Mercurial > hg > CbC > CbC_llvm
comparison flang/docs/Intrinsics.md @ 221:79ff65ed7e25
LLVM12 Original
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 15 Jun 2021 19:15:29 +0900 |
parents | |
children | c4bab56944e8 |
comparison
equal
deleted
inserted
replaced
220:42394fc6a535 | 221:79ff65ed7e25 |
---|---|
1 <!--===- docs/Intrinsics.md | |
2 | |
3 Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |
4 See https://llvm.org/LICENSE.txt for license information. | |
5 SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |
6 | |
7 --> | |
8 | |
9 # A categorization of standard (2018) and extended Fortran intrinsic procedures | |
10 | |
11 ```eval_rst | |
12 .. contents:: | |
13 :local: | |
14 ``` | |
15 | |
16 This note attempts to group the intrinsic procedures of Fortran into categories | |
17 of functions or subroutines with similar interfaces as an aid to | |
18 comprehension beyond that which might be gained from the standard's | |
19 alphabetical list. | |
20 | |
21 A brief status of intrinsic procedure support in f18 is also given at the end. | |
22 | |
23 Few procedures are actually described here apart from their interfaces; see the | |
24 Fortran 2018 standard (section 16) for the complete story. | |
25 | |
26 Intrinsic modules are not covered here. | |
27 | |
28 ## General rules | |
29 | |
30 1. The value of any intrinsic function's `KIND` actual argument, if present, | |
31 must be a scalar constant integer expression, of any kind, whose value | |
32 resolves to some supported kind of the function's result type. | |
33 If optional and absent, the kind of the function's result is | |
34 either the default kind of that category or to the kind of an argument | |
35 (e.g., as in `AINT`). | |
36 1. Procedures are summarized with a non-Fortran syntax for brevity. | |
37 Wherever a function has a short definition, it appears after an | |
38 equal sign as if it were a statement function. Any functions referenced | |
39 in these short summaries are intrinsic. | |
40 1. Unless stated otherwise, an actual argument may have any supported kind | |
41 of a particular intrinsic type. Sometimes a pattern variable | |
42 can appear in a description (e.g., `REAL(k)`) when the kind of an | |
43 actual argument's type must match the kind of another argument, or | |
44 determines the kind type parameter of the function result. | |
45 1. When an intrinsic type name appears without a kind (e.g., `REAL`), | |
46 it refers to the default kind of that type. Sometimes the word | |
47 `default` will appear for clarity. | |
48 1. The names of the dummy arguments actually matter because they can | |
49 be used as keywords for actual arguments. | |
50 1. All standard intrinsic functions are pure, even when not elemental. | |
51 1. Assumed-rank arguments may not appear as actual arguments unless | |
52 expressly permitted. | |
53 1. When an argument is described with a default value, e.g. `KIND=KIND(0)`, | |
54 it is an optional argument. Optional arguments without defaults, | |
55 e.g. `DIM` on many transformationals, are wrapped in `[]` brackets | |
56 as in the Fortran standard. When an intrinsic has optional arguments | |
57 with and without default values, the arguments with default values | |
58 may appear within the brackets to preserve the order of arguments | |
59 (e.g., `COUNT`). | |
60 | |
61 ## Elemental intrinsic functions | |
62 | |
63 Pure elemental semantics apply to these functions, to wit: when one or more of | |
64 the actual arguments are arrays, the arguments must be conformable, and | |
65 the result is also an array. | |
66 Scalar arguments are expanded when the arguments are not all scalars. | |
67 | |
68 ### Elemental intrinsic functions that may have unrestricted specific procedures | |
69 | |
70 When an elemental intrinsic function is documented here as having an | |
71 _unrestricted specific name_, that name may be passed as an actual | |
72 argument, used as the target of a procedure pointer, appear in | |
73 a generic interface, and be otherwise used as if it were an external | |
74 procedure. | |
75 An `INTRINSIC` statement or attribute may have to be applied to an | |
76 unrestricted specific name to enable such usage. | |
77 | |
78 When a name is being used as a specific procedure for any purpose other | |
79 than that of a called function, the specific instance of the function | |
80 that accepts and returns values of the default kinds of the intrinsic | |
81 types is used. | |
82 A Fortran `INTERFACE` could be written to define each of | |
83 these unrestricted specific intrinsic function names. | |
84 | |
85 Calls to dummy arguments and procedure pointers that correspond to these | |
86 specific names must pass only scalar actual argument values. | |
87 | |
88 No other intrinsic function name can be passed as an actual argument, | |
89 used as a pointer target, appear in a generic interface, or be otherwise | |
90 used except as the name of a called function. | |
91 Some of these _restricted specific intrinsic functions_, e.g. `FLOAT`, | |
92 provide a means for invoking a corresponding generic (`REAL` in the case of `FLOAT`) | |
93 with forced argument and result kinds. | |
94 Others, viz. `CHAR`, `ICHAR`, `INT`, `REAL`, and the lexical comparisons like `LGE`, | |
95 have the same name as their generic functions, and it is not clear what purpose | |
96 is accomplished by the standard by defining them as specific functions. | |
97 | |
98 ### Trigonometric elemental intrinsic functions, generic and (mostly) specific | |
99 All of these functions can be used as unrestricted specific names. | |
100 | |
101 ``` | |
102 ACOS(REAL(k) X) -> REAL(k) | |
103 ASIN(REAL(k) X) -> REAL(k) | |
104 ATAN(REAL(k) X) -> REAL(k) | |
105 ATAN(REAL(k) Y, REAL(k) X) -> REAL(k) = ATAN2(Y, X) | |
106 ATAN2(REAL(k) Y, REAL(k) X) -> REAL(k) | |
107 COS(REAL(k) X) -> REAL(k) | |
108 COSH(REAL(k) X) -> REAL(k) | |
109 SIN(REAL(k) X) -> REAL(k) | |
110 SINH(REAL(k) X) -> REAL(k) | |
111 TAN(REAL(k) X) -> REAL(k) | |
112 TANH(REAL(k) X) -> REAL(k) | |
113 ``` | |
114 | |
115 These `COMPLEX` versions of some of those functions, and the | |
116 inverse hyperbolic functions, cannot be used as specific names. | |
117 ``` | |
118 ACOS(COMPLEX(k) X) -> COMPLEX(k) | |
119 ASIN(COMPLEX(k) X) -> COMPLEX(k) | |
120 ATAN(COMPLEX(k) X) -> COMPLEX(k) | |
121 ACOSH(REAL(k) X) -> REAL(k) | |
122 ACOSH(COMPLEX(k) X) -> COMPLEX(k) | |
123 ASINH(REAL(k) X) -> REAL(k) | |
124 ASINH(COMPLEX(k) X) -> COMPLEX(k) | |
125 ATANH(REAL(k) X) -> REAL(k) | |
126 ATANH(COMPLEX(k) X) -> COMPLEX(k) | |
127 COS(COMPLEX(k) X) -> COMPLEX(k) | |
128 COSH(COMPLEX(k) X) -> COMPLEX(k) | |
129 SIN(COMPLEX(k) X) -> COMPLEX(k) | |
130 SINH(COMPLEX(k) X) -> COMPLEX(k) | |
131 TAN(COMPLEX(k) X) -> COMPLEX(k) | |
132 TANH(COMPLEX(k) X) -> COMPLEX(k) | |
133 ``` | |
134 | |
135 ### Non-trigonometric elemental intrinsic functions, generic and specific | |
136 These functions *can* be used as unrestricted specific names. | |
137 ``` | |
138 ABS(REAL(k) A) -> REAL(k) = SIGN(A, 0.0) | |
139 AIMAG(COMPLEX(k) Z) -> REAL(k) = Z%IM | |
140 AINT(REAL(k) A, KIND=k) -> REAL(KIND) | |
141 ANINT(REAL(k) A, KIND=k) -> REAL(KIND) | |
142 CONJG(COMPLEX(k) Z) -> COMPLEX(k) = CMPLX(Z%RE, -Z%IM) | |
143 DIM(REAL(k) X, REAL(k) Y) -> REAL(k) = X-MIN(X,Y) | |
144 DPROD(default REAL X, default REAL Y) -> DOUBLE PRECISION = DBLE(X)*DBLE(Y) | |
145 EXP(REAL(k) X) -> REAL(k) | |
146 INDEX(CHARACTER(k) STRING, CHARACTER(k) SUBSTRING, LOGICAL(any) BACK=.FALSE., KIND=KIND(0)) -> INTEGER(KIND) | |
147 LEN(CHARACTER(k,n) STRING, KIND=KIND(0)) -> INTEGER(KIND) = n | |
148 LOG(REAL(k) X) -> REAL(k) | |
149 LOG10(REAL(k) X) -> REAL(k) | |
150 MOD(INTEGER(k) A, INTEGER(k) P) -> INTEGER(k) = A-P*INT(A/P) | |
151 NINT(REAL(k) A, KIND=KIND(0)) -> INTEGER(KIND) | |
152 SIGN(REAL(k) A, REAL(k) B) -> REAL(k) | |
153 SQRT(REAL(k) X) -> REAL(k) = X ** 0.5 | |
154 ``` | |
155 | |
156 These variants, however *cannot* be used as specific names without recourse to an alias | |
157 from the following section: | |
158 ``` | |
159 ABS(INTEGER(k) A) -> INTEGER(k) = SIGN(A, 0) | |
160 ABS(COMPLEX(k) A) -> REAL(k) = HYPOT(A%RE, A%IM) | |
161 DIM(INTEGER(k) X, INTEGER(k) Y) -> INTEGER(k) = X-MIN(X,Y) | |
162 EXP(COMPLEX(k) X) -> COMPLEX(k) | |
163 LOG(COMPLEX(k) X) -> COMPLEX(k) | |
164 MOD(REAL(k) A, REAL(k) P) -> REAL(k) = A-P*INT(A/P) | |
165 SIGN(INTEGER(k) A, INTEGER(k) B) -> INTEGER(k) | |
166 SQRT(COMPLEX(k) X) -> COMPLEX(k) | |
167 ``` | |
168 | |
169 ### Unrestricted specific aliases for some elemental intrinsic functions with distinct names | |
170 | |
171 ``` | |
172 ALOG(REAL X) -> REAL = LOG(X) | |
173 ALOG10(REAL X) -> REAL = LOG10(X) | |
174 AMOD(REAL A, REAL P) -> REAL = MOD(A, P) | |
175 CABS(COMPLEX A) = ABS(A) | |
176 CCOS(COMPLEX X) = COS(X) | |
177 CEXP(COMPLEX A) -> COMPLEX = EXP(A) | |
178 CLOG(COMPLEX X) -> COMPLEX = LOG(X) | |
179 CSIN(COMPLEX X) -> COMPLEX = SIN(X) | |
180 CSQRT(COMPLEX X) -> COMPLEX = SQRT(X) | |
181 CTAN(COMPLEX X) -> COMPLEX = TAN(X) | |
182 DABS(DOUBLE PRECISION A) -> DOUBLE PRECISION = ABS(A) | |
183 DACOS(DOUBLE PRECISION X) -> DOUBLE PRECISION = ACOS(X) | |
184 DASIN(DOUBLE PRECISION X) -> DOUBLE PRECISION = ASIN(X) | |
185 DATAN(DOUBLE PRECISION X) -> DOUBLE PRECISION = ATAN(X) | |
186 DATAN2(DOUBLE PRECISION Y, DOUBLE PRECISION X) -> DOUBLE PRECISION = ATAN2(Y, X) | |
187 DCOS(DOUBLE PRECISION X) -> DOUBLE PRECISION = COS(X) | |
188 DCOSH(DOUBLE PRECISION X) -> DOUBLE PRECISION = COSH(X) | |
189 DDIM(DOUBLE PRECISION X, DOUBLE PRECISION Y) -> DOUBLE PRECISION = X-MIN(X,Y) | |
190 DEXP(DOUBLE PRECISION X) -> DOUBLE PRECISION = EXP(X) | |
191 DINT(DOUBLE PRECISION A) -> DOUBLE PRECISION = AINT(A) | |
192 DLOG(DOUBLE PRECISION X) -> DOUBLE PRECISION = LOG(X) | |
193 DLOG10(DOUBLE PRECISION X) -> DOUBLE PRECISION = LOG10(X) | |
194 DMOD(DOUBLE PRECISION A, DOUBLE PRECISION P) -> DOUBLE PRECISION = MOD(A, P) | |
195 DNINT(DOUBLE PRECISION A) -> DOUBLE PRECISION = ANINT(A) | |
196 DSIGN(DOUBLE PRECISION A, DOUBLE PRECISION B) -> DOUBLE PRECISION = SIGN(A, B) | |
197 DSIN(DOUBLE PRECISION X) -> DOUBLE PRECISION = SIN(X) | |
198 DSINH(DOUBLE PRECISION X) -> DOUBLE PRECISION = SINH(X) | |
199 DSQRT(DOUBLE PRECISION X) -> DOUBLE PRECISION = SQRT(X) | |
200 DTAN(DOUBLE PRECISION X) -> DOUBLE PRECISION = TAN(X) | |
201 DTANH(DOUBLE PRECISION X) -> DOUBLE PRECISION = TANH(X) | |
202 IABS(INTEGER A) -> INTEGER = ABS(A) | |
203 IDIM(INTEGER X, INTEGER Y) -> INTEGER = X-MIN(X,Y) | |
204 IDNINT(DOUBLE PRECISION A) -> INTEGER = NINT(A) | |
205 ISIGN(INTEGER A, INTEGER B) -> INTEGER = SIGN(A, B) | |
206 ``` | |
207 | |
208 ## Generic elemental intrinsic functions without specific names | |
209 | |
210 (No procedures after this point can be passed as actual arguments, used as | |
211 pointer targets, or appear as specific procedures in generic interfaces.) | |
212 | |
213 ### Elemental conversions | |
214 | |
215 ``` | |
216 ACHAR(INTEGER(k) I, KIND=KIND('')) -> CHARACTER(KIND,LEN=1) | |
217 CEILING(REAL() A, KIND=KIND(0)) -> INTEGER(KIND) | |
218 CHAR(INTEGER(any) I, KIND=KIND('')) -> CHARACTER(KIND,LEN=1) | |
219 CMPLX(COMPLEX(k) X, KIND=KIND(0.0D0)) -> COMPLEX(KIND) | |
220 CMPLX(INTEGER or REAL or BOZ X, INTEGER or REAL or BOZ Y=0, KIND=KIND((0,0))) -> COMPLEX(KIND) | |
221 DBLE(INTEGER or REAL or COMPLEX or BOZ A) = REAL(A, KIND=KIND(0.0D0)) | |
222 EXPONENT(REAL(any) X) -> default INTEGER | |
223 FLOOR(REAL(any) A, KIND=KIND(0)) -> INTEGER(KIND) | |
224 IACHAR(CHARACTER(KIND=k,LEN=1) C, KIND=KIND(0)) -> INTEGER(KIND) | |
225 ICHAR(CHARACTER(KIND=k,LEN=1) C, KIND=KIND(0)) -> INTEGER(KIND) | |
226 INT(INTEGER or REAL or COMPLEX or BOZ A, KIND=KIND(0)) -> INTEGER(KIND) | |
227 LOGICAL(LOGICAL(any) L, KIND=KIND(.TRUE.)) -> LOGICAL(KIND) | |
228 REAL(INTEGER or REAL or COMPLEX or BOZ A, KIND=KIND(0.0)) -> REAL(KIND) | |
229 ``` | |
230 | |
231 ### Other generic elemental intrinsic functions without specific names | |
232 N.B. `BESSEL_JN(N1, N2, X)` and `BESSEL_YN(N1, N2, X)` are categorized | |
233 below with the _transformational_ intrinsic functions. | |
234 | |
235 ``` | |
236 BESSEL_J0(REAL(k) X) -> REAL(k) | |
237 BESSEL_J1(REAL(k) X) -> REAL(k) | |
238 BESSEL_JN(INTEGER(n) N, REAL(k) X) -> REAL(k) | |
239 BESSEL_Y0(REAL(k) X) -> REAL(k) | |
240 BESSEL_Y1(REAL(k) X) -> REAL(k) | |
241 BESSEL_YN(INTEGER(n) N, REAL(k) X) -> REAL(k) | |
242 ERF(REAL(k) X) -> REAL(k) | |
243 ERFC(REAL(k) X) -> REAL(k) | |
244 ERFC_SCALED(REAL(k) X) -> REAL(k) | |
245 FRACTION(REAL(k) X) -> REAL(k) | |
246 GAMMA(REAL(k) X) -> REAL(k) | |
247 HYPOT(REAL(k) X, REAL(k) Y) -> REAL(k) = SQRT(X*X+Y*Y) without spurious overflow | |
248 IMAGE_STATUS(INTEGER(any) IMAGE [, scalar TEAM_TYPE TEAM ]) -> default INTEGER | |
249 IS_IOSTAT_END(INTEGER(any) I) -> default LOGICAL | |
250 IS_IOSTAT_EOR(INTEGER(any) I) -> default LOGICAL | |
251 LOG_GAMMA(REAL(k) X) -> REAL(k) | |
252 MAX(INTEGER(k) ...) -> INTEGER(k) | |
253 MAX(REAL(k) ...) -> REAL(k) | |
254 MAX(CHARACTER(KIND=k) ...) -> CHARACTER(KIND=k,LEN=MAX(LEN(...))) | |
255 MERGE(any type TSOURCE, same type FSOURCE, LOGICAL(any) MASK) -> type of FSOURCE | |
256 MIN(INTEGER(k) ...) -> INTEGER(k) | |
257 MIN(REAL(k) ...) -> REAL(k) | |
258 MIN(CHARACTER(KIND=k) ...) -> CHARACTER(KIND=k,LEN=MAX(LEN(...))) | |
259 MODULO(INTEGER(k) A, INTEGER(k) P) -> INTEGER(k); P*result >= 0 | |
260 MODULO(REAL(k) A, REAL(k) P) -> REAL(k) = A - P*FLOOR(A/P) | |
261 NEAREST(REAL(k) X, REAL(any) S) -> REAL(k) | |
262 OUT_OF_RANGE(INTEGER(any) X, scalar INTEGER or REAL(k) MOLD) -> default LOGICAL | |
263 OUT_OF_RANGE(REAL(any) X, scalar REAL(k) MOLD) -> default LOGICAL | |
264 OUT_OF_RANGE(REAL(any) X, scalar INTEGER(any) MOLD, scalar LOGICAL(any) ROUND=.FALSE.) -> default LOGICAL | |
265 RRSPACING(REAL(k) X) -> REAL(k) | |
266 SCALE(REAL(k) X, INTEGER(any) I) -> REAL(k) | |
267 SET_EXPONENT(REAL(k) X, INTEGER(any) I) -> REAL(k) | |
268 SPACING(REAL(k) X) -> REAL(k) | |
269 ``` | |
270 | |
271 ### Restricted specific aliases for elemental conversions &/or extrema with default intrinsic types | |
272 | |
273 ``` | |
274 AMAX0(INTEGER ...) = REAL(MAX(...)) | |
275 AMAX1(REAL ...) = MAX(...) | |
276 AMIN0(INTEGER...) = REAL(MIN(...)) | |
277 AMIN1(REAL ...) = MIN(...) | |
278 DMAX1(DOUBLE PRECISION ...) = MAX(...) | |
279 DMIN1(DOUBLE PRECISION ...) = MIN(...) | |
280 FLOAT(INTEGER I) = REAL(I) | |
281 IDINT(DOUBLE PRECISION A) = INT(A) | |
282 IFIX(REAL A) = INT(A) | |
283 MAX0(INTEGER ...) = MAX(...) | |
284 MAX1(REAL ...) = INT(MAX(...)) | |
285 MIN0(INTEGER ...) = MIN(...) | |
286 MIN1(REAL ...) = INT(MIN(...)) | |
287 SNGL(DOUBLE PRECISION A) = REAL(A) | |
288 ``` | |
289 | |
290 ### Generic elemental bit manipulation intrinsic functions | |
291 Many of these accept a typeless "BOZ" literal as an actual argument. | |
292 It is interpreted as having the kind of intrinsic `INTEGER` type | |
293 as another argument, as if the typeless were implicitly wrapped | |
294 in a call to `INT()`. | |
295 When multiple arguments can be either `INTEGER` values or typeless | |
296 constants, it is forbidden for *all* of them to be typeless | |
297 constants if the result of the function is `INTEGER` | |
298 (i.e., only `BGE`, `BGT`, `BLE`, and `BLT` can have multiple | |
299 typeless arguments). | |
300 | |
301 ``` | |
302 BGE(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL | |
303 BGT(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL | |
304 BLE(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL | |
305 BLT(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL | |
306 BTEST(INTEGER(n1) I, INTEGER(n2) POS) -> default LOGICAL | |
307 DSHIFTL(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(any) SHIFT) -> INTEGER(k) | |
308 DSHIFTL(BOZ I, INTEGER(k), INTEGER(any) SHIFT) -> INTEGER(k) | |
309 DSHIFTR(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(any) SHIFT) -> INTEGER(k) | |
310 DSHIFTR(BOZ I, INTEGER(k), INTEGER(any) SHIFT) -> INTEGER(k) | |
311 IAND(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k) | |
312 IAND(BOZ I, INTEGER(k) J) -> INTEGER(k) | |
313 IBCLR(INTEGER(k) I, INTEGER(any) POS) -> INTEGER(k) | |
314 IBITS(INTEGER(k) I, INTEGER(n1) POS, INTEGER(n2) LEN) -> INTEGER(k) | |
315 IBSET(INTEGER(k) I, INTEGER(any) POS) -> INTEGER(k) | |
316 IEOR(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k) | |
317 IEOR(BOZ I, INTEGER(k) J) -> INTEGER(k) | |
318 IOR(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k) | |
319 IOR(BOZ I, INTEGER(k) J) -> INTEGER(k) | |
320 ISHFT(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) | |
321 ISHFTC(INTEGER(k) I, INTEGER(n1) SHIFT, INTEGER(n2) SIZE=BIT_SIZE(I)) -> INTEGER(k) | |
322 LEADZ(INTEGER(any) I) -> default INTEGER | |
323 MASKL(INTEGER(any) I, KIND=KIND(0)) -> INTEGER(KIND) | |
324 MASKR(INTEGER(any) I, KIND=KIND(0)) -> INTEGER(KIND) | |
325 MERGE_BITS(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(k) or BOZ MASK) = IOR(IAND(I,MASK),IAND(J,NOT(MASK))) | |
326 MERGE_BITS(BOZ I, INTEGER(k) J, INTEGER(k) or BOZ MASK) = IOR(IAND(I,MASK),IAND(J,NOT(MASK))) | |
327 NOT(INTEGER(k) I) -> INTEGER(k) | |
328 POPCNT(INTEGER(any) I) -> default INTEGER | |
329 POPPAR(INTEGER(any) I) -> default INTEGER = IAND(POPCNT(I), Z'1') | |
330 SHIFTA(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) | |
331 SHIFTL(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) | |
332 SHIFTR(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) | |
333 TRAILZ(INTEGER(any) I) -> default INTEGER | |
334 ``` | |
335 | |
336 ### Character elemental intrinsic functions | |
337 See also `INDEX` and `LEN` above among the elemental intrinsic functions with | |
338 unrestricted specific names. | |
339 ``` | |
340 ADJUSTL(CHARACTER(k,LEN=n) STRING) -> CHARACTER(k,LEN=n) | |
341 ADJUSTR(CHARACTER(k,LEN=n) STRING) -> CHARACTER(k,LEN=n) | |
342 LEN_TRIM(CHARACTER(k,n) STRING, KIND=KIND(0)) -> INTEGER(KIND) = n | |
343 LGE(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL | |
344 LGT(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL | |
345 LLE(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL | |
346 LLT(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL | |
347 SCAN(CHARACTER(k,n) STRING, CHARACTER(k,m) SET, LOGICAL(any) BACK=.FALSE., KIND=KIND(0)) -> INTEGER(KIND) | |
348 VERIFY(CHARACTER(k,n) STRING, CHARACTER(k,m) SET, LOGICAL(any) BACK=.FALSE., KIND=KIND(0)) -> INTEGER(KIND) | |
349 ``` | |
350 | |
351 `SCAN` returns the index of the first (or last, if `BACK=.TRUE.`) character in `STRING` | |
352 that is present in `SET`, or zero if none is. | |
353 | |
354 `VERIFY` is essentially the opposite: it returns the index of the first (or last) character | |
355 in `STRING` that is *not* present in `SET`, or zero if all are. | |
356 | |
357 ## Transformational intrinsic functions | |
358 | |
359 This category comprises a large collection of intrinsic functions that | |
360 are collected together because they somehow transform their arguments | |
361 in a way that prevents them from being elemental. | |
362 All of them are pure, however. | |
363 | |
364 Some general rules apply to the transformational intrinsic functions: | |
365 | |
366 1. `DIM` arguments are optional; if present, the actual argument must be | |
367 a scalar integer of any kind. | |
368 1. When an optional `DIM` argument is absent, or an `ARRAY` or `MASK` | |
369 argument is a vector, the result of the function is scalar; otherwise, | |
370 the result is an array of the same shape as the `ARRAY` or `MASK` | |
371 argument with the dimension `DIM` removed from the shape. | |
372 1. When a function takes an optional `MASK` argument, it must be conformable | |
373 with its `ARRAY` argument if it is present, and the mask can be any kind | |
374 of `LOGICAL`. It can be scalar. | |
375 1. The type `numeric` here can be any kind of `INTEGER`, `REAL`, or `COMPLEX`. | |
376 1. The type `relational` here can be any kind of `INTEGER`, `REAL`, or `CHARACTER`. | |
377 1. The type `any` here denotes any intrinsic or derived type. | |
378 1. The notation `(..)` denotes an array of any rank (but not an assumed-rank array). | |
379 | |
380 ### Logical reduction transformational intrinsic functions | |
381 ``` | |
382 ALL(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k) | |
383 ANY(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k) | |
384 COUNT(LOGICAL(any) MASK(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) | |
385 PARITY(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k) | |
386 ``` | |
387 | |
388 ### Numeric reduction transformational intrinsic functions | |
389 ``` | |
390 IALL(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k) | |
391 IANY(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k) | |
392 IPARITY(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k) | |
393 NORM2(REAL(k) X(..) [, DIM ]) -> REAL(k) | |
394 PRODUCT(numeric ARRAY(..) [, DIM, MASK ]) -> numeric | |
395 SUM(numeric ARRAY(..) [, DIM, MASK ]) -> numeric | |
396 ``` | |
397 | |
398 `NORM2` generalizes `HYPOT` by computing `SQRT(SUM(X*X))` while avoiding spurious overflows. | |
399 | |
400 ### Extrema reduction transformational intrinsic functions | |
401 ``` | |
402 MAXVAL(relational(k) ARRAY(..) [, DIM, MASK ]) -> relational(k) | |
403 MINVAL(relational(k) ARRAY(..) [, DIM, MASK ]) -> relational(k) | |
404 ``` | |
405 | |
406 ### Locational transformational intrinsic functions | |
407 When the optional `DIM` argument is absent, the result is an `INTEGER(KIND)` | |
408 vector whose length is the rank of `ARRAY`. | |
409 When the optional `DIM` argument is present, the result is an `INTEGER(KIND)` | |
410 array of rank `RANK(ARRAY)-1` and shape equal to that of `ARRAY` with | |
411 the dimension `DIM` removed. | |
412 | |
413 The optional `BACK` argument is a scalar LOGICAL value of any kind. | |
414 When present and `.TRUE.`, it causes the function to return the index | |
415 of the *last* occurence of the target or extreme value. | |
416 | |
417 For `FINDLOC`, `ARRAY` may have any of the five intrinsic types, and `VALUE` | |
418 must a scalar value of a type for which `ARRAY==VALUE` or `ARRAY .EQV. VALUE` | |
419 is an acceptable expression. | |
420 | |
421 ``` | |
422 FINDLOC(intrinsic ARRAY(..), scalar VALUE [, DIM, MASK, KIND=KIND(0), BACK=.FALSE. ]) | |
423 MAXLOC(relational ARRAY(..) [, DIM, MASK, KIND=KIND(0), BACK=.FALSE. ]) | |
424 MINLOC(relational ARRAY(..) [, DIM, MASK, KIND=KIND(0), BACK=.FALSE. ]) | |
425 ``` | |
426 | |
427 ### Data rearrangement transformational intrinsic functions | |
428 The optional `DIM` argument to these functions must be a scalar integer of | |
429 any kind, and it takes a default value of 1 when absent. | |
430 | |
431 ``` | |
432 CSHIFT(any ARRAY(..), INTEGER(any) SHIFT(..) [, DIM ]) -> same type/kind/shape as ARRAY | |
433 ``` | |
434 Either `SHIFT` is scalar or `RANK(SHIFT) == RANK(ARRAY) - 1` and `SHAPE(SHIFT)` is that of `SHAPE(ARRAY)` with element `DIM` removed. | |
435 | |
436 ``` | |
437 EOSHIFT(any ARRAY(..), INTEGER(any) SHIFT(..) [, BOUNDARY, DIM ]) -> same type/kind/shape as ARRAY | |
438 ``` | |
439 * `SHIFT` is scalar or `RANK(SHIFT) == RANK(ARRAY) - 1` and `SHAPE(SHIFT)` is that of `SHAPE(ARRAY)` with element `DIM` removed. | |
440 * If `BOUNDARY` is present, it must have the same type and parameters as `ARRAY`. | |
441 * If `BOUNDARY` is absent, `ARRAY` must be of an intrinsic type, and the default `BOUNDARY` is the obvious `0`, `' '`, or `.FALSE.` value of `KIND(ARRAY)`. | |
442 * If `BOUNDARY` is present, either it is scalar, or `RANK(BOUNDARY) == RANK(ARRAY) - 1` and `SHAPE(BOUNDARY)` is that of `SHAPE(ARRAY)` with element `DIM` | |
443 removed. | |
444 | |
445 ``` | |
446 PACK(any ARRAY(..), LOGICAL(any) MASK(..)) -> vector of same type and kind as ARRAY | |
447 ``` | |
448 * `MASK` is conformable with `ARRAY` and may be scalar. | |
449 * The length of the result vector is `COUNT(MASK)` if `MASK` is an array, else `SIZE(ARRAY)` if `MASK` is `.TRUE.`, else zero. | |
450 | |
451 ``` | |
452 PACK(any ARRAY(..), LOGICAL(any) MASK(..), any VECTOR(n)) -> vector of same type, kind, and size as VECTOR | |
453 ``` | |
454 * `MASK` is conformable with `ARRAY` and may be scalar. | |
455 * `VECTOR` has the same type and kind as `ARRAY`. | |
456 * `VECTOR` must not be smaller than result of `PACK` with no `VECTOR` argument. | |
457 * The leading elements of `VECTOR` are replaced with elements from `ARRAY` as | |
458 if `PACK` had been invoked without `VECTOR`. | |
459 | |
460 ``` | |
461 RESHAPE(any SOURCE(..), INTEGER(k) SHAPE(n) [, PAD(..), INTEGER(k2) ORDER(n) ]) -> SOURCE array with shape SHAPE | |
462 ``` | |
463 * If `ORDER` is present, it is a vector of the same size as `SHAPE`, and | |
464 contains a permutation. | |
465 * The element(s) of `PAD` are used to fill out the result once `SOURCE` | |
466 has been consumed. | |
467 | |
468 ``` | |
469 SPREAD(any SOURCE, DIM, scalar INTEGER(any) NCOPIES) -> same type as SOURCE, rank=RANK(SOURCE)+1 | |
470 TRANSFER(any SOURCE, any MOLD) -> scalar if MOLD is scalar, else vector; same type and kind as MOLD | |
471 TRANSFER(any SOURCE, any MOLD, scalar INTEGER(any) SIZE) -> vector(SIZE) of type and kind of MOLD | |
472 TRANSPOSE(any MATRIX(n,m)) -> matrix(m,n) of same type and kind as MATRIX | |
473 ``` | |
474 | |
475 The shape of the result of `SPREAD` is the same as that of `SOURCE`, with `NCOPIES` inserted | |
476 at position `DIM`. | |
477 | |
478 ``` | |
479 UNPACK(any VECTOR(n), LOGICAL(any) MASK(..), FIELD) -> type and kind of VECTOR, shape of MASK | |
480 ``` | |
481 `FIELD` has same type and kind as `VECTOR` and is conformable with `MASK`. | |
482 | |
483 ### Other transformational intrinsic functions | |
484 ``` | |
485 BESSEL_JN(INTEGER(n1) N1, INTEGER(n2) N2, REAL(k) X) -> REAL(k) vector (MAX(N2-N1+1,0)) | |
486 BESSEL_YN(INTEGER(n1) N1, INTEGER(n2) N2, REAL(k) X) -> REAL(k) vector (MAX(N2-N1+1,0)) | |
487 COMMAND_ARGUMENT_COUNT() -> scalar default INTEGER | |
488 DOT_PRODUCT(LOGICAL(k) VECTOR_A(n), LOGICAL(k) VECTOR_B(n)) -> LOGICAL(k) = ANY(VECTOR_A .AND. VECTOR_B) | |
489 DOT_PRODUCT(COMPLEX(any) VECTOR_A(n), numeric VECTOR_B(n)) = SUM(CONJG(VECTOR_A) * VECTOR_B) | |
490 DOT_PRODUCT(INTEGER(any) or REAL(any) VECTOR_A(n), numeric VECTOR_B(n)) = SUM(VECTOR_A * VECTOR_B) | |
491 MATMUL(numeric ARRAY_A(j), numeric ARRAY_B(j,k)) -> numeric vector(k) | |
492 MATMUL(numeric ARRAY_A(j,k), numeric ARRAY_B(k)) -> numeric vector(j) | |
493 MATMUL(numeric ARRAY_A(j,k), numeric ARRAY_B(k,m)) -> numeric matrix(j,m) | |
494 MATMUL(LOGICAL(n1) ARRAY_A(j), LOGICAL(n2) ARRAY_B(j,k)) -> LOGICAL vector(k) | |
495 MATMUL(LOGICAL(n1) ARRAY_A(j,k), LOGICAL(n2) ARRAY_B(k)) -> LOGICAL vector(j) | |
496 MATMUL(LOGICAL(n1) ARRAY_A(j,k), LOGICAL(n2) ARRAY_B(k,m)) -> LOGICAL matrix(j,m) | |
497 NULL([POINTER/ALLOCATABLE MOLD]) -> POINTER | |
498 REDUCE(any ARRAY(..), function OPERATION [, DIM, LOGICAL(any) MASK(..), IDENTITY, LOGICAL ORDERED=.FALSE. ]) | |
499 REPEAT(CHARACTER(k,n) STRING, INTEGER(any) NCOPIES) -> CHARACTER(k,n*NCOPIES) | |
500 SELECTED_CHAR_KIND('DEFAULT' or 'ASCII' or 'ISO_10646' or ...) -> scalar default INTEGER | |
501 SELECTED_INT_KIND(scalar INTEGER(any) R) -> scalar default INTEGER | |
502 SELECTED_REAL_KIND([scalar INTEGER(any) P, scalar INTEGER(any) R, scalar INTEGER(any) RADIX]) -> scalar default INTEGER | |
503 SHAPE(SOURCE, KIND=KIND(0)) -> INTEGER(KIND)(RANK(SOURCE)) | |
504 TRIM(CHARACTER(k,n) STRING) -> CHARACTER(k) | |
505 ``` | |
506 | |
507 The type and kind of the result of a numeric `MATMUL` is the same as would result from | |
508 a multiplication of an element of ARRAY_A and an element of ARRAY_B. | |
509 | |
510 The kind of the `LOGICAL` result of a `LOGICAL` `MATMUL` is the same as would result | |
511 from an intrinsic `.AND.` operation between an element of `ARRAY_A` and an element | |
512 of `ARRAY_B`. | |
513 | |
514 Note that `DOT_PRODUCT` with a `COMPLEX` first argument operates on its complex conjugate, | |
515 but that `MATMUL` with a `COMPLEX` argument does not. | |
516 | |
517 The `MOLD` argument to `NULL` may be omitted only in a context where the type of the pointer is known, | |
518 such as an initializer or pointer assignment statement. | |
519 | |
520 At least one argument must be present in a call to `SELECTED_REAL_KIND`. | |
521 | |
522 An assumed-rank array may be passed to `SHAPE`, and if it is associated with an assumed-size array, | |
523 the last element of the result will be -1. | |
524 | |
525 ### Coarray transformational intrinsic functions | |
526 ``` | |
527 FAILED_IMAGES([scalar TEAM_TYPE TEAM, KIND=KIND(0)]) -> INTEGER(KIND) vector | |
528 GET_TEAM([scalar INTEGER(?) LEVEL]) -> scalar TEAM_TYPE | |
529 IMAGE_INDEX(COARRAY, INTEGER(any) SUB(n) [, scalar TEAM_TYPE TEAM ]) -> scalar default INTEGER | |
530 IMAGE_INDEX(COARRAY, INTEGER(any) SUB(n), scalar INTEGER(any) TEAM_NUMBER) -> scalar default INTEGER | |
531 NUM_IMAGES([scalar TEAM_TYPE TEAM]) -> scalar default INTEGER | |
532 NUM_IMAGES(scalar INTEGER(any) TEAM_NUMBER) -> scalar default INTEGER | |
533 STOPPED_IMAGES([scalar TEAM_TYPE TEAM, KIND=KIND(0)]) -> INTEGER(KIND) vector | |
534 TEAM_NUMBER([scalar TEAM_TYPE TEAM]) -> scalar default INTEGER | |
535 THIS_IMAGE([COARRAY, DIM, scalar TEAM_TYPE TEAM]) -> default INTEGER | |
536 ``` | |
537 The result of `THIS_IMAGE` is a scalar if `DIM` is present or if `COARRAY` is absent, | |
538 and a vector whose length is the corank of `COARRAY` otherwise. | |
539 | |
540 ## Inquiry intrinsic functions | |
541 These are neither elemental nor transformational; all are pure. | |
542 | |
543 ### Type inquiry intrinsic functions | |
544 All of these functions return constants. | |
545 The value of the argument is not used, and may well be undefined. | |
546 ``` | |
547 BIT_SIZE(INTEGER(k) I(..)) -> INTEGER(k) | |
548 DIGITS(INTEGER or REAL X(..)) -> scalar default INTEGER | |
549 EPSILON(REAL(k) X(..)) -> scalar REAL(k) | |
550 HUGE(INTEGER(k) X(..)) -> scalar INTEGER(k) | |
551 HUGE(REAL(k) X(..)) -> scalar of REAL(k) | |
552 KIND(intrinsic X(..)) -> scalar default INTEGER | |
553 MAXEXPONENT(REAL(k) X(..)) -> scalar default INTEGER | |
554 MINEXPONENT(REAL(k) X(..)) -> scalar default INTEGER | |
555 NEW_LINE(CHARACTER(k,n) A(..)) -> scalar CHARACTER(k,1) = CHAR(10) | |
556 PRECISION(REAL(k) or COMPLEX(k) X(..)) -> scalar default INTEGER | |
557 RADIX(INTEGER(k) or REAL(k) X(..)) -> scalar default INTEGER, always 2 | |
558 RANGE(INTEGER(k) or REAL(k) or COMPLEX(k) X(..)) -> scalar default INTEGER | |
559 TINY(REAL(k) X(..)) -> scalar REAL(k) | |
560 ``` | |
561 | |
562 ### Bound and size inquiry intrinsic functions | |
563 The results are scalar when `DIM` is present, and a vector of length=(co)rank(`(CO)ARRAY`) | |
564 when `DIM` is absent. | |
565 ``` | |
566 LBOUND(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) | |
567 LCOBOUND(any COARRAY [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) | |
568 SIZE(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) | |
569 UBOUND(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) | |
570 UCOBOUND(any COARRAY [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) | |
571 ``` | |
572 | |
573 Assumed-rank arrays may be used with `LBOUND`, `SIZE`, and `UBOUND`. | |
574 | |
575 ### Object characteristic inquiry intrinsic functions | |
576 ``` | |
577 ALLOCATED(any type ALLOCATABLE ARRAY) -> scalar default LOGICAL | |
578 ALLOCATED(any type ALLOCATABLE SCALAR) -> scalar default LOGICAL | |
579 ASSOCIATED(any type POINTER POINTER [, same type TARGET]) -> scalar default LOGICAL | |
580 COSHAPE(COARRAY, KIND=KIND(0)) -> INTEGER(KIND) vector of length corank(COARRAY) | |
581 EXTENDS_TYPE_OF(A, MOLD) -> default LOGICAL | |
582 IS_CONTIGUOUS(any data ARRAY(..)) -> scalar default LOGICAL | |
583 PRESENT(OPTIONAL A) -> scalar default LOGICAL | |
584 RANK(any data A) -> scalar default INTEGER = 0 if A is scalar, SIZE(SHAPE(A)) if A is an array, rank if assumed-rank | |
585 SAME_TYPE_AS(A, B) -> scalar default LOGICAL | |
586 STORAGE_SIZE(any data A, KIND=KIND(0)) -> INTEGER(KIND) | |
587 ``` | |
588 The arguments to `EXTENDS_TYPE_OF` must be of extensible derived types or be unlimited polymorphic. | |
589 | |
590 An assumed-rank array may be used with `IS_CONTIGUOUS` and `RANK`. | |
591 | |
592 ## Intrinsic subroutines | |
593 | |
594 (*TODO*: complete these descriptions) | |
595 | |
596 ### One elemental intrinsic subroutine | |
597 ``` | |
598 INTERFACE | |
599 SUBROUTINE MVBITS(FROM, FROMPOS, LEN, TO, TOPOS) | |
600 INTEGER(k1) :: FROM, TO | |
601 INTENT(IN) :: FROM | |
602 INTENT(INOUT) :: TO | |
603 INTEGER(k2), INTENT(IN) :: FROMPOS | |
604 INTEGER(k3), INTENT(IN) :: LEN | |
605 INTEGER(k4), INTENT(IN) :: TOPOS | |
606 END SUBROUTINE | |
607 END INTERFACE | |
608 ``` | |
609 | |
610 ### Non-elemental intrinsic subroutines | |
611 ``` | |
612 CALL CPU_TIME(REAL INTENT(OUT) TIME) | |
613 ``` | |
614 The kind of `TIME` is not specified in the standard. | |
615 | |
616 ``` | |
617 CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES]) | |
618 ``` | |
619 * All arguments are `OPTIONAL` and `INTENT(OUT)`. | |
620 * `DATE`, `TIME`, and `ZONE` are scalar default `CHARACTER`. | |
621 * `VALUES` is a vector of at least 8 elements of `INTEGER(KIND >= 2)`. | |
622 ``` | |
623 CALL EVENT_QUERY(EVENT, COUNT [, STAT]) | |
624 CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT, CMDMSG ]) | |
625 CALL GET_COMMAND([COMMAND, LENGTH, STATUS, ERRMSG ]) | |
626 CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS, ERRMSG ]) | |
627 CALL GET_ENVIRONMENT_VARIABLE(NAME [, VALUE, LENGTH, STATUS, TRIM_NAME, ERRMSG ]) | |
628 CALL MOVE_ALLOC(ALLOCATABLE INTENT(INOUT) FROM, ALLOCATABLE INTENT(OUT) TO [, STAT, ERRMSG ]) | |
629 CALL RANDOM_INIT(LOGICAL(k1) INTENT(IN) REPEATABLE, LOGICAL(k2) INTENT(IN) IMAGE_DISTINCT) | |
630 CALL RANDOM_NUMBER(REAL(k) INTENT(OUT) HARVEST(..)) | |
631 CALL RANDOM_SEED([SIZE, PUT, GET]) | |
632 CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX]) | |
633 ``` | |
634 | |
635 ### Atomic intrinsic subroutines | |
636 ``` | |
637 CALL ATOMIC_ADD(ATOM, VALUE [, STAT=]) | |
638 CALL ATOMIC_AND(ATOM, VALUE [, STAT=]) | |
639 CALL ATOMIC_CAS(ATOM, OLD, COMPARE, NEW [, STAT=]) | |
640 CALL ATOMIC_DEFINE(ATOM, VALUE [, STAT=]) | |
641 CALL ATOMIC_FETCH_ADD(ATOM, VALUE, OLD [, STAT=]) | |
642 CALL ATOMIC_FETCH_AND(ATOM, VALUE, OLD [, STAT=]) | |
643 CALL ATOMIC_FETCH_OR(ATOM, VALUE, OLD [, STAT=]) | |
644 CALL ATOMIC_FETCH_XOR(ATOM, VALUE, OLD [, STAT=]) | |
645 CALL ATOMIC_OR(ATOM, VALUE [, STAT=]) | |
646 CALL ATOMIC_REF(VALUE, ATOM [, STAT=]) | |
647 CALL ATOMIC_XOR(ATOM, VALUE [, STAT=]) | |
648 ``` | |
649 | |
650 ### Collective intrinsic subroutines | |
651 ``` | |
652 CALL CO_BROADCAST | |
653 CALL CO_MAX | |
654 CALL CO_MIN | |
655 CALL CO_REDUCE | |
656 CALL CO_SUM | |
657 ``` | |
658 | |
659 ## Non-standard intrinsics | |
660 ### PGI | |
661 ``` | |
662 AND, OR, XOR | |
663 LSHIFT, RSHIFT, SHIFT | |
664 ZEXT, IZEXT | |
665 COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D | |
666 COMPL | |
667 DCMPLX | |
668 EQV, NEQV | |
669 INT8 | |
670 JINT, JNINT, KNINT | |
671 LOC | |
672 ``` | |
673 | |
674 ### Intel | |
675 ``` | |
676 DCMPLX(X,Y), QCMPLX(X,Y) | |
677 DREAL(DOUBLE COMPLEX A) -> DOUBLE PRECISION | |
678 DFLOAT, DREAL | |
679 QEXT, QFLOAT, QREAL | |
680 DNUM, INUM, JNUM, KNUM, QNUM, RNUM - scan value from string | |
681 ZEXT | |
682 RAN, RANF | |
683 ILEN(I) = BIT_SIZE(I) | |
684 SIZEOF | |
685 MCLOCK, SECNDS | |
686 COTAN(X) = 1.0/TAN(X) | |
687 COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D, COTAND - degrees | |
688 AND, OR, XOR | |
689 LSHIFT, RSHIFT | |
690 IBCHNG, ISHA, ISHC, ISHL, IXOR | |
691 IARG, IARGC, NARGS, NUMARG | |
692 BADDRESS, IADDR | |
693 CACHESIZE, EOF, FP_CLASS, INT_PTR_KIND, ISNAN, LOC | |
694 MALLOC | |
695 ``` | |
696 | |
697 ## Intrinsic Procedure Name Resolution | |
698 | |
699 When the name of a procedure in a program is the same as the one of an intrinsic | |
700 procedure, and nothing other than its usage allows to decide whether the procedure | |
701 is the intrinsic or not (i.e, it does not appear in an INTRINSIC or EXTERNAL attribute | |
702 statement, is not an use/host associated procedure...), Fortran 2018 standard | |
703 section 19.5.1.4 point 6 rules that the procedure is established to be intrinsic if it is | |
704 invoked as an intrinsic procedure. | |
705 | |
706 In case the invocation would be an error if the procedure were the intrinsic | |
707 (e.g. wrong argument number or type), the broad wording of the standard | |
708 leaves two choices to the compiler: emit an error about the intrinsic invocation, | |
709 or consider this is an external procedure and emit no error. | |
710 | |
711 f18 will always consider this case to be the intrinsic and emit errors, unless the procedure | |
712 is used as a function (resp. subroutine) and the intrinsic is a subroutine (resp. function). | |
713 The table below gives some examples of decisions made by Fortran compilers in such case. | |
714 | |
715 | What is ACOS ? | Bad intrinsic call | External with warning | External no warning | Other error | | |
716 | --- | --- | --- | --- | --- | | |
717 | `print*, ACOS()` | gfortran, nag, xlf, f18 | ifort | nvfortran | | | |
718 | `print*, ACOS(I)` | gfortran, nag, xlf, f18 | ifort | nvfortran | | | |
719 | `print*, ACOS(X=I)` | gfortran, nag, xlf, f18 | ifort | | nvfortran (keyword on implicit extrenal )| | |
720 | `print*, ACOS(X, X)` | gfortran, nag, xlf, f18 | ifort | nvfortran | | | |
721 | `CALL ACOS(X)` | | | gfortran, nag, xlf, nvfortran, ifort, f18 | | | |
722 | |
723 | |
724 The rationale for f18 behavior is that when referring to a procedure with an | |
725 argument number or type that does not match the intrinsic specification, it seems safer to block | |
726 the rather likely case where the user is using the intrinsic the wrong way. | |
727 In case the user wanted to refer to an external function, he can add an explicit EXTERNAL | |
728 statement with no other consequences on the program. | |
729 However, it seems rather unlikely that a user would confuse an intrinsic subroutine for a | |
730 function and vice versa. Given no compiler is issuing an error here, changing the behavior might | |
731 affect existing programs that omit the EXTERNAL attribute in such case. | |
732 | |
733 Also note that in general, the standard gives the compiler the right to consider | |
734 any procedure that is not explicitly external as a non standard intrinsic (section 4.2 point 4). | |
735 So it is highly advised for the programmer to use EXTERNAL statements to prevent any ambiguity. | |
736 | |
737 ## Intrinsic Procedure Support in f18 | |
738 This section gives an overview of the support inside f18 libraries for the | |
739 intrinsic procedures listed above. | |
740 It may be outdated, refer to f18 code base for the actual support status. | |
741 | |
742 ### Semantic Analysis | |
743 F18 semantic expression analysis phase detects intrinsic procedure references, | |
744 validates the argument types and deduces the return types. | |
745 This phase currently supports all the intrinsic procedures listed above but the ones in the table below. | |
746 | |
747 | Intrinsic Category | Intrinsic Procedures Lacking Support | | |
748 | --- | --- | | |
749 | Coarray intrinsic functions | LCOBOUND, UCOBOUND, FAILED_IMAGES, GET_TEAM, IMAGE_INDEX, STOPPED_IMAGES, TEAM_NUMBER, THIS_IMAGE, COSHAPE | | |
750 | Object characteristic inquiry functions | ALLOCATED, ASSOCIATED, EXTENDS_TYPE_OF, IS_CONTIGUOUS, PRESENT, RANK, SAME_TYPE, STORAGE_SIZE | | |
751 | Type inquiry intrinsic functions | BIT_SIZE, DIGITS, EPSILON, HUGE, KIND, MAXEXPONENT, MINEXPONENT, NEW_LINE, PRECISION, RADIX, RANGE, TINY| | |
752 | Non-standard intrinsic functions | AND, OR, XOR, LSHIFT, RSHIFT, SHIFT, ZEXT, IZEXT, COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D, COMPL, DCMPLX, EQV, NEQV, INT8, JINT, JNINT, KNINT, LOC, QCMPLX, DREAL, DFLOAT, QEXT, QFLOAT, QREAL, DNUM, NUM, JNUM, KNUM, QNUM, RNUM, RAN, RANF, ILEN, SIZEOF, MCLOCK, SECNDS, COTAN, IBCHNG, ISHA, ISHC, ISHL, IXOR, IARG, IARGC, NARGS, NUMARG, BADDRESS, IADDR, CACHESIZE, EOF, FP_CLASS, INT_PTR_KIND, ISNAN, MALLOC | | |
753 | Intrinsic subroutines |MVBITS (elemental), CPU_TIME, DATE_AND_TIME, EVENT_QUERY, EXECUTE_COMMAND_LINE, GET_COMMAND, GET_COMMAND_ARGUMENT, GET_ENVIRONMENT_VARIABLE, MOVE_ALLOC, RANDOM_INIT, RANDOM_NUMBER, RANDOM_SEED, SYSTEM_CLOCK | | |
754 | Atomic intrinsic subroutines | ATOMIC_ADD &al. | | |
755 | Collective intrinsic subroutines | CO_BROADCAST &al. | | |
756 | |
757 | |
758 ### Intrinsic Function Folding | |
759 Fortran Constant Expressions can contain references to a certain number of | |
760 intrinsic functions (see Fortran 2018 standard section 10.1.12 for more details). | |
761 Constant Expressions may be used to define kind arguments. Therefore, the semantic | |
762 expression analysis phase must be able to fold references to intrinsic functions | |
763 listed in section 10.1.12. | |
764 | |
765 F18 intrinsic function folding is either performed by implementations directly | |
766 operating on f18 scalar types or by using host runtime functions and | |
767 host hardware types. F18 supports folding elemental intrinsic functions over | |
768 arrays when an implementation is provided for the scalars (regardless of whether | |
769 it is using host hardware types or not). | |
770 The status of intrinsic function folding support is given in the sub-sections below. | |
771 | |
772 #### Intrinsic Functions with Host Independent Folding Support | |
773 Implementations using f18 scalar types enables folding intrinsic functions | |
774 on any host and with any possible type kind supported by f18. The intrinsic functions | |
775 listed below are folded using host independent implementations. | |
776 | |
777 | Return Type | Intrinsic Functions with Host Independent Folding Support| | |
778 | --- | --- | | |
779 | INTEGER| ABS(INTEGER(k)), DIM(INTEGER(k), INTEGER(k)), DSHIFTL, DSHIFTR, IAND, IBCLR, IBSET, IEOR, INT, IOR, ISHFT, KIND, LEN, LEADZ, MASKL, MASKR, MERGE_BITS, POPCNT, POPPAR, SHIFTA, SHIFTL, SHIFTR, TRAILZ | | |
780 | REAL | ABS(REAL(k)), ABS(COMPLEX(k)), AIMAG, AINT, DPROD, REAL | | |
781 | COMPLEX | CMPLX, CONJG | | |
782 | LOGICAL | BGE, BGT, BLE, BLT | | |
783 | |
784 #### Intrinsic Functions with Host Dependent Folding Support | |
785 Implementations using the host runtime may not be available for all supported | |
786 f18 types depending on the host hardware types and the libraries available on the host. | |
787 The actual support on a host depends on what the host hardware types are. | |
788 The list below gives the functions that are folded using host runtime and the related C/C++ types. | |
789 F18 automatically detects if these types match an f18 scalar type. If so, | |
790 folding of the intrinsic functions will be possible for the related f18 scalar type, | |
791 otherwise an error message will be produced by f18 when attempting to fold related intrinsic functions. | |
792 | |
793 | C/C++ Host Type | Intrinsic Functions with Host Standard C++ Library Based Folding Support | | |
794 | --- | --- | | |
795 | float, double and long double | ACOS, ACOSH, ASINH, ATAN, ATAN2, ATANH, COS, COSH, ERF, ERFC, EXP, GAMMA, HYPOT, LOG, LOG10, LOG_GAMMA, MOD, SIN, SQRT, SINH, SQRT, TAN, TANH | | |
796 | std::complex for float, double and long double| ACOS, ACOSH, ASIN, ASINH, ATAN, ATANH, COS, COSH, EXP, LOG, SIN, SINH, SQRT, TAN, TANH | | |
797 | |
798 On top of the default usage of C++ standard library functions for folding described | |
799 in the table above, it is possible to compile f18 evaluate library with | |
800 [libpgmath](https://github.com/flang-compiler/flang/tree/master/runtime/libpgmath) | |
801 so that it can be used for folding. To do so, one must have a compiled version | |
802 of the libpgmath library available on the host and add | |
803 `-DLIBPGMATH_DIR=<path to the compiled shared libpgmath library>` to the f18 cmake command. | |
804 | |
805 Libpgmath comes with real and complex functions that replace C++ standard library | |
806 float and double functions to fold all the intrinsic functions listed in the table above. | |
807 It has no long double versions. If the host long double matches an f18 scalar type, | |
808 C++ standard library functions will still be used for folding expressions with this scalar type. | |
809 Libpgmath adds the possibility to fold the following functions for f18 real scalar | |
810 types related to host float and double types. | |
811 | |
812 | C/C++ Host Type | Additional Intrinsic Function Folding Support with Libpgmath (Optional) | | |
813 | --- | --- | | |
814 |float and double| BESSEL_J0, BESSEL_J1, BESSEL_JN (elemental only), BESSEL_Y0, BESSEL_Y1, BESSEL_Yn (elemental only), ERFC_SCALED | | |
815 | |
816 Libpgmath comes in three variants (precise, relaxed and fast). So far, only the | |
817 precise version is used for intrinsic function folding in f18. It guarantees the greatest numerical precision. | |
818 | |
819 ### Intrinsic Functions with Missing Folding Support | |
820 The following intrinsic functions are allowed in constant expressions but f18 | |
821 is not yet able to fold them. Note that there might be constraints on the arguments | |
822 so that these intrinsics can be used in constant expressions (see section 10.1.12 of Fortran 2018 standard). | |
823 | |
824 ALL, ACHAR, ADJUSTL, ADJUSTR, ANINT, ANY, BESSEL_JN (transformational only), | |
825 BESSEL_YN (transformational only), BTEST, CEILING, CHAR, COUNT, CSHIFT, DOT_PRODUCT, | |
826 DIM (REAL only), DOT_PRODUCT, EOSHIFT, FINDLOC, FLOOR, FRACTION, HUGE, IACHAR, IALL, | |
827 IANY, IPARITY, IBITS, ICHAR, IMAGE_STATUS, INDEX, ISHFTC, IS_IOSTAT_END, | |
828 IS_IOSTAT_EOR, LBOUND, LEN_TRIM, LGE, LGT, LLE, LLT, LOGICAL, MATMUL, MAX, MAXLOC, | |
829 MAXVAL, MERGE, MIN, MINLOC, MINVAL, MOD (INTEGER only), MODULO, NEAREST, NINT, | |
830 NORM2, NOT, OUT_OF_RANGE, PACK, PARITY, PRODUCT, REPEAT, REDUCE, RESHAPE, | |
831 RRSPACING, SCAN, SCALE, SELECTED_CHAR_KIND, SELECTED_INT_KIND, SELECTED_REAL_KIND, | |
832 SET_EXPONENT, SHAPE, SIGN, SIZE, SPACING, SPREAD, SUM, TINY, TRANSFER, TRANSPOSE, | |
833 TRIM, UBOUND, UNPACK, VERIFY. | |
834 | |
835 Coarray, non standard, IEEE and ISO_C_BINDINGS intrinsic functions that can be | |
836 used in constant expressions have currently no folding support at all. |