Mercurial > hg > CbC > CbC_llvm
comparison lib/Target/PowerPC/PPCReduceCRLogicals.cpp @ 134:3a76565eade5 LLVM5.0.1
update 5.0.1
author | mir3636 |
---|---|
date | Sat, 17 Feb 2018 09:57:20 +0900 |
parents | |
children | c2174574ed3a |
comparison
equal
deleted
inserted
replaced
133:c60214abe0e8 | 134:3a76565eade5 |
---|---|
1 //===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===---------------------------------------------------------------------===// | |
9 // | |
10 // This pass aims to reduce the number of logical operations on bits in the CR | |
11 // register. These instructions have a fairly high latency and only a single | |
12 // pipeline at their disposal in modern PPC cores. Furthermore, they have a | |
13 // tendency to occur in fairly small blocks where there's little opportunity | |
14 // to hide the latency between the CR logical operation and its user. | |
15 // | |
16 //===---------------------------------------------------------------------===// | |
17 | |
18 #include "PPC.h" | |
19 #include "PPCInstrInfo.h" | |
20 #include "PPCTargetMachine.h" | |
21 #include "llvm/ADT/Statistic.h" | |
22 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" | |
23 #include "llvm/CodeGen/MachineDominators.h" | |
24 #include "llvm/CodeGen/MachineFunctionPass.h" | |
25 #include "llvm/CodeGen/MachineInstrBuilder.h" | |
26 #include "llvm/CodeGen/MachineRegisterInfo.h" | |
27 #include "llvm/Support/Debug.h" | |
28 | |
29 using namespace llvm; | |
30 | |
31 #define DEBUG_TYPE "ppc-reduce-cr-ops" | |
32 | |
33 STATISTIC(NumContainedSingleUseBinOps, | |
34 "Number of single-use binary CR logical ops contained in a block"); | |
35 STATISTIC(NumToSplitBlocks, | |
36 "Number of binary CR logical ops that can be used to split blocks"); | |
37 STATISTIC(TotalCRLogicals, "Number of CR logical ops."); | |
38 STATISTIC(TotalNullaryCRLogicals, | |
39 "Number of nullary CR logical ops (CRSET/CRUNSET)."); | |
40 STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops."); | |
41 STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops."); | |
42 STATISTIC(NumBlocksSplitOnBinaryCROp, | |
43 "Number of blocks split on CR binary logical ops."); | |
44 STATISTIC(NumNotSplitIdenticalOperands, | |
45 "Number of blocks not split due to operands being identical."); | |
46 STATISTIC(NumNotSplitChainCopies, | |
47 "Number of blocks not split due to operands being chained copies."); | |
48 STATISTIC(NumNotSplitWrongOpcode, | |
49 "Number of blocks not split due to the wrong opcode."); | |
50 | |
51 namespace llvm { | |
52 void initializePPCReduceCRLogicalsPass(PassRegistry&); | |
53 } | |
54 | |
55 /// Given a basic block \p Successor that potentially contains PHIs, this | |
56 /// function will look for any incoming values in the PHIs that are supposed to | |
57 /// be coming from \p OrigMBB but whose definition is actually in \p NewMBB. | |
58 /// Any such PHIs will be updated to reflect reality. | |
59 static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB, | |
60 MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) { | |
61 for (auto &MI : Successor->instrs()) { | |
62 if (!MI.isPHI()) | |
63 continue; | |
64 // This is a really ugly-looking loop, but it was pillaged directly from | |
65 // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). | |
66 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { | |
67 MachineOperand &MO = MI.getOperand(i); | |
68 if (MO.getMBB() == OrigMBB) { | |
69 // Check if the instruction is actualy defined in NewMBB. | |
70 if (MI.getOperand(i - 1).isReg()) { | |
71 MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(i - 1).getReg()); | |
72 if (DefMI->getParent() == NewMBB || | |
73 !OrigMBB->isSuccessor(Successor)) { | |
74 MO.setMBB(NewMBB); | |
75 break; | |
76 } | |
77 } | |
78 } | |
79 } | |
80 } | |
81 } | |
82 | |
83 /// Given a basic block \p Successor that potentially contains PHIs, this | |
84 /// function will look for PHIs that have an incoming value from \p OrigMBB | |
85 /// and will add the same incoming value from \p NewMBB. | |
86 /// NOTE: This should only be used if \p NewMBB is an immediate dominator of | |
87 /// \p OrigMBB. | |
88 static void addIncomingValuesToPHIs(MachineBasicBlock *Successor, | |
89 MachineBasicBlock *OrigMBB, | |
90 MachineBasicBlock *NewMBB, | |
91 MachineRegisterInfo *MRI) { | |
92 assert(OrigMBB->isSuccessor(NewMBB) && | |
93 "NewMBB must be a sucessor of OrigMBB"); | |
94 for (auto &MI : Successor->instrs()) { | |
95 if (!MI.isPHI()) | |
96 continue; | |
97 // This is a really ugly-looking loop, but it was pillaged directly from | |
98 // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). | |
99 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { | |
100 MachineOperand &MO = MI.getOperand(i); | |
101 if (MO.getMBB() == OrigMBB) { | |
102 MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI); | |
103 MIB.addReg(MI.getOperand(i - 1).getReg()).addMBB(NewMBB); | |
104 break; | |
105 } | |
106 } | |
107 } | |
108 } | |
109 | |
110 struct BlockSplitInfo { | |
111 MachineInstr *OrigBranch; | |
112 MachineInstr *SplitBefore; | |
113 MachineInstr *SplitCond; | |
114 bool InvertNewBranch; | |
115 bool InvertOrigBranch; | |
116 bool BranchToFallThrough; | |
117 const MachineBranchProbabilityInfo *MBPI; | |
118 MachineInstr *MIToDelete; | |
119 MachineInstr *NewCond; | |
120 bool allInstrsInSameMBB() { | |
121 if (!OrigBranch || !SplitBefore || !SplitCond) | |
122 return false; | |
123 MachineBasicBlock *MBB = OrigBranch->getParent(); | |
124 if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB) | |
125 return false; | |
126 if (MIToDelete && MIToDelete->getParent() != MBB) | |
127 return false; | |
128 if (NewCond && NewCond->getParent() != MBB) | |
129 return false; | |
130 return true; | |
131 } | |
132 }; | |
133 | |
134 /// Splits a MachineBasicBlock to branch before \p SplitBefore. The original | |
135 /// branch is \p OrigBranch. The target of the new branch can either be the same | |
136 /// as the target of the original branch or the fallthrough successor of the | |
137 /// original block as determined by \p BranchToFallThrough. The branch | |
138 /// conditions will be inverted according to \p InvertNewBranch and | |
139 /// \p InvertOrigBranch. If an instruction that previously fed the branch is to | |
140 /// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as | |
141 /// the branch condition. The branch probabilities will be set if the | |
142 /// MachineBranchProbabilityInfo isn't null. | |
143 static bool splitMBB(BlockSplitInfo &BSI) { | |
144 assert(BSI.allInstrsInSameMBB() && | |
145 "All instructions must be in the same block."); | |
146 | |
147 MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent(); | |
148 MachineFunction *MF = ThisMBB->getParent(); | |
149 MachineRegisterInfo *MRI = &MF->getRegInfo(); | |
150 assert(MRI->isSSA() && "Can only do this while the function is in SSA form."); | |
151 if (ThisMBB->succ_size() != 2) { | |
152 DEBUG(dbgs() << "Don't know how to handle blocks that don't have exactly" | |
153 << " two succesors.\n"); | |
154 return false; | |
155 } | |
156 | |
157 const PPCInstrInfo *TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); | |
158 unsigned OrigBROpcode = BSI.OrigBranch->getOpcode(); | |
159 unsigned InvertedOpcode = | |
160 OrigBROpcode == PPC::BC | |
161 ? PPC::BCn | |
162 : OrigBROpcode == PPC::BCn | |
163 ? PPC::BC | |
164 : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR; | |
165 unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode; | |
166 MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(1).getMBB(); | |
167 MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin() | |
168 ? *ThisMBB->succ_rbegin() | |
169 : *ThisMBB->succ_begin(); | |
170 MachineBasicBlock *NewBRTarget = | |
171 BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget; | |
172 BranchProbability ProbToNewTarget = | |
173 !BSI.MBPI ? BranchProbability::getUnknown() | |
174 : BSI.MBPI->getEdgeProbability(ThisMBB, NewBRTarget); | |
175 | |
176 // Create a new basic block. | |
177 MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore; | |
178 const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); | |
179 MachineFunction::iterator It = ThisMBB->getIterator(); | |
180 MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(LLVM_BB); | |
181 MF->insert(++It, NewMBB); | |
182 | |
183 // Move everything after SplitBefore into the new block. | |
184 NewMBB->splice(NewMBB->end(), ThisMBB, InsertPoint, ThisMBB->end()); | |
185 NewMBB->transferSuccessors(ThisMBB); | |
186 | |
187 // Add the two successors to ThisMBB. The probabilities come from the | |
188 // existing blocks if available. | |
189 ThisMBB->addSuccessor(NewBRTarget, ProbToNewTarget); | |
190 ThisMBB->addSuccessor(NewMBB, ProbToNewTarget.getCompl()); | |
191 | |
192 // Add the branches to ThisMBB. | |
193 BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(), | |
194 TII->get(NewBROpcode)) | |
195 .addReg(BSI.SplitCond->getOperand(0).getReg()) | |
196 .addMBB(NewBRTarget); | |
197 BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(), | |
198 TII->get(PPC::B)) | |
199 .addMBB(NewMBB); | |
200 if (BSI.MIToDelete) | |
201 BSI.MIToDelete->eraseFromParent(); | |
202 | |
203 // Change the condition on the original branch and invert it if requested. | |
204 auto FirstTerminator = NewMBB->getFirstTerminator(); | |
205 if (BSI.NewCond) { | |
206 assert(FirstTerminator->getOperand(0).isReg() && | |
207 "Can't update condition of unconditional branch."); | |
208 FirstTerminator->getOperand(0).setReg(BSI.NewCond->getOperand(0).getReg()); | |
209 } | |
210 if (BSI.InvertOrigBranch) | |
211 FirstTerminator->setDesc(TII->get(InvertedOpcode)); | |
212 | |
213 // If any of the PHIs in the successors of NewMBB reference values that | |
214 // now come from NewMBB, they need to be updated. | |
215 for (auto *Succ : NewMBB->successors()) { | |
216 updatePHIs(Succ, ThisMBB, NewMBB, MRI); | |
217 } | |
218 addIncomingValuesToPHIs(NewBRTarget, ThisMBB, NewMBB, MRI); | |
219 | |
220 DEBUG(dbgs() << "After splitting, ThisMBB:\n"; ThisMBB->dump()); | |
221 DEBUG(dbgs() << "NewMBB:\n"; NewMBB->dump()); | |
222 DEBUG(dbgs() << "New branch-to block:\n"; NewBRTarget->dump()); | |
223 return true; | |
224 } | |
225 | |
226 static bool isBinary(MachineInstr &MI) { | |
227 return MI.getNumOperands() == 3; | |
228 } | |
229 | |
230 static bool isNullary(MachineInstr &MI) { | |
231 return MI.getNumOperands() == 1; | |
232 } | |
233 | |
234 /// Given a CR logical operation \p CROp, branch opcode \p BROp as well as | |
235 /// a flag to indicate if the first operand of \p CROp is used as the | |
236 /// SplitBefore operand, determines whether either of the branches are to be | |
237 /// inverted as well as whether the new target should be the original | |
238 /// fall-through block. | |
239 static void | |
240 computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1, | |
241 bool &InvertNewBranch, bool &InvertOrigBranch, | |
242 bool &TargetIsFallThrough) { | |
243 // The conditions under which each of the output operands should be [un]set | |
244 // can certainly be written much more concisely with just 3 if statements or | |
245 // ternary expressions. However, this provides a much clearer overview to the | |
246 // reader as to what is set for each <CROp, BROp, OpUsed> combination. | |
247 if (BROp == PPC::BC || BROp == PPC::BCLR) { | |
248 // Regular branches. | |
249 switch (CROp) { | |
250 default: | |
251 llvm_unreachable("Don't know how to handle this CR logical."); | |
252 case PPC::CROR: | |
253 InvertNewBranch = false; | |
254 InvertOrigBranch = false; | |
255 TargetIsFallThrough = false; | |
256 return; | |
257 case PPC::CRAND: | |
258 InvertNewBranch = true; | |
259 InvertOrigBranch = false; | |
260 TargetIsFallThrough = true; | |
261 return; | |
262 case PPC::CRNAND: | |
263 InvertNewBranch = true; | |
264 InvertOrigBranch = true; | |
265 TargetIsFallThrough = false; | |
266 return; | |
267 case PPC::CRNOR: | |
268 InvertNewBranch = false; | |
269 InvertOrigBranch = true; | |
270 TargetIsFallThrough = true; | |
271 return; | |
272 case PPC::CRORC: | |
273 InvertNewBranch = UsingDef1; | |
274 InvertOrigBranch = !UsingDef1; | |
275 TargetIsFallThrough = false; | |
276 return; | |
277 case PPC::CRANDC: | |
278 InvertNewBranch = !UsingDef1; | |
279 InvertOrigBranch = !UsingDef1; | |
280 TargetIsFallThrough = true; | |
281 return; | |
282 } | |
283 } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) { | |
284 // Negated branches. | |
285 switch (CROp) { | |
286 default: | |
287 llvm_unreachable("Don't know how to handle this CR logical."); | |
288 case PPC::CROR: | |
289 InvertNewBranch = true; | |
290 InvertOrigBranch = false; | |
291 TargetIsFallThrough = true; | |
292 return; | |
293 case PPC::CRAND: | |
294 InvertNewBranch = false; | |
295 InvertOrigBranch = false; | |
296 TargetIsFallThrough = false; | |
297 return; | |
298 case PPC::CRNAND: | |
299 InvertNewBranch = false; | |
300 InvertOrigBranch = true; | |
301 TargetIsFallThrough = true; | |
302 return; | |
303 case PPC::CRNOR: | |
304 InvertNewBranch = true; | |
305 InvertOrigBranch = true; | |
306 TargetIsFallThrough = false; | |
307 return; | |
308 case PPC::CRORC: | |
309 InvertNewBranch = !UsingDef1; | |
310 InvertOrigBranch = !UsingDef1; | |
311 TargetIsFallThrough = true; | |
312 return; | |
313 case PPC::CRANDC: | |
314 InvertNewBranch = UsingDef1; | |
315 InvertOrigBranch = !UsingDef1; | |
316 TargetIsFallThrough = false; | |
317 return; | |
318 } | |
319 } else | |
320 llvm_unreachable("Don't know how to handle this branch."); | |
321 } | |
322 | |
323 namespace { | |
324 | |
325 class PPCReduceCRLogicals : public MachineFunctionPass { | |
326 | |
327 public: | |
328 static char ID; | |
329 struct CRLogicalOpInfo { | |
330 MachineInstr *MI; | |
331 // FIXME: If chains of copies are to be handled, this should be a vector. | |
332 std::pair<MachineInstr*, MachineInstr*> CopyDefs; | |
333 std::pair<MachineInstr*, MachineInstr*> TrueDefs; | |
334 unsigned IsBinary : 1; | |
335 unsigned IsNullary : 1; | |
336 unsigned ContainedInBlock : 1; | |
337 unsigned FeedsISEL : 1; | |
338 unsigned FeedsBR : 1; | |
339 unsigned FeedsLogical : 1; | |
340 unsigned SingleUse : 1; | |
341 unsigned DefsSingleUse : 1; | |
342 unsigned SubregDef1; | |
343 unsigned SubregDef2; | |
344 CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0), | |
345 ContainedInBlock(0), FeedsISEL(0), FeedsBR(0), | |
346 FeedsLogical(0), SingleUse(0), DefsSingleUse(1), | |
347 SubregDef1(0), SubregDef2(0) { } | |
348 void dump(); | |
349 }; | |
350 | |
351 private: | |
352 const PPCInstrInfo *TII; | |
353 MachineFunction *MF; | |
354 MachineRegisterInfo *MRI; | |
355 const MachineBranchProbabilityInfo *MBPI; | |
356 | |
357 // A vector to contain all the CR logical operations | |
358 std::vector<CRLogicalOpInfo> AllCRLogicalOps; | |
359 void initialize(MachineFunction &MFParm); | |
360 void collectCRLogicals(); | |
361 bool handleCROp(CRLogicalOpInfo &CRI); | |
362 bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI); | |
363 static bool isCRLogical(MachineInstr &MI) { | |
364 unsigned Opc = MI.getOpcode(); | |
365 return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR || | |
366 Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CREQV || | |
367 Opc == PPC::CRANDC || Opc == PPC::CRORC || Opc == PPC::CRSET || | |
368 Opc == PPC::CRUNSET || Opc == PPC::CR6SET || Opc == PPC::CR6UNSET; | |
369 } | |
370 bool simplifyCode() { | |
371 bool Changed = false; | |
372 // Not using a range-based for loop here as the vector may grow while being | |
373 // operated on. | |
374 for (unsigned i = 0; i < AllCRLogicalOps.size(); i++) | |
375 Changed |= handleCROp(AllCRLogicalOps[i]); | |
376 return Changed; | |
377 } | |
378 | |
379 public: | |
380 PPCReduceCRLogicals() : MachineFunctionPass(ID) { | |
381 initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry()); | |
382 } | |
383 | |
384 MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg, | |
385 MachineInstr *&CpDef); | |
386 bool runOnMachineFunction(MachineFunction &MF) override { | |
387 if (skipFunction(MF.getFunction())) | |
388 return false; | |
389 | |
390 // If the subtarget doesn't use CR bits, there's nothing to do. | |
391 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); | |
392 if (!STI.useCRBits()) | |
393 return false; | |
394 | |
395 initialize(MF); | |
396 collectCRLogicals(); | |
397 return simplifyCode(); | |
398 } | |
399 CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI); | |
400 void getAnalysisUsage(AnalysisUsage &AU) const override { | |
401 AU.addRequired<MachineBranchProbabilityInfo>(); | |
402 AU.addRequired<MachineDominatorTree>(); | |
403 MachineFunctionPass::getAnalysisUsage(AU); | |
404 } | |
405 }; | |
406 | |
407 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | |
408 LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() { | |
409 dbgs() << "CRLogicalOpMI: "; | |
410 MI->dump(); | |
411 dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL; | |
412 dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: "; | |
413 dbgs() << FeedsLogical << ", SingleUse: " << SingleUse; | |
414 dbgs() << ", DefsSingleUse: " << DefsSingleUse; | |
415 dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: "; | |
416 dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock; | |
417 if (!IsNullary) { | |
418 dbgs() << "\nDefs:\n"; | |
419 TrueDefs.first->dump(); | |
420 } | |
421 if (IsBinary) | |
422 TrueDefs.second->dump(); | |
423 dbgs() << "\n"; | |
424 if (CopyDefs.first) { | |
425 dbgs() << "CopyDef1: "; | |
426 CopyDefs.first->dump(); | |
427 } | |
428 if (CopyDefs.second) { | |
429 dbgs() << "CopyDef2: "; | |
430 CopyDefs.second->dump(); | |
431 } | |
432 } | |
433 #endif | |
434 | |
435 PPCReduceCRLogicals::CRLogicalOpInfo | |
436 PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) { | |
437 CRLogicalOpInfo Ret; | |
438 Ret.MI = &MIParam; | |
439 // Get the defs | |
440 if (isNullary(MIParam)) { | |
441 Ret.IsNullary = 1; | |
442 Ret.TrueDefs = std::make_pair(nullptr, nullptr); | |
443 Ret.CopyDefs = std::make_pair(nullptr, nullptr); | |
444 } else { | |
445 MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(), | |
446 Ret.SubregDef1, Ret.CopyDefs.first); | |
447 Ret.DefsSingleUse &= | |
448 MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg()); | |
449 Ret.DefsSingleUse &= | |
450 MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg()); | |
451 assert(Def1 && "Must be able to find a definition of operand 1."); | |
452 if (isBinary(MIParam)) { | |
453 Ret.IsBinary = 1; | |
454 MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(), | |
455 Ret.SubregDef2, | |
456 Ret.CopyDefs.second); | |
457 Ret.DefsSingleUse &= | |
458 MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg()); | |
459 Ret.DefsSingleUse &= | |
460 MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg()); | |
461 assert(Def2 && "Must be able to find a definition of operand 2."); | |
462 Ret.TrueDefs = std::make_pair(Def1, Def2); | |
463 } else { | |
464 Ret.TrueDefs = std::make_pair(Def1, nullptr); | |
465 Ret.CopyDefs.second = nullptr; | |
466 } | |
467 } | |
468 | |
469 Ret.ContainedInBlock = 1; | |
470 // Get the uses | |
471 for (MachineInstr &UseMI : | |
472 MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) { | |
473 unsigned Opc = UseMI.getOpcode(); | |
474 if (Opc == PPC::ISEL || Opc == PPC::ISEL8) | |
475 Ret.FeedsISEL = 1; | |
476 if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR || | |
477 Opc == PPC::BCLRn) | |
478 Ret.FeedsBR = 1; | |
479 Ret.FeedsLogical = isCRLogical(UseMI); | |
480 if (UseMI.getParent() != MIParam.getParent()) | |
481 Ret.ContainedInBlock = 0; | |
482 } | |
483 Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0; | |
484 | |
485 // We now know whether all the uses of the CR logical are in the same block. | |
486 if (!Ret.IsNullary) { | |
487 Ret.ContainedInBlock &= | |
488 (MIParam.getParent() == Ret.TrueDefs.first->getParent()); | |
489 if (Ret.IsBinary) | |
490 Ret.ContainedInBlock &= | |
491 (MIParam.getParent() == Ret.TrueDefs.second->getParent()); | |
492 } | |
493 DEBUG(Ret.dump()); | |
494 if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) { | |
495 NumContainedSingleUseBinOps++; | |
496 if (Ret.FeedsBR && Ret.DefsSingleUse) | |
497 NumToSplitBlocks++; | |
498 } | |
499 return Ret; | |
500 } | |
501 | |
502 /// Looks trhough a COPY instruction to the actual definition of the CR-bit | |
503 /// register and returns the instruction that defines it. | |
504 /// FIXME: This currently handles what is by-far the most common case: | |
505 /// an instruction that defines a CR field followed by a single copy of a bit | |
506 /// from that field into a virtual register. If chains of copies need to be | |
507 /// handled, this should have a loop until a non-copy instruction is found. | |
508 MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg, | |
509 unsigned &Subreg, | |
510 MachineInstr *&CpDef) { | |
511 Subreg = -1; | |
512 if (!TargetRegisterInfo::isVirtualRegister(Reg)) | |
513 return nullptr; | |
514 MachineInstr *Copy = MRI->getVRegDef(Reg); | |
515 CpDef = Copy; | |
516 if (!Copy->isCopy()) | |
517 return Copy; | |
518 unsigned CopySrc = Copy->getOperand(1).getReg(); | |
519 Subreg = Copy->getOperand(1).getSubReg(); | |
520 if (!TargetRegisterInfo::isVirtualRegister(CopySrc)) { | |
521 const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); | |
522 // Set the Subreg | |
523 if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ) | |
524 Subreg = PPC::sub_eq; | |
525 if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT) | |
526 Subreg = PPC::sub_lt; | |
527 if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT) | |
528 Subreg = PPC::sub_gt; | |
529 if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN) | |
530 Subreg = PPC::sub_un; | |
531 // Loop backwards and return the first MI that modifies the physical CR Reg. | |
532 MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin(); | |
533 while (Me != B) | |
534 if ((--Me)->modifiesRegister(CopySrc, TRI)) | |
535 return &*Me; | |
536 return nullptr; | |
537 } | |
538 return MRI->getVRegDef(CopySrc); | |
539 } | |
540 | |
541 void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) { | |
542 MF = &MFParam; | |
543 MRI = &MF->getRegInfo(); | |
544 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); | |
545 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); | |
546 | |
547 AllCRLogicalOps.clear(); | |
548 } | |
549 | |
550 /// Contains all the implemented transformations on CR logical operations. | |
551 /// For example, a binary CR logical can be used to split a block on its inputs, | |
552 /// a unary CR logical might be used to change the condition code on a | |
553 /// comparison feeding it. A nullary CR logical might simply be removable | |
554 /// if the user of the bit it [un]sets can be transformed. | |
555 bool PPCReduceCRLogicals::handleCROp(CRLogicalOpInfo &CRI) { | |
556 // We can definitely split a block on the inputs to a binary CR operation | |
557 // whose defs and (single) use are within the same block. | |
558 bool Changed = false; | |
559 if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR && | |
560 CRI.DefsSingleUse) { | |
561 Changed = splitBlockOnBinaryCROp(CRI); | |
562 if (Changed) | |
563 NumBlocksSplitOnBinaryCROp++; | |
564 } | |
565 return Changed; | |
566 } | |
567 | |
568 /// Splits a block that contains a CR-logical operation that feeds a branch | |
569 /// and whose operands are produced within the block. | |
570 /// Example: | |
571 /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 | |
572 /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 | |
573 /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 | |
574 /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 | |
575 /// %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8 | |
576 /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9 | |
577 /// Becomes: | |
578 /// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 | |
579 /// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 | |
580 /// BC %vr6<kill>, <BB#2>; CRBITRC:%vr6 | |
581 /// | |
582 /// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 | |
583 /// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 | |
584 /// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9 | |
585 bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) { | |
586 if (CRI.CopyDefs.first == CRI.CopyDefs.second) { | |
587 DEBUG(dbgs() << "Unable to split as the two operands are the same\n"); | |
588 NumNotSplitIdenticalOperands++; | |
589 return false; | |
590 } | |
591 if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() || | |
592 CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) { | |
593 DEBUG(dbgs() << "Unable to split because one of the operands is a PHI or " | |
594 "chain of copies.\n"); | |
595 NumNotSplitChainCopies++; | |
596 return false; | |
597 } | |
598 // Note: keep in sync with computeBranchTargetAndInversion(). | |
599 if (CRI.MI->getOpcode() != PPC::CROR && | |
600 CRI.MI->getOpcode() != PPC::CRAND && | |
601 CRI.MI->getOpcode() != PPC::CRNOR && | |
602 CRI.MI->getOpcode() != PPC::CRNAND && | |
603 CRI.MI->getOpcode() != PPC::CRORC && | |
604 CRI.MI->getOpcode() != PPC::CRANDC) { | |
605 DEBUG(dbgs() << "Unable to split blocks on this opcode.\n"); | |
606 NumNotSplitWrongOpcode++; | |
607 return false; | |
608 } | |
609 DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump()); | |
610 MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first; | |
611 MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second; | |
612 | |
613 bool UsingDef1 = false; | |
614 MachineInstr *SplitBefore = &*Def2It; | |
615 for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) { | |
616 if (Def1It == Def2It) { // Def2 comes before Def1. | |
617 SplitBefore = &*Def1It; | |
618 UsingDef1 = true; | |
619 break; | |
620 } | |
621 } | |
622 | |
623 DEBUG(dbgs() << "We will split the following block:\n";); | |
624 DEBUG(CRI.MI->getParent()->dump()); | |
625 DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump()); | |
626 | |
627 // Get the branch instruction. | |
628 MachineInstr *Branch = | |
629 MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent(); | |
630 | |
631 // We want the new block to have no code in it other than the definition | |
632 // of the input to the CR logical and the CR logical itself. So we move | |
633 // those to the bottom of the block (just before the branch). Then we | |
634 // will split before the CR logical. | |
635 MachineBasicBlock *MBB = SplitBefore->getParent(); | |
636 auto FirstTerminator = MBB->getFirstTerminator(); | |
637 MachineBasicBlock::iterator FirstInstrToMove = | |
638 UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second; | |
639 MachineBasicBlock::iterator SecondInstrToMove = | |
640 UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second; | |
641 | |
642 // The instructions that need to be moved are not guaranteed to be | |
643 // contiguous. Move them individually. | |
644 // FIXME: If one of the operands is a chain of (single use) copies, they | |
645 // can all be moved and we can still split. | |
646 MBB->splice(FirstTerminator, MBB, FirstInstrToMove); | |
647 if (FirstInstrToMove != SecondInstrToMove) | |
648 MBB->splice(FirstTerminator, MBB, SecondInstrToMove); | |
649 MBB->splice(FirstTerminator, MBB, CRI.MI); | |
650 | |
651 unsigned Opc = CRI.MI->getOpcode(); | |
652 bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough; | |
653 computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1, | |
654 InvertNewBranch, InvertOrigBranch, | |
655 TargetIsFallThrough); | |
656 MachineInstr *SplitCond = | |
657 UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first; | |
658 DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy")); | |
659 DEBUG(dbgs() << " the original branch and the target is the " << | |
660 (TargetIsFallThrough ? "fallthrough block\n" : "orig. target block\n")); | |
661 DEBUG(dbgs() << "Original branch instruction: "; Branch->dump()); | |
662 BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch, | |
663 InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI, | |
664 UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second }; | |
665 bool Changed = splitMBB(BSI); | |
666 // If we've split on a CR logical that is fed by a CR logical, | |
667 // recompute the source CR logical as it may be usable for splitting. | |
668 if (Changed) { | |
669 bool Input1CRlogical = | |
670 CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first); | |
671 bool Input2CRlogical = | |
672 CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second); | |
673 if (Input1CRlogical) | |
674 AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first)); | |
675 if (Input2CRlogical) | |
676 AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second)); | |
677 } | |
678 return Changed; | |
679 } | |
680 | |
681 void PPCReduceCRLogicals::collectCRLogicals() { | |
682 for (MachineBasicBlock &MBB : *MF) { | |
683 for (MachineInstr &MI : MBB) { | |
684 if (isCRLogical(MI)) { | |
685 AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI)); | |
686 TotalCRLogicals++; | |
687 if (AllCRLogicalOps.back().IsNullary) | |
688 TotalNullaryCRLogicals++; | |
689 else if (AllCRLogicalOps.back().IsBinary) | |
690 TotalBinaryCRLogicals++; | |
691 else | |
692 TotalUnaryCRLogicals++; | |
693 } | |
694 } | |
695 } | |
696 } | |
697 | |
698 } // end annonymous namespace | |
699 | |
700 INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE, | |
701 "PowerPC Reduce CR logical Operation", false, false) | |
702 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | |
703 INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE, | |
704 "PowerPC Reduce CR logical Operation", false, false) | |
705 | |
706 char PPCReduceCRLogicals::ID = 0; | |
707 FunctionPass* | |
708 llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); } |