comparison lib/Object/ELF.cpp @ 148:63bd29f05246

merged
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 14 Aug 2019 19:46:37 +0900
parents c2174574ed3a
children
comparison
equal deleted inserted replaced
146:3fc4d5c3e21e 148:63bd29f05246
1 //===- ELF.cpp - ELF object file implementation ---------------------------===// 1 //===- ELF.cpp - ELF object file implementation ---------------------------===//
2 // 2 //
3 // The LLVM Compiler Infrastructure 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // 4 // See https://llvm.org/LICENSE.txt for license information.
5 // This file is distributed under the University of Illinois Open Source 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 // License. See LICENSE.TXT for details.
7 // 6 //
8 //===----------------------------------------------------------------------===// 7 //===----------------------------------------------------------------------===//
9 8
10 #include "llvm/Object/ELF.h" 9 #include "llvm/Object/ELF.h"
11 #include "llvm/BinaryFormat/ELF.h" 10 #include "llvm/BinaryFormat/ELF.h"
123 #include "llvm/BinaryFormat/ELFRelocs/Sparc.def" 122 #include "llvm/BinaryFormat/ELFRelocs/Sparc.def"
124 default: 123 default:
125 break; 124 break;
126 } 125 }
127 break; 126 break;
128 case ELF::EM_WEBASSEMBLY:
129 switch (Type) {
130 #include "llvm/BinaryFormat/ELFRelocs/WebAssembly.def"
131 default:
132 break;
133 }
134 break;
135 case ELF::EM_AMDGPU: 127 case ELF::EM_AMDGPU:
136 switch (Type) { 128 switch (Type) {
137 #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def" 129 #include "llvm/BinaryFormat/ELFRelocs/AMDGPU.def"
138 default: 130 default:
139 break; 131 break;
144 #include "llvm/BinaryFormat/ELFRelocs/BPF.def" 136 #include "llvm/BinaryFormat/ELFRelocs/BPF.def"
145 default: 137 default:
146 break; 138 break;
147 } 139 }
148 break; 140 break;
141 case ELF::EM_MSP430:
142 switch (Type) {
143 #include "llvm/BinaryFormat/ELFRelocs/MSP430.def"
144 default:
145 break;
146 }
147 break;
149 default: 148 default:
150 break; 149 break;
151 } 150 }
152 return "Unknown"; 151 return "Unknown";
153 } 152 }
154 153
155 #undef ELF_RELOC 154 #undef ELF_RELOC
155
156 uint32_t llvm::object::getELFRelativeRelocationType(uint32_t Machine) {
157 switch (Machine) {
158 case ELF::EM_X86_64:
159 return ELF::R_X86_64_RELATIVE;
160 case ELF::EM_386:
161 case ELF::EM_IAMCU:
162 return ELF::R_386_RELATIVE;
163 case ELF::EM_MIPS:
164 break;
165 case ELF::EM_AARCH64:
166 return ELF::R_AARCH64_RELATIVE;
167 case ELF::EM_ARM:
168 return ELF::R_ARM_RELATIVE;
169 case ELF::EM_ARC_COMPACT:
170 case ELF::EM_ARC_COMPACT2:
171 return ELF::R_ARC_RELATIVE;
172 case ELF::EM_AVR:
173 break;
174 case ELF::EM_HEXAGON:
175 return ELF::R_HEX_RELATIVE;
176 case ELF::EM_LANAI:
177 break;
178 case ELF::EM_PPC:
179 break;
180 case ELF::EM_PPC64:
181 return ELF::R_PPC64_RELATIVE;
182 case ELF::EM_RISCV:
183 return ELF::R_RISCV_RELATIVE;
184 case ELF::EM_S390:
185 return ELF::R_390_RELATIVE;
186 case ELF::EM_SPARC:
187 case ELF::EM_SPARC32PLUS:
188 case ELF::EM_SPARCV9:
189 return ELF::R_SPARC_RELATIVE;
190 case ELF::EM_AMDGPU:
191 break;
192 case ELF::EM_BPF:
193 break;
194 default:
195 break;
196 }
197 return 0;
198 }
156 199
157 StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) { 200 StringRef llvm::object::getELFSectionTypeName(uint32_t Machine, unsigned Type) {
158 switch (Machine) { 201 switch (Machine) {
159 case ELF::EM_ARM: 202 case ELF::EM_ARM:
160 switch (Type) { 203 switch (Type) {
174 case ELF::EM_MIPS: 217 case ELF::EM_MIPS:
175 case ELF::EM_MIPS_RS3_LE: 218 case ELF::EM_MIPS_RS3_LE:
176 switch (Type) { 219 switch (Type) {
177 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO); 220 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
178 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS); 221 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
222 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
179 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS); 223 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
180 STRINGIFY_ENUM_CASE(ELF, SHT_MIPS_DWARF);
181 } 224 }
182 break; 225 break;
183 default: 226 default:
184 break; 227 break;
185 } 228 }
200 STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY); 243 STRINGIFY_ENUM_CASE(ELF, SHT_INIT_ARRAY);
201 STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY); 244 STRINGIFY_ENUM_CASE(ELF, SHT_FINI_ARRAY);
202 STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY); 245 STRINGIFY_ENUM_CASE(ELF, SHT_PREINIT_ARRAY);
203 STRINGIFY_ENUM_CASE(ELF, SHT_GROUP); 246 STRINGIFY_ENUM_CASE(ELF, SHT_GROUP);
204 STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX); 247 STRINGIFY_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX);
248 STRINGIFY_ENUM_CASE(ELF, SHT_RELR);
205 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL); 249 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_REL);
206 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA); 250 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELA);
251 STRINGIFY_ENUM_CASE(ELF, SHT_ANDROID_RELR);
207 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB); 252 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ODRTAB);
208 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS); 253 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_LINKER_OPTIONS);
254 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_CALL_GRAPH_PROFILE);
255 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_ADDRSIG);
256 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_DEPENDENT_LIBRARIES);
257 STRINGIFY_ENUM_CASE(ELF, SHT_LLVM_SYMPART);
209 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES); 258 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES);
210 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH); 259 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_HASH);
211 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef); 260 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verdef);
212 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed); 261 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_verneed);
213 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym); 262 STRINGIFY_ENUM_CASE(ELF, SHT_GNU_versym);
214 default: 263 default:
215 return "Unknown"; 264 return "Unknown";
216 } 265 }
266 }
267
268 template <class ELFT>
269 Expected<std::vector<typename ELFT::Rela>>
270 ELFFile<ELFT>::decode_relrs(Elf_Relr_Range relrs) const {
271 // This function decodes the contents of an SHT_RELR packed relocation
272 // section.
273 //
274 // Proposal for adding SHT_RELR sections to generic-abi is here:
275 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
276 //
277 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
278 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
279 //
280 // i.e. start with an address, followed by any number of bitmaps. The address
281 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
282 // relocations each, at subsequent offsets following the last address entry.
283 //
284 // The bitmap entries must have 1 in the least significant bit. The assumption
285 // here is that an address cannot have 1 in lsb. Odd addresses are not
286 // supported.
287 //
288 // Excluding the least significant bit in the bitmap, each non-zero bit in
289 // the bitmap represents a relocation to be applied to a corresponding machine
290 // word that follows the base address word. The second least significant bit
291 // represents the machine word immediately following the initial address, and
292 // each bit that follows represents the next word, in linear order. As such,
293 // a single bitmap can encode up to 31 relocations in a 32-bit object, and
294 // 63 relocations in a 64-bit object.
295 //
296 // This encoding has a couple of interesting properties:
297 // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
298 // even means address, odd means bitmap.
299 // 2. Just a simple list of addresses is a valid encoding.
300
301 Elf_Rela Rela;
302 Rela.r_info = 0;
303 Rela.r_addend = 0;
304 Rela.setType(getRelativeRelocationType(), false);
305 std::vector<Elf_Rela> Relocs;
306
307 // Word type: uint32_t for Elf32, and uint64_t for Elf64.
308 typedef typename ELFT::uint Word;
309
310 // Word size in number of bytes.
311 const size_t WordSize = sizeof(Word);
312
313 // Number of bits used for the relocation offsets bitmap.
314 // These many relative relocations can be encoded in a single entry.
315 const size_t NBits = 8*WordSize - 1;
316
317 Word Base = 0;
318 for (const Elf_Relr &R : relrs) {
319 Word Entry = R;
320 if ((Entry&1) == 0) {
321 // Even entry: encodes the offset for next relocation.
322 Rela.r_offset = Entry;
323 Relocs.push_back(Rela);
324 // Set base offset for subsequent bitmap entries.
325 Base = Entry + WordSize;
326 continue;
327 }
328
329 // Odd entry: encodes bitmap for relocations starting at base.
330 Word Offset = Base;
331 while (Entry != 0) {
332 Entry >>= 1;
333 if ((Entry&1) != 0) {
334 Rela.r_offset = Offset;
335 Relocs.push_back(Rela);
336 }
337 Offset += WordSize;
338 }
339
340 // Advance base offset by NBits words.
341 Base += NBits * WordSize;
342 }
343
344 return Relocs;
217 } 345 }
218 346
219 template <class ELFT> 347 template <class ELFT>
220 Expected<std::vector<typename ELFT::Rela>> 348 Expected<std::vector<typename ELFT::Rela>>
221 ELFFile<ELFT>::android_relas(const Elf_Shdr *Sec) const { 349 ELFFile<ELFT>::android_relas(const Elf_Shdr *Sec) const {
271 GroupRInfo = ReadSLEB(); 399 GroupRInfo = ReadSLEB();
272 400
273 if (GroupedByAddend && GroupHasAddend) 401 if (GroupedByAddend && GroupHasAddend)
274 Addend += ReadSLEB(); 402 Addend += ReadSLEB();
275 403
404 if (!GroupHasAddend)
405 Addend = 0;
406
276 for (uint64_t I = 0; I != NumRelocsInGroup; ++I) { 407 for (uint64_t I = 0; I != NumRelocsInGroup; ++I) {
277 Elf_Rela R; 408 Elf_Rela R;
278 Offset += GroupedByOffsetDelta ? GroupOffsetDelta : ReadSLEB(); 409 Offset += GroupedByOffsetDelta ? GroupOffsetDelta : ReadSLEB();
279 R.r_offset = Offset; 410 R.r_offset = Offset;
280 R.r_info = GroupedByInfo ? GroupRInfo : ReadSLEB(); 411 R.r_info = GroupedByInfo ? GroupRInfo : ReadSLEB();
281 412 if (GroupHasAddend && !GroupedByAddend)
282 if (GroupHasAddend) { 413 Addend += ReadSLEB();
283 if (!GroupedByAddend) 414 R.r_addend = Addend;
284 Addend += ReadSLEB();
285 R.r_addend = Addend;
286 } else {
287 R.r_addend = 0;
288 }
289
290 Relocs.push_back(R); 415 Relocs.push_back(R);
291 416
292 if (ErrStr) 417 if (ErrStr)
293 return createError(ErrStr); 418 return createError(ErrStr);
294 } 419 }
296 if (ErrStr) 421 if (ErrStr)
297 return createError(ErrStr); 422 return createError(ErrStr);
298 } 423 }
299 424
300 return Relocs; 425 return Relocs;
426 }
427
428 template <class ELFT>
429 std::string ELFFile<ELFT>::getDynamicTagAsString(unsigned Arch,
430 uint64_t Type) const {
431 #define DYNAMIC_STRINGIFY_ENUM(tag, value) \
432 case value: \
433 return #tag;
434
435 #define DYNAMIC_TAG(n, v)
436 switch (Arch) {
437 case ELF::EM_AARCH64:
438 switch (Type) {
439 #define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
440 #include "llvm/BinaryFormat/DynamicTags.def"
441 #undef AARCH64_DYNAMIC_TAG
442 }
443 break;
444
445 case ELF::EM_HEXAGON:
446 switch (Type) {
447 #define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
448 #include "llvm/BinaryFormat/DynamicTags.def"
449 #undef HEXAGON_DYNAMIC_TAG
450 }
451 break;
452
453 case ELF::EM_MIPS:
454 switch (Type) {
455 #define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
456 #include "llvm/BinaryFormat/DynamicTags.def"
457 #undef MIPS_DYNAMIC_TAG
458 }
459 break;
460
461 case ELF::EM_PPC64:
462 switch (Type) {
463 #define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
464 #include "llvm/BinaryFormat/DynamicTags.def"
465 #undef PPC64_DYNAMIC_TAG
466 }
467 break;
468 }
469 #undef DYNAMIC_TAG
470 switch (Type) {
471 // Now handle all dynamic tags except the architecture specific ones
472 #define AARCH64_DYNAMIC_TAG(name, value)
473 #define MIPS_DYNAMIC_TAG(name, value)
474 #define HEXAGON_DYNAMIC_TAG(name, value)
475 #define PPC64_DYNAMIC_TAG(name, value)
476 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
477 #define DYNAMIC_TAG_MARKER(name, value)
478 #define DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
479 #include "llvm/BinaryFormat/DynamicTags.def"
480 #undef DYNAMIC_TAG
481 #undef AARCH64_DYNAMIC_TAG
482 #undef MIPS_DYNAMIC_TAG
483 #undef HEXAGON_DYNAMIC_TAG
484 #undef PPC64_DYNAMIC_TAG
485 #undef DYNAMIC_TAG_MARKER
486 #undef DYNAMIC_STRINGIFY_ENUM
487 default:
488 return "<unknown:>0x" + utohexstr(Type, true);
489 }
490 }
491
492 template <class ELFT>
493 std::string ELFFile<ELFT>::getDynamicTagAsString(uint64_t Type) const {
494 return getDynamicTagAsString(getHeader()->e_machine, Type);
495 }
496
497 template <class ELFT>
498 Expected<typename ELFT::DynRange> ELFFile<ELFT>::dynamicEntries() const {
499 ArrayRef<Elf_Dyn> Dyn;
500 size_t DynSecSize = 0;
501
502 auto ProgramHeadersOrError = program_headers();
503 if (!ProgramHeadersOrError)
504 return ProgramHeadersOrError.takeError();
505
506 for (const Elf_Phdr &Phdr : *ProgramHeadersOrError) {
507 if (Phdr.p_type == ELF::PT_DYNAMIC) {
508 Dyn = makeArrayRef(
509 reinterpret_cast<const Elf_Dyn *>(base() + Phdr.p_offset),
510 Phdr.p_filesz / sizeof(Elf_Dyn));
511 DynSecSize = Phdr.p_filesz;
512 break;
513 }
514 }
515
516 // If we can't find the dynamic section in the program headers, we just fall
517 // back on the sections.
518 if (Dyn.empty()) {
519 auto SectionsOrError = sections();
520 if (!SectionsOrError)
521 return SectionsOrError.takeError();
522
523 for (const Elf_Shdr &Sec : *SectionsOrError) {
524 if (Sec.sh_type == ELF::SHT_DYNAMIC) {
525 Expected<ArrayRef<Elf_Dyn>> DynOrError =
526 getSectionContentsAsArray<Elf_Dyn>(&Sec);
527 if (!DynOrError)
528 return DynOrError.takeError();
529 Dyn = *DynOrError;
530 DynSecSize = Sec.sh_size;
531 break;
532 }
533 }
534
535 if (!Dyn.data())
536 return ArrayRef<Elf_Dyn>();
537 }
538
539 if (Dyn.empty())
540 // TODO: this error is untested.
541 return createError("invalid empty dynamic section");
542
543 if (DynSecSize % sizeof(Elf_Dyn) != 0)
544 // TODO: this error is untested.
545 return createError("malformed dynamic section");
546
547 if (Dyn.back().d_tag != ELF::DT_NULL)
548 // TODO: this error is untested.
549 return createError("dynamic sections must be DT_NULL terminated");
550
551 return Dyn;
552 }
553
554 template <class ELFT>
555 Expected<const uint8_t *> ELFFile<ELFT>::toMappedAddr(uint64_t VAddr) const {
556 auto ProgramHeadersOrError = program_headers();
557 if (!ProgramHeadersOrError)
558 return ProgramHeadersOrError.takeError();
559
560 llvm::SmallVector<Elf_Phdr *, 4> LoadSegments;
561
562 for (const Elf_Phdr &Phdr : *ProgramHeadersOrError)
563 if (Phdr.p_type == ELF::PT_LOAD)
564 LoadSegments.push_back(const_cast<Elf_Phdr *>(&Phdr));
565
566 const Elf_Phdr *const *I =
567 std::upper_bound(LoadSegments.begin(), LoadSegments.end(), VAddr,
568 [](uint64_t VAddr, const Elf_Phdr_Impl<ELFT> *Phdr) {
569 return VAddr < Phdr->p_vaddr;
570 });
571
572 if (I == LoadSegments.begin())
573 return createError("virtual address is not in any segment: 0x" +
574 Twine::utohexstr(VAddr));
575 --I;
576 const Elf_Phdr &Phdr = **I;
577 uint64_t Delta = VAddr - Phdr.p_vaddr;
578 if (Delta >= Phdr.p_filesz)
579 return createError("virtual address is not in any segment: 0x" +
580 Twine::utohexstr(VAddr));
581 return base() + Phdr.p_offset + Delta;
301 } 582 }
302 583
303 template class llvm::object::ELFFile<ELF32LE>; 584 template class llvm::object::ELFFile<ELF32LE>;
304 template class llvm::object::ELFFile<ELF32BE>; 585 template class llvm::object::ELFFile<ELF32BE>;
305 template class llvm::object::ELFFile<ELF64LE>; 586 template class llvm::object::ELFFile<ELF64LE>;