::CROR:
253 InvertNewBranch = false;
254 InvertOrigBranch = false;
255 TargetIsFallThrough = false;
256 return;
257 case PPC::CRAND:
258 InvertNewBranch = true;
259 InvertOrigBranch = false;
260 TargetIsFallThrough = true;
261 return;
262 case PPC::CRNAND:
263 InvertNewBranch = true;
264 InvertOrigBranch = true;
265 TargetIsFallThrough = false;
266 return;
267 case PPC::CRNOR:
268 InvertNewBranch = false;
269 InvertOrigBranch = true;
270 TargetIsFallThrough = true;
271 return;
272 case PPC::CRORC:
273 InvertNewBranch = UsingDef1;
274 InvertOrigBranch = !UsingDef1;
275 TargetIsFallThrough = false;
276 return;
277 case PPC::CRANDC:
278 InvertNewBranch = !UsingDef1;
279 InvertOrigBranch = !UsingDef1;
280 TargetIsFallThrough = true;
281 return;
282 }
283 } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) {
284 // Negated branches.
285 switch (CROp) {
286 default:
287 llvm_unreachable("Don't know how to handle this CR logical.");
288 case PPC::CROR:
289 InvertNewBranch = true;
290 InvertOrigBranch = false;
291 TargetIsFallThrough = true;
292 return;
293 case PPC::CRAND:
294 InvertNewBranch = false;
295 InvertOrigBranch = false;
296 TargetIsFallThrough = false;
297 return;
298 case PPC::CRNAND:
299 InvertNewBranch = false;
300 InvertOrigBranch = true;
301 TargetIsFallThrough = true;
302 return;
303 case PPC::CRNOR:
304 InvertNewBranch = true;
305 InvertOrigBranch = true;
306 TargetIsFallThrough = false;
307 return;
308 case PPC::CRORC:
309 InvertNewBranch = !UsingDef1;
310 InvertOrigBranch = !UsingDef1;
311 TargetIsFallThrough = true;
312 return;
313 case PPC::CRANDC:
314 InvertNewBranch = UsingDef1;
315 InvertOrigBranch = !UsingDef1;
316 TargetIsFallThrough = false;
317 return;
318 }
319 } else
320 llvm_unreachable("Don't know how to handle this branch.");
321 }
322
323 namespace {
324
325 class PPCReduceCRLogicals : public MachineFunctionPass {
326
327 public:
328 static char ID;
329 struct CRLogicalOpInfo {
330 MachineInstr *MI;
331 // FIXME: If chains of copies are to be handled, this should be a vector.
332 std::pair<MachineInstr*, MachineInstr*> CopyDefs;
333 std::pair<MachineInstr*, MachineInstr*> TrueDefs;
334 unsigned IsBinary : 1;
335 unsigned IsNullary : 1;
336 unsigned ContainedInBlock : 1;
337 unsigned FeedsISEL : 1;
338 unsigned FeedsBR : 1;
339 unsigned FeedsLogical : 1;
340 unsigned SingleUse : 1;
341 unsigned DefsSingleUse : 1;
342 unsigned SubregDef1;
343 unsigned SubregDef2;
344 CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0),
345 ContainedInBlock(0), FeedsISEL(0), FeedsBR(0),
346 FeedsLogical(0), SingleUse(0), DefsSingleUse(1),
347 SubregDef1(0), SubregDef2(0) { }
348 void dump();
349 };
350
351 private:
352 const PPCInstrInfo *TII;
353 MachineFunction *MF;
354 MachineRegisterInfo *MRI;
355 const MachineBranchProbabilityInfo *MBPI;
356
357 // A vector to contain all the CR logical operations
358 std::vector<CRLogicalOpInfo> AllCRLogicalOps;
359 void initialize(MachineFunction &MFParm);
360 void collectCRLogicals();
361 bool handleCROp(CRLogicalOpInfo &CRI);
362 bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI);
363 static bool isCRLogical(MachineInstr &MI) {
364 unsigned Opc = MI.getOpcode();
365 return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR ||
366 Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CREQV ||
367 Opc == PPC::CRANDC || Opc == PPC::CRORC || Opc == PPC::CRSET ||
368 Opc == PPC::CRUNSET || Opc == PPC::CR6SET || Opc == PPC::CR6UNSET;
369 }
370 bool simplifyCode() {
371 bool Changed = false;
372 // Not using a range-based for loop here as the vector may grow while being
373 // operated on.
374 for (unsigned i = 0; i < AllCRLogicalOps.size(); i++)
375 Changed |= handleCROp(AllCRLogicalOps[i]);
376 return Changed;
377 }
378
379 public:
380 PPCReduceCRLogicals() : MachineFunctionPass(ID) {
381 initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry());
382 }
383
384 MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg,
385 MachineInstr *&CpDef);
386 bool runOnMachineFunction(MachineFunction &MF) override {
387 if (skipFunction(MF.getFunction()))
388 return false;
389
390 // If the subtarget doesn't use CR bits, there's nothing to do.
391 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
392 if (!STI.useCRBits())
393 return false;
394
395 initialize(MF);
396 collectCRLogicals();
397 return simplifyCode();
398 }
399 CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI);
400 void getAnalysisUsage(AnalysisUsage &AU) const override {
401 AU.addRequired<MachineBranchProbabilityInfo>();
402 AU.addRequired<MachineDominatorTree>();
403 MachineFunctionPass::getAnalysisUsage(AU);
404 }
405 };
406
407 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
408 LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() {
409 dbgs() << "CRLogicalOpMI: ";
410 MI->dump();
411 dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL;
412 dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: ";
413 dbgs() << FeedsLogical << ", SingleUse: " << SingleUse;
414 dbgs() << ", DefsSingleUse: " << DefsSingleUse;
415 dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: ";
416 dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock;
417 if (!IsNullary) {
418 dbgs() << "\nDefs:\n";
419 TrueDefs.first->dump();
420 }
421 if (IsBinary)
422 TrueDefs.second->dump();
423 dbgs() << "\n";
424 if (CopyDefs.first) {
425 dbgs() << "CopyDef1: ";
426 CopyDefs.first->dump();
427 }
428 if (CopyDefs.second) {
429 dbgs() << "CopyDef2: ";
430 CopyDefs.second->dump();
431 }
432 }
433 #endif
434
435 PPCReduceCRLogicals::CRLogicalOpInfo
436 PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) {
437 CRLogicalOpInfo Ret;
438 Ret.MI = &MIParam;
439 // Get the defs
440 if (isNullary(MIParam)) {
441 Ret.IsNullary = 1;
442 Ret.TrueDefs = std::make_pair(nullptr, nullptr);
443 Ret.CopyDefs = std::make_pair(nullptr, nullptr);
444 } else {
445 MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(),
446 Ret.SubregDef1, Ret.CopyDefs.first);
447 Ret.DefsSingleUse &=
448 MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg());
449 Ret.DefsSingleUse &=
450 MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg());
451 assert(Def1 && "Must be able to find a definition of operand 1.");
452 if (isBinary(MIParam)) {
453 Ret.IsBinary = 1;
454 MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(),
455 Ret.SubregDef2,
456 Ret.CopyDefs.second);
457 Ret.DefsSingleUse &=
458 MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg());
459 Ret.DefsSingleUse &=
460 MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg());
461 assert(Def2 && "Must be able to find a definition of operand 2.");
462 Ret.TrueDefs = std::make_pair(Def1, Def2);
463 } else {
464 Ret.TrueDefs = std::make_pair(Def1, nullptr);
465 Ret.CopyDefs.second = nullptr;
466 }
467 }
468
469 Ret.ContainedInBlock = 1;
470 // Get the uses
471 for (MachineInstr &UseMI :
472 MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) {
473 unsigned Opc = UseMI.getOpcode();
474 if (Opc == PPC::ISEL || Opc == PPC::ISEL8)
475 Ret.FeedsISEL = 1;
476 if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR ||
477 Opc == PPC::BCLRn)
478 Ret.FeedsBR = 1;
479 Ret.FeedsLogical = isCRLogical(UseMI);
480 if (UseMI.getParent() != MIParam.getParent())
481 Ret.ContainedInBlock = 0;
482 }
483 Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0;
484
485 // We now know whether all the uses of the CR logical are in the same block.
486 if (!Ret.IsNullary) {
487 Ret.ContainedInBlock &=
488 (MIParam.getParent() == Ret.TrueDefs.first->getParent());
489 if (Ret.IsBinary)
490 Ret.ContainedInBlock &=
491 (MIParam.getParent() == Ret.TrueDefs.second->getParent());
492 }
493 DEBUG(Ret.dump());
494 if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) {
495 NumContainedSingleUseBinOps++;
496 if (Ret.FeedsBR && Ret.DefsSingleUse)
497 NumToSplitBlocks++;
498 }
499 return Ret;
500 }
501
502 /// Looks trhough a COPY instruction to the actual definition of the CR-bit
503 /// register and returns the instruction that defines it.
504 /// FIXME: This currently handles what is by-far the most common case:
505 /// an instruction that defines a CR field followed by a single copy of a bit
506 /// from that field into a virtual register. If chains of copies need to be
507 /// handled, this should have a loop until a non-copy instruction is found.
508 MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg,
509 unsigned &Subreg,
510 MachineInstr *&CpDef) {
511 Subreg = -1;
512 if (!TargetRegisterInfo::isVirtualRegister(Reg))
513 return nullptr;
514 MachineInstr *Copy = MRI->getVRegDef(Reg);
515 CpDef = Copy;
516 if (!Copy->isCopy())
517 return Copy;
518 unsigned CopySrc = Copy->getOperand(1).getReg();
519 Subreg = Copy->getOperand(1).getSubReg();
520 if (!TargetRegisterInfo::isVirtualRegister(CopySrc)) {
521 const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
522 // Set the Subreg
523 if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ)
524 Subreg = PPC::sub_eq;
525 if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT)
526 Subreg = PPC::sub_lt;
527 if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT)
528 Subreg = PPC::sub_gt;
529 if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN)
530 Subreg = PPC::sub_un;
531 // Loop backwards and return the first MI that modifies the physical CR Reg.
532 MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin();
533 while (Me != B)
534 if ((--Me)->modifiesRegister(CopySrc, TRI))
535 return &*Me;
536 return nullptr;
537 }
538 return MRI->getVRegDef(CopySrc);
539 }
540
541 void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) {
542 MF = &MFParam;
543 MRI = &MF->getRegInfo();
544 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
545 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
546
547 AllCRLogicalOps.clear();
548 }
549
550 /// Contains all the implemented transformations on CR logical operations.
551 /// For example, a binary CR logical can be used to split a block on its inputs,
552 /// a unary CR logical might be used to change the condition code on a
553 /// comparison feeding it. A nullary CR logical might simply be removable
554 /// if the user of the bit it [un]sets can be transformed.
555 bool PPCReduceCRLogicals::handleCROp(CRLogicalOpInfo &CRI) {
556 // We can definitely split a block on the inputs to a binary CR operation
557 // whose defs and (single) use are within the same block.
558 bool Changed = false;
559 if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR &&
560 CRI.DefsSingleUse) {
561 Changed = splitBlockOnBinaryCROp(CRI);
562 if (Changed)
563 NumBlocksSplitOnBinaryCROp++;
564 }
565 return Changed;
566 }
567
568 /// Splits a block that contains a CR-logical operation that feeds a branch
569 /// and whose operands are produced within the block.
570 /// Example:
571 /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
572 /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
573 /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
574 /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
575 /// %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8
576 /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
577 /// Becomes:
578 /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
579 /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
580 /// BC %vr6<kill>, <BB#2>; CRBITRC:%vr6
581 ///
582 /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
583 /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
584 /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
585 bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) {
586 if (CRI.CopyDefs.first == CRI.CopyDefs.second) {
587 DEBUG(dbgs() << "Unable to split as the two operands are the same\n");
588 NumNotSplitIdenticalOperands++;
589 return false;
590 }
591 if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() ||
592 CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) {
593 DEBUG(dbgs() << "Unable to split because one of the operands is a PHI or "
594 "chain of copies.\n");
595 NumNotSplitChainCopies++;
596 return false;
597 }
598 // Note: keep in sync with computeBranchTargetAndInversion().
599 if (CRI.MI->getOpcode() != PPC::CROR &&
600 CRI.MI->getOpcode() != PPC::CRAND &&
601 CRI.MI->getOpcode() != PPC::CRNOR &&
602 CRI.MI->getOpcode() != PPC::CRNAND &&
603 CRI.MI->getOpcode() != PPC::CRORC &&
604 CRI.MI->getOpcode() != PPC::CRANDC) {
605 DEBUG(dbgs() << "Unable to split blocks on this opcode.\n");
606 NumNotSplitWrongOpcode++;
607 return false;
608 }
609 DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump());
610 MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first;
611 MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second;
612
613 bool UsingDef1 = false;
614 MachineInstr *SplitBefore = &*Def2It;
615 for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) {
616 if (Def1It == Def2It) { // Def2 comes before Def1.
617 SplitBefore = &*Def1It;
618 UsingDef1 = true;
619 break;
620 }
621 }
622
623 DEBUG(dbgs() << "We will split the following block:\n";);
624 DEBUG(CRI.MI->getParent()->dump());
625 DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump());
626
627 // Get the branch instruction.
628 MachineInstr *Branch =
629 MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent();
630
631 // We want the new block to have no code in it other than the definition
632 // of the input to the CR logical and the CR logical itself. So we move
633 // those to the bottom of the block (just before the branch). Then we
634 // will split before the CR logical.
635 MachineBasicBlock *MBB = SplitBefore->getParent();
636 auto FirstTerminator = MBB->getFirstTerminator();
637 MachineBasicBlock::iterator FirstInstrToMove =
638 UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second;
639 MachineBasicBlock::iterator SecondInstrToMove =
640 UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second;
641
642 // The instructions that need to be moved are not guaranteed to be
643 // contiguous. Move them individually.
644 // FIXME: If one of the operands is a chain of (single use) copies, they
645 // can all be moved and we can still split.
646 MBB->splice(FirstTerminator, MBB, FirstInstrToMove);
647 if (FirstInstrToMove != SecondInstrToMove)
648 MBB->splice(FirstTerminator, MBB, SecondInstrToMove);
649 MBB->splice(FirstTerminator, MBB, CRI.MI);
650
651 unsigned Opc = CRI.MI->getOpcode();
652 bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough;
653 computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1,
654 InvertNewBranch, InvertOrigBranch,
655 TargetIsFallThrough);
656 MachineInstr *SplitCond =
657 UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first;
658 DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy"));
659 DEBUG(dbgs() << " the original branch and the target is the " <<
660 (TargetIsFallThrough ? "fallthrough block\n" : "orig. target block\n"));
661 DEBUG(dbgs() << "Original branch instruction: "; Branch->dump());
662 BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch,
663 InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI,
664 UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second };
665 bool Changed = splitMBB(BSI);
666 // If we've split on a CR logical that is fed by a CR logical,
667 // recompute the source CR logical as it may be usable for splitting.
668 if (Changed) {
669 bool Input1CRlogical =
670 CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first);
671 bool Input2CRlogical =
672 CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second);
673 if (Input1CRlogical)
674 AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first));
675 if (Input2CRlogical)
676 AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second));
677 }
678 return Changed;
679 }
680
681 void PPCReduceCRLogicals::collectCRLogicals() {
682 for (MachineBasicBlock &MBB : *MF) {
683 for (MachineInstr &MI : MBB) {
684 if (isCRLogical(MI)) {
685 AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI));
686 TotalCRLogicals++;
687 if (AllCRLogicalOps.back().IsNullary)
688 TotalNullaryCRLogicals++;
689 else if (AllCRLogicalOps.back().IsBinary)
690 TotalBinaryCRLogicals++;
691 else
692 TotalUnaryCRLogicals++;
693 }
694 }
695 }
696 }
697
698 } // end annonymous namespace
699
700 INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE,
701 "PowerPC Reduce CR logical Operation", false, false)
702 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
703 INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE,
704 "PowerPC Reduce CR logical Operation", false, false)
705
706 char PPCReduceCRLogicals::ID = 0;
707 FunctionPass*
708 llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); }