Mercurial > hg > CbC > CbC_llvm
comparison lib/Target/Hexagon/HexagonBitSimplify.cpp @ 100:7d135dc70f03 LLVM 3.9
LLVM 3.9
author | Miyagi Mitsuki <e135756@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 26 Jan 2016 22:53:40 +0900 |
parents | |
children | 1172e4bd9c6f |
comparison
equal
deleted
inserted
replaced
96:6418606d0ead | 100:7d135dc70f03 |
---|---|
1 //===--- HexagonBitSimplify.cpp -------------------------------------------===// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 | |
10 #define DEBUG_TYPE "hexbit" | |
11 | |
12 #include "llvm/CodeGen/Passes.h" | |
13 #include "llvm/CodeGen/MachineDominators.h" | |
14 #include "llvm/CodeGen/MachineFunctionPass.h" | |
15 #include "llvm/CodeGen/MachineInstrBuilder.h" | |
16 #include "llvm/CodeGen/MachineRegisterInfo.h" | |
17 #include "llvm/Support/CommandLine.h" | |
18 #include "llvm/Support/Debug.h" | |
19 #include "llvm/Support/raw_ostream.h" | |
20 #include "llvm/Target/TargetMachine.h" | |
21 #include "llvm/Target/TargetInstrInfo.h" | |
22 #include "HexagonTargetMachine.h" | |
23 #include "HexagonBitTracker.h" | |
24 | |
25 using namespace llvm; | |
26 | |
27 namespace llvm { | |
28 void initializeHexagonBitSimplifyPass(PassRegistry& Registry); | |
29 FunctionPass *createHexagonBitSimplify(); | |
30 } | |
31 | |
32 namespace { | |
33 // Set of virtual registers, based on BitVector. | |
34 struct RegisterSet : private BitVector { | |
35 RegisterSet() : BitVector() {} | |
36 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {} | |
37 RegisterSet(const RegisterSet &RS) : BitVector(RS) {} | |
38 | |
39 using BitVector::clear; | |
40 using BitVector::count; | |
41 | |
42 unsigned find_first() const { | |
43 int First = BitVector::find_first(); | |
44 if (First < 0) | |
45 return 0; | |
46 return x2v(First); | |
47 } | |
48 | |
49 unsigned find_next(unsigned Prev) const { | |
50 int Next = BitVector::find_next(v2x(Prev)); | |
51 if (Next < 0) | |
52 return 0; | |
53 return x2v(Next); | |
54 } | |
55 | |
56 RegisterSet &insert(unsigned R) { | |
57 unsigned Idx = v2x(R); | |
58 ensure(Idx); | |
59 return static_cast<RegisterSet&>(BitVector::set(Idx)); | |
60 } | |
61 RegisterSet &remove(unsigned R) { | |
62 unsigned Idx = v2x(R); | |
63 if (Idx >= size()) | |
64 return *this; | |
65 return static_cast<RegisterSet&>(BitVector::reset(Idx)); | |
66 } | |
67 | |
68 RegisterSet &insert(const RegisterSet &Rs) { | |
69 return static_cast<RegisterSet&>(BitVector::operator|=(Rs)); | |
70 } | |
71 RegisterSet &remove(const RegisterSet &Rs) { | |
72 return static_cast<RegisterSet&>(BitVector::reset(Rs)); | |
73 } | |
74 | |
75 reference operator[](unsigned R) { | |
76 unsigned Idx = v2x(R); | |
77 ensure(Idx); | |
78 return BitVector::operator[](Idx); | |
79 } | |
80 bool operator[](unsigned R) const { | |
81 unsigned Idx = v2x(R); | |
82 assert(Idx < size()); | |
83 return BitVector::operator[](Idx); | |
84 } | |
85 bool has(unsigned R) const { | |
86 unsigned Idx = v2x(R); | |
87 if (Idx >= size()) | |
88 return false; | |
89 return BitVector::test(Idx); | |
90 } | |
91 | |
92 bool empty() const { | |
93 return !BitVector::any(); | |
94 } | |
95 bool includes(const RegisterSet &Rs) const { | |
96 // A.BitVector::test(B) <=> A-B != {} | |
97 return !Rs.BitVector::test(*this); | |
98 } | |
99 bool intersects(const RegisterSet &Rs) const { | |
100 return BitVector::anyCommon(Rs); | |
101 } | |
102 | |
103 private: | |
104 void ensure(unsigned Idx) { | |
105 if (size() <= Idx) | |
106 resize(std::max(Idx+1, 32U)); | |
107 } | |
108 static inline unsigned v2x(unsigned v) { | |
109 return TargetRegisterInfo::virtReg2Index(v); | |
110 } | |
111 static inline unsigned x2v(unsigned x) { | |
112 return TargetRegisterInfo::index2VirtReg(x); | |
113 } | |
114 }; | |
115 | |
116 | |
117 struct PrintRegSet { | |
118 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI) | |
119 : RS(S), TRI(RI) {} | |
120 friend raw_ostream &operator<< (raw_ostream &OS, | |
121 const PrintRegSet &P); | |
122 private: | |
123 const RegisterSet &RS; | |
124 const TargetRegisterInfo *TRI; | |
125 }; | |
126 | |
127 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) | |
128 LLVM_ATTRIBUTE_UNUSED; | |
129 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) { | |
130 OS << '{'; | |
131 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R)) | |
132 OS << ' ' << PrintReg(R, P.TRI); | |
133 OS << " }"; | |
134 return OS; | |
135 } | |
136 } | |
137 | |
138 | |
139 namespace { | |
140 class Transformation; | |
141 | |
142 class HexagonBitSimplify : public MachineFunctionPass { | |
143 public: | |
144 static char ID; | |
145 HexagonBitSimplify() : MachineFunctionPass(ID), MDT(0) { | |
146 initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry()); | |
147 } | |
148 virtual const char *getPassName() const { | |
149 return "Hexagon bit simplification"; | |
150 } | |
151 virtual void getAnalysisUsage(AnalysisUsage &AU) const { | |
152 AU.addRequired<MachineDominatorTree>(); | |
153 AU.addPreserved<MachineDominatorTree>(); | |
154 MachineFunctionPass::getAnalysisUsage(AU); | |
155 } | |
156 virtual bool runOnMachineFunction(MachineFunction &MF); | |
157 | |
158 static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs); | |
159 static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses); | |
160 static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1, | |
161 const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W); | |
162 static bool isConst(const BitTracker::RegisterCell &RC, uint16_t B, | |
163 uint16_t W); | |
164 static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B, | |
165 uint16_t W); | |
166 static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B, | |
167 uint16_t W, uint64_t &U); | |
168 static bool replaceReg(unsigned OldR, unsigned NewR, | |
169 MachineRegisterInfo &MRI); | |
170 static bool getSubregMask(const BitTracker::RegisterRef &RR, | |
171 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI); | |
172 static bool replaceRegWithSub(unsigned OldR, unsigned NewR, | |
173 unsigned NewSR, MachineRegisterInfo &MRI); | |
174 static bool replaceSubWithSub(unsigned OldR, unsigned OldSR, | |
175 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI); | |
176 static bool parseRegSequence(const MachineInstr &I, | |
177 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH); | |
178 | |
179 static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits, | |
180 uint16_t Begin); | |
181 static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits, | |
182 uint16_t Begin, const HexagonInstrInfo &HII); | |
183 | |
184 static const TargetRegisterClass *getFinalVRegClass( | |
185 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI); | |
186 static bool isTransparentCopy(const BitTracker::RegisterRef &RD, | |
187 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI); | |
188 | |
189 private: | |
190 MachineDominatorTree *MDT; | |
191 | |
192 bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs); | |
193 }; | |
194 | |
195 char HexagonBitSimplify::ID = 0; | |
196 typedef HexagonBitSimplify HBS; | |
197 | |
198 | |
199 // The purpose of this class is to provide a common facility to traverse | |
200 // the function top-down or bottom-up via the dominator tree, and keep | |
201 // track of the available registers. | |
202 class Transformation { | |
203 public: | |
204 bool TopDown; | |
205 Transformation(bool TD) : TopDown(TD) {} | |
206 virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0; | |
207 virtual ~Transformation() {} | |
208 }; | |
209 } | |
210 | |
211 INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit", | |
212 "Hexagon bit simplification", false, false) | |
213 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | |
214 INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit", | |
215 "Hexagon bit simplification", false, false) | |
216 | |
217 | |
218 bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T, | |
219 RegisterSet &AVs) { | |
220 MachineDomTreeNode *N = MDT->getNode(&B); | |
221 typedef GraphTraits<MachineDomTreeNode*> GTN; | |
222 bool Changed = false; | |
223 | |
224 if (T.TopDown) | |
225 Changed = T.processBlock(B, AVs); | |
226 | |
227 RegisterSet Defs; | |
228 for (auto &I : B) | |
229 getInstrDefs(I, Defs); | |
230 RegisterSet NewAVs = AVs; | |
231 NewAVs.insert(Defs); | |
232 | |
233 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) { | |
234 MachineBasicBlock *SB = (*I)->getBlock(); | |
235 Changed |= visitBlock(*SB, T, NewAVs); | |
236 } | |
237 if (!T.TopDown) | |
238 Changed |= T.processBlock(B, AVs); | |
239 | |
240 return Changed; | |
241 } | |
242 | |
243 // | |
244 // Utility functions: | |
245 // | |
246 void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI, | |
247 RegisterSet &Defs) { | |
248 for (auto &Op : MI.operands()) { | |
249 if (!Op.isReg() || !Op.isDef()) | |
250 continue; | |
251 unsigned R = Op.getReg(); | |
252 if (!TargetRegisterInfo::isVirtualRegister(R)) | |
253 continue; | |
254 Defs.insert(R); | |
255 } | |
256 } | |
257 | |
258 void HexagonBitSimplify::getInstrUses(const MachineInstr &MI, | |
259 RegisterSet &Uses) { | |
260 for (auto &Op : MI.operands()) { | |
261 if (!Op.isReg() || !Op.isUse()) | |
262 continue; | |
263 unsigned R = Op.getReg(); | |
264 if (!TargetRegisterInfo::isVirtualRegister(R)) | |
265 continue; | |
266 Uses.insert(R); | |
267 } | |
268 } | |
269 | |
270 // Check if all the bits in range [B, E) in both cells are equal. | |
271 bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1, | |
272 uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2, | |
273 uint16_t W) { | |
274 for (uint16_t i = 0; i < W; ++i) { | |
275 // If RC1[i] is "bottom", it cannot be proven equal to RC2[i]. | |
276 if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0) | |
277 return false; | |
278 // Same for RC2[i]. | |
279 if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0) | |
280 return false; | |
281 if (RC1[B1+i] != RC2[B2+i]) | |
282 return false; | |
283 } | |
284 return true; | |
285 } | |
286 | |
287 | |
288 bool HexagonBitSimplify::isConst(const BitTracker::RegisterCell &RC, | |
289 uint16_t B, uint16_t W) { | |
290 assert(B < RC.width() && B+W <= RC.width()); | |
291 for (uint16_t i = B; i < B+W; ++i) | |
292 if (!RC[i].num()) | |
293 return false; | |
294 return true; | |
295 } | |
296 | |
297 | |
298 bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC, | |
299 uint16_t B, uint16_t W) { | |
300 assert(B < RC.width() && B+W <= RC.width()); | |
301 for (uint16_t i = B; i < B+W; ++i) | |
302 if (!RC[i].is(0)) | |
303 return false; | |
304 return true; | |
305 } | |
306 | |
307 | |
308 bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC, | |
309 uint16_t B, uint16_t W, uint64_t &U) { | |
310 assert(B < RC.width() && B+W <= RC.width()); | |
311 int64_t T = 0; | |
312 for (uint16_t i = B+W; i > B; --i) { | |
313 const BitTracker::BitValue &BV = RC[i-1]; | |
314 T <<= 1; | |
315 if (BV.is(1)) | |
316 T |= 1; | |
317 else if (!BV.is(0)) | |
318 return false; | |
319 } | |
320 U = T; | |
321 return true; | |
322 } | |
323 | |
324 | |
325 bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR, | |
326 MachineRegisterInfo &MRI) { | |
327 if (!TargetRegisterInfo::isVirtualRegister(OldR) || | |
328 !TargetRegisterInfo::isVirtualRegister(NewR)) | |
329 return false; | |
330 auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); | |
331 decltype(End) NextI; | |
332 for (auto I = Begin; I != End; I = NextI) { | |
333 NextI = std::next(I); | |
334 I->setReg(NewR); | |
335 } | |
336 return Begin != End; | |
337 } | |
338 | |
339 | |
340 bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR, | |
341 unsigned NewSR, MachineRegisterInfo &MRI) { | |
342 if (!TargetRegisterInfo::isVirtualRegister(OldR) || | |
343 !TargetRegisterInfo::isVirtualRegister(NewR)) | |
344 return false; | |
345 auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); | |
346 decltype(End) NextI; | |
347 for (auto I = Begin; I != End; I = NextI) { | |
348 NextI = std::next(I); | |
349 I->setReg(NewR); | |
350 I->setSubReg(NewSR); | |
351 } | |
352 return Begin != End; | |
353 } | |
354 | |
355 | |
356 bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR, | |
357 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) { | |
358 if (!TargetRegisterInfo::isVirtualRegister(OldR) || | |
359 !TargetRegisterInfo::isVirtualRegister(NewR)) | |
360 return false; | |
361 auto Begin = MRI.use_begin(OldR), End = MRI.use_end(); | |
362 decltype(End) NextI; | |
363 for (auto I = Begin; I != End; I = NextI) { | |
364 NextI = std::next(I); | |
365 if (I->getSubReg() != OldSR) | |
366 continue; | |
367 I->setReg(NewR); | |
368 I->setSubReg(NewSR); | |
369 } | |
370 return Begin != End; | |
371 } | |
372 | |
373 | |
374 // For a register ref (pair Reg:Sub), set Begin to the position of the LSB | |
375 // of Sub in Reg, and set Width to the size of Sub in bits. Return true, | |
376 // if this succeeded, otherwise return false. | |
377 bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR, | |
378 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) { | |
379 const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg); | |
380 if (RC == &Hexagon::IntRegsRegClass) { | |
381 assert(RR.Sub == 0); | |
382 Begin = 0; | |
383 Width = 32; | |
384 return true; | |
385 } | |
386 if (RC == &Hexagon::DoubleRegsRegClass) { | |
387 if (RR.Sub == 0) { | |
388 Begin = 0; | |
389 Width = 64; | |
390 return true; | |
391 } | |
392 assert(RR.Sub == Hexagon::subreg_loreg || RR.Sub == Hexagon::subreg_hireg); | |
393 Width = 32; | |
394 Begin = (RR.Sub == Hexagon::subreg_loreg ? 0 : 32); | |
395 return true; | |
396 } | |
397 return false; | |
398 } | |
399 | |
400 | |
401 // For a REG_SEQUENCE, set SL to the low subregister and SH to the high | |
402 // subregister. | |
403 bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I, | |
404 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH) { | |
405 assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE); | |
406 unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm(); | |
407 assert(Sub1 != Sub2); | |
408 if (Sub1 == Hexagon::subreg_loreg && Sub2 == Hexagon::subreg_hireg) { | |
409 SL = I.getOperand(1); | |
410 SH = I.getOperand(3); | |
411 return true; | |
412 } | |
413 if (Sub1 == Hexagon::subreg_hireg && Sub2 == Hexagon::subreg_loreg) { | |
414 SH = I.getOperand(1); | |
415 SL = I.getOperand(3); | |
416 return true; | |
417 } | |
418 return false; | |
419 } | |
420 | |
421 | |
422 // All stores (except 64-bit stores) take a 32-bit register as the source | |
423 // of the value to be stored. If the instruction stores into a location | |
424 // that is shorter than 32 bits, some bits of the source register are not | |
425 // used. For each store instruction, calculate the set of used bits in | |
426 // the source register, and set appropriate bits in Bits. Return true if | |
427 // the bits are calculated, false otherwise. | |
428 bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits, | |
429 uint16_t Begin) { | |
430 using namespace Hexagon; | |
431 | |
432 switch (Opc) { | |
433 // Store byte | |
434 case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32 | |
435 case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new | |
436 case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32 | |
437 case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32 | |
438 case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32 | |
439 case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32 | |
440 case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new | |
441 case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new | |
442 case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new | |
443 case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new | |
444 case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32 | |
445 case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new | |
446 case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32 | |
447 case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32 | |
448 case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32 | |
449 case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32 | |
450 case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new | |
451 case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new | |
452 case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new | |
453 case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new | |
454 case S4_storerb_ap: // memb(Re32=#U6)=Rt32 | |
455 case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new | |
456 case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32 | |
457 case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new | |
458 case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32 | |
459 case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new | |
460 case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32 | |
461 case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new | |
462 case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32 | |
463 case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new | |
464 case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32 | |
465 case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new | |
466 case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32 | |
467 case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new | |
468 case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32 | |
469 case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32 | |
470 case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 | |
471 case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32 | |
472 case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new | |
473 case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new | |
474 case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new | |
475 case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new | |
476 case S2_storerbgp: // memb(gp+#u16:0)=Rt32 | |
477 case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new | |
478 case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32 | |
479 case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32 | |
480 case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32 | |
481 case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32 | |
482 case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new | |
483 case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new | |
484 case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new | |
485 case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new | |
486 Bits.set(Begin, Begin+8); | |
487 return true; | |
488 | |
489 // Store low half | |
490 case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32 | |
491 case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new | |
492 case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32 | |
493 case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32 | |
494 case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32 | |
495 case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32 | |
496 case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new | |
497 case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new | |
498 case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new | |
499 case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new | |
500 case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32 | |
501 case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new | |
502 case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32 | |
503 case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32 | |
504 case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32 | |
505 case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32 | |
506 case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new | |
507 case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new | |
508 case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new | |
509 case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new | |
510 case S4_storerh_ap: // memh(Re32=#U6)=Rt32 | |
511 case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new | |
512 case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32 | |
513 case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new | |
514 case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32 | |
515 case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new | |
516 case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32 | |
517 case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new | |
518 case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32 | |
519 case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new | |
520 case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32 | |
521 case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new | |
522 case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32 | |
523 case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32 | |
524 case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32 | |
525 case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 | |
526 case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32 | |
527 case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new | |
528 case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new | |
529 case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new | |
530 case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new | |
531 case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new | |
532 case S2_storerhgp: // memh(gp+#u16:1)=Rt32 | |
533 case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new | |
534 case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32 | |
535 case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32 | |
536 case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32 | |
537 case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32 | |
538 case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new | |
539 case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new | |
540 case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new | |
541 case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new | |
542 Bits.set(Begin, Begin+16); | |
543 return true; | |
544 | |
545 // Store high half | |
546 case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32 | |
547 case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32 | |
548 case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32 | |
549 case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32 | |
550 case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32 | |
551 case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32 | |
552 case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32 | |
553 case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32 | |
554 case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32 | |
555 case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32 | |
556 case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32 | |
557 case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32 | |
558 case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32 | |
559 case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32 | |
560 case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32 | |
561 case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32 | |
562 case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32 | |
563 case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 | |
564 case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32 | |
565 case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 | |
566 case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32 | |
567 case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32 | |
568 case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32 | |
569 case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32 | |
570 case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32 | |
571 case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32 | |
572 Bits.set(Begin+16, Begin+32); | |
573 return true; | |
574 } | |
575 | |
576 return false; | |
577 } | |
578 | |
579 | |
580 // For an instruction with opcode Opc, calculate the set of bits that it | |
581 // uses in a register in operand OpN. This only calculates the set of used | |
582 // bits for cases where it does not depend on any operands (as is the case | |
583 // in shifts, for example). For concrete instructions from a program, the | |
584 // operand may be a subregister of a larger register, while Bits would | |
585 // correspond to the larger register in its entirety. Because of that, | |
586 // the parameter Begin can be used to indicate which bit of Bits should be | |
587 // considered the LSB of of the operand. | |
588 bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN, | |
589 BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) { | |
590 using namespace Hexagon; | |
591 | |
592 const MCInstrDesc &D = HII.get(Opc); | |
593 if (D.mayStore()) { | |
594 if (OpN == D.getNumOperands()-1) | |
595 return getUsedBitsInStore(Opc, Bits, Begin); | |
596 return false; | |
597 } | |
598 | |
599 switch (Opc) { | |
600 // One register source. Used bits: R1[0-7]. | |
601 case A2_sxtb: | |
602 case A2_zxtb: | |
603 case A4_cmpbeqi: | |
604 case A4_cmpbgti: | |
605 case A4_cmpbgtui: | |
606 if (OpN == 1) { | |
607 Bits.set(Begin, Begin+8); | |
608 return true; | |
609 } | |
610 break; | |
611 | |
612 // One register source. Used bits: R1[0-15]. | |
613 case A2_aslh: | |
614 case A2_sxth: | |
615 case A2_zxth: | |
616 case A4_cmpheqi: | |
617 case A4_cmphgti: | |
618 case A4_cmphgtui: | |
619 if (OpN == 1) { | |
620 Bits.set(Begin, Begin+16); | |
621 return true; | |
622 } | |
623 break; | |
624 | |
625 // One register source. Used bits: R1[16-31]. | |
626 case A2_asrh: | |
627 if (OpN == 1) { | |
628 Bits.set(Begin+16, Begin+32); | |
629 return true; | |
630 } | |
631 break; | |
632 | |
633 // Two register sources. Used bits: R1[0-7], R2[0-7]. | |
634 case A4_cmpbeq: | |
635 case A4_cmpbgt: | |
636 case A4_cmpbgtu: | |
637 if (OpN == 1) { | |
638 Bits.set(Begin, Begin+8); | |
639 return true; | |
640 } | |
641 break; | |
642 | |
643 // Two register sources. Used bits: R1[0-15], R2[0-15]. | |
644 case A4_cmpheq: | |
645 case A4_cmphgt: | |
646 case A4_cmphgtu: | |
647 case A2_addh_h16_ll: | |
648 case A2_addh_h16_sat_ll: | |
649 case A2_addh_l16_ll: | |
650 case A2_addh_l16_sat_ll: | |
651 case A2_combine_ll: | |
652 case A2_subh_h16_ll: | |
653 case A2_subh_h16_sat_ll: | |
654 case A2_subh_l16_ll: | |
655 case A2_subh_l16_sat_ll: | |
656 case M2_mpy_acc_ll_s0: | |
657 case M2_mpy_acc_ll_s1: | |
658 case M2_mpy_acc_sat_ll_s0: | |
659 case M2_mpy_acc_sat_ll_s1: | |
660 case M2_mpy_ll_s0: | |
661 case M2_mpy_ll_s1: | |
662 case M2_mpy_nac_ll_s0: | |
663 case M2_mpy_nac_ll_s1: | |
664 case M2_mpy_nac_sat_ll_s0: | |
665 case M2_mpy_nac_sat_ll_s1: | |
666 case M2_mpy_rnd_ll_s0: | |
667 case M2_mpy_rnd_ll_s1: | |
668 case M2_mpy_sat_ll_s0: | |
669 case M2_mpy_sat_ll_s1: | |
670 case M2_mpy_sat_rnd_ll_s0: | |
671 case M2_mpy_sat_rnd_ll_s1: | |
672 case M2_mpyd_acc_ll_s0: | |
673 case M2_mpyd_acc_ll_s1: | |
674 case M2_mpyd_ll_s0: | |
675 case M2_mpyd_ll_s1: | |
676 case M2_mpyd_nac_ll_s0: | |
677 case M2_mpyd_nac_ll_s1: | |
678 case M2_mpyd_rnd_ll_s0: | |
679 case M2_mpyd_rnd_ll_s1: | |
680 case M2_mpyu_acc_ll_s0: | |
681 case M2_mpyu_acc_ll_s1: | |
682 case M2_mpyu_ll_s0: | |
683 case M2_mpyu_ll_s1: | |
684 case M2_mpyu_nac_ll_s0: | |
685 case M2_mpyu_nac_ll_s1: | |
686 case M2_mpyud_acc_ll_s0: | |
687 case M2_mpyud_acc_ll_s1: | |
688 case M2_mpyud_ll_s0: | |
689 case M2_mpyud_ll_s1: | |
690 case M2_mpyud_nac_ll_s0: | |
691 case M2_mpyud_nac_ll_s1: | |
692 if (OpN == 1 || OpN == 2) { | |
693 Bits.set(Begin, Begin+16); | |
694 return true; | |
695 } | |
696 break; | |
697 | |
698 // Two register sources. Used bits: R1[0-15], R2[16-31]. | |
699 case A2_addh_h16_lh: | |
700 case A2_addh_h16_sat_lh: | |
701 case A2_combine_lh: | |
702 case A2_subh_h16_lh: | |
703 case A2_subh_h16_sat_lh: | |
704 case M2_mpy_acc_lh_s0: | |
705 case M2_mpy_acc_lh_s1: | |
706 case M2_mpy_acc_sat_lh_s0: | |
707 case M2_mpy_acc_sat_lh_s1: | |
708 case M2_mpy_lh_s0: | |
709 case M2_mpy_lh_s1: | |
710 case M2_mpy_nac_lh_s0: | |
711 case M2_mpy_nac_lh_s1: | |
712 case M2_mpy_nac_sat_lh_s0: | |
713 case M2_mpy_nac_sat_lh_s1: | |
714 case M2_mpy_rnd_lh_s0: | |
715 case M2_mpy_rnd_lh_s1: | |
716 case M2_mpy_sat_lh_s0: | |
717 case M2_mpy_sat_lh_s1: | |
718 case M2_mpy_sat_rnd_lh_s0: | |
719 case M2_mpy_sat_rnd_lh_s1: | |
720 case M2_mpyd_acc_lh_s0: | |
721 case M2_mpyd_acc_lh_s1: | |
722 case M2_mpyd_lh_s0: | |
723 case M2_mpyd_lh_s1: | |
724 case M2_mpyd_nac_lh_s0: | |
725 case M2_mpyd_nac_lh_s1: | |
726 case M2_mpyd_rnd_lh_s0: | |
727 case M2_mpyd_rnd_lh_s1: | |
728 case M2_mpyu_acc_lh_s0: | |
729 case M2_mpyu_acc_lh_s1: | |
730 case M2_mpyu_lh_s0: | |
731 case M2_mpyu_lh_s1: | |
732 case M2_mpyu_nac_lh_s0: | |
733 case M2_mpyu_nac_lh_s1: | |
734 case M2_mpyud_acc_lh_s0: | |
735 case M2_mpyud_acc_lh_s1: | |
736 case M2_mpyud_lh_s0: | |
737 case M2_mpyud_lh_s1: | |
738 case M2_mpyud_nac_lh_s0: | |
739 case M2_mpyud_nac_lh_s1: | |
740 // These four are actually LH. | |
741 case A2_addh_l16_hl: | |
742 case A2_addh_l16_sat_hl: | |
743 case A2_subh_l16_hl: | |
744 case A2_subh_l16_sat_hl: | |
745 if (OpN == 1) { | |
746 Bits.set(Begin, Begin+16); | |
747 return true; | |
748 } | |
749 if (OpN == 2) { | |
750 Bits.set(Begin+16, Begin+32); | |
751 return true; | |
752 } | |
753 break; | |
754 | |
755 // Two register sources, used bits: R1[16-31], R2[0-15]. | |
756 case A2_addh_h16_hl: | |
757 case A2_addh_h16_sat_hl: | |
758 case A2_combine_hl: | |
759 case A2_subh_h16_hl: | |
760 case A2_subh_h16_sat_hl: | |
761 case M2_mpy_acc_hl_s0: | |
762 case M2_mpy_acc_hl_s1: | |
763 case M2_mpy_acc_sat_hl_s0: | |
764 case M2_mpy_acc_sat_hl_s1: | |
765 case M2_mpy_hl_s0: | |
766 case M2_mpy_hl_s1: | |
767 case M2_mpy_nac_hl_s0: | |
768 case M2_mpy_nac_hl_s1: | |
769 case M2_mpy_nac_sat_hl_s0: | |
770 case M2_mpy_nac_sat_hl_s1: | |
771 case M2_mpy_rnd_hl_s0: | |
772 case M2_mpy_rnd_hl_s1: | |
773 case M2_mpy_sat_hl_s0: | |
774 case M2_mpy_sat_hl_s1: | |
775 case M2_mpy_sat_rnd_hl_s0: | |
776 case M2_mpy_sat_rnd_hl_s1: | |
777 case M2_mpyd_acc_hl_s0: | |
778 case M2_mpyd_acc_hl_s1: | |
779 case M2_mpyd_hl_s0: | |
780 case M2_mpyd_hl_s1: | |
781 case M2_mpyd_nac_hl_s0: | |
782 case M2_mpyd_nac_hl_s1: | |
783 case M2_mpyd_rnd_hl_s0: | |
784 case M2_mpyd_rnd_hl_s1: | |
785 case M2_mpyu_acc_hl_s0: | |
786 case M2_mpyu_acc_hl_s1: | |
787 case M2_mpyu_hl_s0: | |
788 case M2_mpyu_hl_s1: | |
789 case M2_mpyu_nac_hl_s0: | |
790 case M2_mpyu_nac_hl_s1: | |
791 case M2_mpyud_acc_hl_s0: | |
792 case M2_mpyud_acc_hl_s1: | |
793 case M2_mpyud_hl_s0: | |
794 case M2_mpyud_hl_s1: | |
795 case M2_mpyud_nac_hl_s0: | |
796 case M2_mpyud_nac_hl_s1: | |
797 if (OpN == 1) { | |
798 Bits.set(Begin+16, Begin+32); | |
799 return true; | |
800 } | |
801 if (OpN == 2) { | |
802 Bits.set(Begin, Begin+16); | |
803 return true; | |
804 } | |
805 break; | |
806 | |
807 // Two register sources, used bits: R1[16-31], R2[16-31]. | |
808 case A2_addh_h16_hh: | |
809 case A2_addh_h16_sat_hh: | |
810 case A2_combine_hh: | |
811 case A2_subh_h16_hh: | |
812 case A2_subh_h16_sat_hh: | |
813 case M2_mpy_acc_hh_s0: | |
814 case M2_mpy_acc_hh_s1: | |
815 case M2_mpy_acc_sat_hh_s0: | |
816 case M2_mpy_acc_sat_hh_s1: | |
817 case M2_mpy_hh_s0: | |
818 case M2_mpy_hh_s1: | |
819 case M2_mpy_nac_hh_s0: | |
820 case M2_mpy_nac_hh_s1: | |
821 case M2_mpy_nac_sat_hh_s0: | |
822 case M2_mpy_nac_sat_hh_s1: | |
823 case M2_mpy_rnd_hh_s0: | |
824 case M2_mpy_rnd_hh_s1: | |
825 case M2_mpy_sat_hh_s0: | |
826 case M2_mpy_sat_hh_s1: | |
827 case M2_mpy_sat_rnd_hh_s0: | |
828 case M2_mpy_sat_rnd_hh_s1: | |
829 case M2_mpyd_acc_hh_s0: | |
830 case M2_mpyd_acc_hh_s1: | |
831 case M2_mpyd_hh_s0: | |
832 case M2_mpyd_hh_s1: | |
833 case M2_mpyd_nac_hh_s0: | |
834 case M2_mpyd_nac_hh_s1: | |
835 case M2_mpyd_rnd_hh_s0: | |
836 case M2_mpyd_rnd_hh_s1: | |
837 case M2_mpyu_acc_hh_s0: | |
838 case M2_mpyu_acc_hh_s1: | |
839 case M2_mpyu_hh_s0: | |
840 case M2_mpyu_hh_s1: | |
841 case M2_mpyu_nac_hh_s0: | |
842 case M2_mpyu_nac_hh_s1: | |
843 case M2_mpyud_acc_hh_s0: | |
844 case M2_mpyud_acc_hh_s1: | |
845 case M2_mpyud_hh_s0: | |
846 case M2_mpyud_hh_s1: | |
847 case M2_mpyud_nac_hh_s0: | |
848 case M2_mpyud_nac_hh_s1: | |
849 if (OpN == 1 || OpN == 2) { | |
850 Bits.set(Begin+16, Begin+32); | |
851 return true; | |
852 } | |
853 break; | |
854 } | |
855 | |
856 return false; | |
857 } | |
858 | |
859 | |
860 // Calculate the register class that matches Reg:Sub. For example, if | |
861 // vreg1 is a double register, then vreg1:subreg_hireg would match "int" | |
862 // register class. | |
863 const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass( | |
864 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) { | |
865 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) | |
866 return nullptr; | |
867 auto *RC = MRI.getRegClass(RR.Reg); | |
868 if (RR.Sub == 0) | |
869 return RC; | |
870 | |
871 auto VerifySR = [] (unsigned Sub) -> void { | |
872 assert(Sub == Hexagon::subreg_hireg || Sub == Hexagon::subreg_loreg); | |
873 }; | |
874 | |
875 switch (RC->getID()) { | |
876 case Hexagon::DoubleRegsRegClassID: | |
877 VerifySR(RR.Sub); | |
878 return &Hexagon::IntRegsRegClass; | |
879 case Hexagon::VecDblRegsRegClassID: | |
880 VerifySR(RR.Sub); | |
881 return &Hexagon::VectorRegsRegClass; | |
882 case Hexagon::VecDblRegs128BRegClassID: | |
883 VerifySR(RR.Sub); | |
884 return &Hexagon::VectorRegs128BRegClass; | |
885 } | |
886 return nullptr; | |
887 } | |
888 | |
889 | |
890 // Check if RD could be replaced with RS at any possible use of RD. | |
891 // For example a predicate register cannot be replaced with a integer | |
892 // register, but a 64-bit register with a subregister can be replaced | |
893 // with a 32-bit register. | |
894 bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD, | |
895 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) { | |
896 if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) || | |
897 !TargetRegisterInfo::isVirtualRegister(RS.Reg)) | |
898 return false; | |
899 // Return false if one (or both) classes are nullptr. | |
900 auto *DRC = getFinalVRegClass(RD, MRI); | |
901 if (!DRC) | |
902 return false; | |
903 | |
904 return DRC == getFinalVRegClass(RS, MRI); | |
905 } | |
906 | |
907 | |
908 // | |
909 // Dead code elimination | |
910 // | |
911 namespace { | |
912 class DeadCodeElimination { | |
913 public: | |
914 DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt) | |
915 : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()), | |
916 MDT(mdt), MRI(mf.getRegInfo()) {} | |
917 | |
918 bool run() { | |
919 return runOnNode(MDT.getRootNode()); | |
920 } | |
921 | |
922 private: | |
923 bool isDead(unsigned R) const; | |
924 bool runOnNode(MachineDomTreeNode *N); | |
925 | |
926 MachineFunction &MF; | |
927 const HexagonInstrInfo &HII; | |
928 MachineDominatorTree &MDT; | |
929 MachineRegisterInfo &MRI; | |
930 }; | |
931 } | |
932 | |
933 | |
934 bool DeadCodeElimination::isDead(unsigned R) const { | |
935 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) { | |
936 MachineInstr *UseI = I->getParent(); | |
937 if (UseI->isDebugValue()) | |
938 continue; | |
939 if (UseI->isPHI()) { | |
940 assert(!UseI->getOperand(0).getSubReg()); | |
941 unsigned DR = UseI->getOperand(0).getReg(); | |
942 if (DR == R) | |
943 continue; | |
944 } | |
945 return false; | |
946 } | |
947 return true; | |
948 } | |
949 | |
950 | |
951 bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) { | |
952 bool Changed = false; | |
953 typedef GraphTraits<MachineDomTreeNode*> GTN; | |
954 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) | |
955 Changed |= runOnNode(*I); | |
956 | |
957 MachineBasicBlock *B = N->getBlock(); | |
958 std::vector<MachineInstr*> Instrs; | |
959 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) | |
960 Instrs.push_back(&*I); | |
961 | |
962 for (auto MI : Instrs) { | |
963 unsigned Opc = MI->getOpcode(); | |
964 // Do not touch lifetime markers. This is why the target-independent DCE | |
965 // cannot be used. | |
966 if (Opc == TargetOpcode::LIFETIME_START || | |
967 Opc == TargetOpcode::LIFETIME_END) | |
968 continue; | |
969 bool Store = false; | |
970 if (MI->isInlineAsm()) | |
971 continue; | |
972 // Delete PHIs if possible. | |
973 if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store)) | |
974 continue; | |
975 | |
976 bool AllDead = true; | |
977 SmallVector<unsigned,2> Regs; | |
978 for (auto &Op : MI->operands()) { | |
979 if (!Op.isReg() || !Op.isDef()) | |
980 continue; | |
981 unsigned R = Op.getReg(); | |
982 if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) { | |
983 AllDead = false; | |
984 break; | |
985 } | |
986 Regs.push_back(R); | |
987 } | |
988 if (!AllDead) | |
989 continue; | |
990 | |
991 B->erase(MI); | |
992 for (unsigned i = 0, n = Regs.size(); i != n; ++i) | |
993 MRI.markUsesInDebugValueAsUndef(Regs[i]); | |
994 Changed = true; | |
995 } | |
996 | |
997 return Changed; | |
998 } | |
999 | |
1000 | |
1001 // | |
1002 // Eliminate redundant instructions | |
1003 // | |
1004 // This transformation will identify instructions where the output register | |
1005 // is the same as one of its input registers. This only works on instructions | |
1006 // that define a single register (unlike post-increment loads, for example). | |
1007 // The equality check is actually more detailed: the code calculates which | |
1008 // bits of the output are used, and only compares these bits with the input | |
1009 // registers. | |
1010 // If the output matches an input, the instruction is replaced with COPY. | |
1011 // The copies will be removed by another transformation. | |
1012 namespace { | |
1013 class RedundantInstrElimination : public Transformation { | |
1014 public: | |
1015 RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii, | |
1016 MachineRegisterInfo &mri) | |
1017 : Transformation(true), HII(hii), MRI(mri), BT(bt) {} | |
1018 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; | |
1019 private: | |
1020 bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN, | |
1021 unsigned &LostB, unsigned &LostE); | |
1022 bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN, | |
1023 unsigned &LostB, unsigned &LostE); | |
1024 bool computeUsedBits(unsigned Reg, BitVector &Bits); | |
1025 bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits, | |
1026 uint16_t Begin); | |
1027 bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS); | |
1028 | |
1029 const HexagonInstrInfo &HII; | |
1030 MachineRegisterInfo &MRI; | |
1031 BitTracker &BT; | |
1032 }; | |
1033 } | |
1034 | |
1035 | |
1036 // Check if the instruction is a lossy shift left, where the input being | |
1037 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range | |
1038 // of bit indices that are lost. | |
1039 bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI, | |
1040 unsigned OpN, unsigned &LostB, unsigned &LostE) { | |
1041 using namespace Hexagon; | |
1042 unsigned Opc = MI.getOpcode(); | |
1043 unsigned ImN, RegN, Width; | |
1044 switch (Opc) { | |
1045 case S2_asl_i_p: | |
1046 ImN = 2; | |
1047 RegN = 1; | |
1048 Width = 64; | |
1049 break; | |
1050 case S2_asl_i_p_acc: | |
1051 case S2_asl_i_p_and: | |
1052 case S2_asl_i_p_nac: | |
1053 case S2_asl_i_p_or: | |
1054 case S2_asl_i_p_xacc: | |
1055 ImN = 3; | |
1056 RegN = 2; | |
1057 Width = 64; | |
1058 break; | |
1059 case S2_asl_i_r: | |
1060 ImN = 2; | |
1061 RegN = 1; | |
1062 Width = 32; | |
1063 break; | |
1064 case S2_addasl_rrri: | |
1065 case S4_andi_asl_ri: | |
1066 case S4_ori_asl_ri: | |
1067 case S4_addi_asl_ri: | |
1068 case S4_subi_asl_ri: | |
1069 case S2_asl_i_r_acc: | |
1070 case S2_asl_i_r_and: | |
1071 case S2_asl_i_r_nac: | |
1072 case S2_asl_i_r_or: | |
1073 case S2_asl_i_r_sat: | |
1074 case S2_asl_i_r_xacc: | |
1075 ImN = 3; | |
1076 RegN = 2; | |
1077 Width = 32; | |
1078 break; | |
1079 default: | |
1080 return false; | |
1081 } | |
1082 | |
1083 if (RegN != OpN) | |
1084 return false; | |
1085 | |
1086 assert(MI.getOperand(ImN).isImm()); | |
1087 unsigned S = MI.getOperand(ImN).getImm(); | |
1088 if (S == 0) | |
1089 return false; | |
1090 LostB = Width-S; | |
1091 LostE = Width; | |
1092 return true; | |
1093 } | |
1094 | |
1095 | |
1096 // Check if the instruction is a lossy shift right, where the input being | |
1097 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range | |
1098 // of bit indices that are lost. | |
1099 bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI, | |
1100 unsigned OpN, unsigned &LostB, unsigned &LostE) { | |
1101 using namespace Hexagon; | |
1102 unsigned Opc = MI.getOpcode(); | |
1103 unsigned ImN, RegN; | |
1104 switch (Opc) { | |
1105 case S2_asr_i_p: | |
1106 case S2_lsr_i_p: | |
1107 ImN = 2; | |
1108 RegN = 1; | |
1109 break; | |
1110 case S2_asr_i_p_acc: | |
1111 case S2_asr_i_p_and: | |
1112 case S2_asr_i_p_nac: | |
1113 case S2_asr_i_p_or: | |
1114 case S2_lsr_i_p_acc: | |
1115 case S2_lsr_i_p_and: | |
1116 case S2_lsr_i_p_nac: | |
1117 case S2_lsr_i_p_or: | |
1118 case S2_lsr_i_p_xacc: | |
1119 ImN = 3; | |
1120 RegN = 2; | |
1121 break; | |
1122 case S2_asr_i_r: | |
1123 case S2_lsr_i_r: | |
1124 ImN = 2; | |
1125 RegN = 1; | |
1126 break; | |
1127 case S4_andi_lsr_ri: | |
1128 case S4_ori_lsr_ri: | |
1129 case S4_addi_lsr_ri: | |
1130 case S4_subi_lsr_ri: | |
1131 case S2_asr_i_r_acc: | |
1132 case S2_asr_i_r_and: | |
1133 case S2_asr_i_r_nac: | |
1134 case S2_asr_i_r_or: | |
1135 case S2_lsr_i_r_acc: | |
1136 case S2_lsr_i_r_and: | |
1137 case S2_lsr_i_r_nac: | |
1138 case S2_lsr_i_r_or: | |
1139 case S2_lsr_i_r_xacc: | |
1140 ImN = 3; | |
1141 RegN = 2; | |
1142 break; | |
1143 | |
1144 default: | |
1145 return false; | |
1146 } | |
1147 | |
1148 if (RegN != OpN) | |
1149 return false; | |
1150 | |
1151 assert(MI.getOperand(ImN).isImm()); | |
1152 unsigned S = MI.getOperand(ImN).getImm(); | |
1153 LostB = 0; | |
1154 LostE = S; | |
1155 return true; | |
1156 } | |
1157 | |
1158 | |
1159 // Calculate the bit vector that corresponds to the used bits of register Reg. | |
1160 // The vector Bits has the same size, as the size of Reg in bits. If the cal- | |
1161 // culation fails (i.e. the used bits are unknown), it returns false. Other- | |
1162 // wise, it returns true and sets the corresponding bits in Bits. | |
1163 bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) { | |
1164 BitVector Used(Bits.size()); | |
1165 RegisterSet Visited; | |
1166 std::vector<unsigned> Pending; | |
1167 Pending.push_back(Reg); | |
1168 | |
1169 for (unsigned i = 0; i < Pending.size(); ++i) { | |
1170 unsigned R = Pending[i]; | |
1171 if (Visited.has(R)) | |
1172 continue; | |
1173 Visited.insert(R); | |
1174 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) { | |
1175 BitTracker::RegisterRef UR = *I; | |
1176 unsigned B, W; | |
1177 if (!HBS::getSubregMask(UR, B, W, MRI)) | |
1178 return false; | |
1179 MachineInstr &UseI = *I->getParent(); | |
1180 if (UseI.isPHI() || UseI.isCopy()) { | |
1181 unsigned DefR = UseI.getOperand(0).getReg(); | |
1182 if (!TargetRegisterInfo::isVirtualRegister(DefR)) | |
1183 return false; | |
1184 Pending.push_back(DefR); | |
1185 } else { | |
1186 if (!computeUsedBits(UseI, I.getOperandNo(), Used, B)) | |
1187 return false; | |
1188 } | |
1189 } | |
1190 } | |
1191 Bits |= Used; | |
1192 return true; | |
1193 } | |
1194 | |
1195 | |
1196 // Calculate the bits used by instruction MI in a register in operand OpN. | |
1197 // Return true/false if the calculation succeeds/fails. If is succeeds, set | |
1198 // used bits in Bits. This function does not reset any bits in Bits, so | |
1199 // subsequent calls over different instructions will result in the union | |
1200 // of the used bits in all these instructions. | |
1201 // The register in question may be used with a sub-register, whereas Bits | |
1202 // holds the bits for the entire register. To keep track of that, the | |
1203 // argument Begin indicates where in Bits is the lowest-significant bit | |
1204 // of the register used in operand OpN. For example, in instruction: | |
1205 // vreg1 = S2_lsr_i_r vreg2:subreg_hireg, 10 | |
1206 // the operand 1 is a 32-bit register, which happens to be a subregister | |
1207 // of the 64-bit register vreg2, and that subregister starts at position 32. | |
1208 // In this case Begin=32, since Bits[32] would be the lowest-significant bit | |
1209 // of vreg2:subreg_hireg. | |
1210 bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI, | |
1211 unsigned OpN, BitVector &Bits, uint16_t Begin) { | |
1212 unsigned Opc = MI.getOpcode(); | |
1213 BitVector T(Bits.size()); | |
1214 bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII); | |
1215 // Even if we don't have bits yet, we could still provide some information | |
1216 // if the instruction is a lossy shift: the lost bits will be marked as | |
1217 // not used. | |
1218 unsigned LB, LE; | |
1219 if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) { | |
1220 assert(MI.getOperand(OpN).isReg()); | |
1221 BitTracker::RegisterRef RR = MI.getOperand(OpN); | |
1222 const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI); | |
1223 uint16_t Width = RC->getSize()*8; | |
1224 | |
1225 if (!GotBits) | |
1226 T.set(Begin, Begin+Width); | |
1227 assert(LB <= LE && LB < Width && LE <= Width); | |
1228 T.reset(Begin+LB, Begin+LE); | |
1229 GotBits = true; | |
1230 } | |
1231 if (GotBits) | |
1232 Bits |= T; | |
1233 return GotBits; | |
1234 } | |
1235 | |
1236 | |
1237 // Calculates the used bits in RD ("defined register"), and checks if these | |
1238 // bits in RS ("used register") and RD are identical. | |
1239 bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD, | |
1240 BitTracker::RegisterRef RS) { | |
1241 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg); | |
1242 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); | |
1243 | |
1244 unsigned DB, DW; | |
1245 if (!HBS::getSubregMask(RD, DB, DW, MRI)) | |
1246 return false; | |
1247 unsigned SB, SW; | |
1248 if (!HBS::getSubregMask(RS, SB, SW, MRI)) | |
1249 return false; | |
1250 if (SW != DW) | |
1251 return false; | |
1252 | |
1253 BitVector Used(DC.width()); | |
1254 if (!computeUsedBits(RD.Reg, Used)) | |
1255 return false; | |
1256 | |
1257 for (unsigned i = 0; i != DW; ++i) | |
1258 if (Used[i+DB] && DC[DB+i] != SC[SB+i]) | |
1259 return false; | |
1260 return true; | |
1261 } | |
1262 | |
1263 | |
1264 bool RedundantInstrElimination::processBlock(MachineBasicBlock &B, | |
1265 const RegisterSet&) { | |
1266 bool Changed = false; | |
1267 | |
1268 for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) { | |
1269 NextI = std::next(I); | |
1270 MachineInstr *MI = &*I; | |
1271 | |
1272 if (MI->getOpcode() == TargetOpcode::COPY) | |
1273 continue; | |
1274 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) | |
1275 continue; | |
1276 unsigned NumD = MI->getDesc().getNumDefs(); | |
1277 if (NumD != 1) | |
1278 continue; | |
1279 | |
1280 BitTracker::RegisterRef RD = MI->getOperand(0); | |
1281 if (!BT.has(RD.Reg)) | |
1282 continue; | |
1283 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg); | |
1284 auto At = MI->isPHI() ? B.getFirstNonPHI() | |
1285 : MachineBasicBlock::iterator(MI); | |
1286 | |
1287 // Find a source operand that is equal to the result. | |
1288 for (auto &Op : MI->uses()) { | |
1289 if (!Op.isReg()) | |
1290 continue; | |
1291 BitTracker::RegisterRef RS = Op; | |
1292 if (!BT.has(RS.Reg)) | |
1293 continue; | |
1294 if (!HBS::isTransparentCopy(RD, RS, MRI)) | |
1295 continue; | |
1296 | |
1297 unsigned BN, BW; | |
1298 if (!HBS::getSubregMask(RS, BN, BW, MRI)) | |
1299 continue; | |
1300 | |
1301 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); | |
1302 if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW)) | |
1303 continue; | |
1304 | |
1305 // If found, replace the instruction with a COPY. | |
1306 DebugLoc DL = MI->getDebugLoc(); | |
1307 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); | |
1308 unsigned NewR = MRI.createVirtualRegister(FRC); | |
1309 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) | |
1310 .addReg(RS.Reg, 0, RS.Sub); | |
1311 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); | |
1312 BT.put(BitTracker::RegisterRef(NewR), SC); | |
1313 Changed = true; | |
1314 break; | |
1315 } | |
1316 } | |
1317 | |
1318 return Changed; | |
1319 } | |
1320 | |
1321 | |
1322 // | |
1323 // Const generation | |
1324 // | |
1325 // Recognize instructions that produce constant values known at compile-time. | |
1326 // Replace them with register definitions that load these constants directly. | |
1327 namespace { | |
1328 class ConstGeneration : public Transformation { | |
1329 public: | |
1330 ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii, | |
1331 MachineRegisterInfo &mri) | |
1332 : Transformation(true), HII(hii), MRI(mri), BT(bt) {} | |
1333 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; | |
1334 private: | |
1335 bool isTfrConst(const MachineInstr *MI) const; | |
1336 bool isConst(unsigned R, int64_t &V) const; | |
1337 unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C, | |
1338 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL); | |
1339 | |
1340 const HexagonInstrInfo &HII; | |
1341 MachineRegisterInfo &MRI; | |
1342 BitTracker &BT; | |
1343 }; | |
1344 } | |
1345 | |
1346 bool ConstGeneration::isConst(unsigned R, int64_t &C) const { | |
1347 if (!BT.has(R)) | |
1348 return false; | |
1349 const BitTracker::RegisterCell &RC = BT.lookup(R); | |
1350 int64_t T = 0; | |
1351 for (unsigned i = RC.width(); i > 0; --i) { | |
1352 const BitTracker::BitValue &V = RC[i-1]; | |
1353 T <<= 1; | |
1354 if (V.is(1)) | |
1355 T |= 1; | |
1356 else if (!V.is(0)) | |
1357 return false; | |
1358 } | |
1359 C = T; | |
1360 return true; | |
1361 } | |
1362 | |
1363 | |
1364 bool ConstGeneration::isTfrConst(const MachineInstr *MI) const { | |
1365 unsigned Opc = MI->getOpcode(); | |
1366 switch (Opc) { | |
1367 case Hexagon::A2_combineii: | |
1368 case Hexagon::A4_combineii: | |
1369 case Hexagon::A2_tfrsi: | |
1370 case Hexagon::A2_tfrpi: | |
1371 case Hexagon::TFR_PdTrue: | |
1372 case Hexagon::TFR_PdFalse: | |
1373 case Hexagon::CONST32_Int_Real: | |
1374 case Hexagon::CONST64_Int_Real: | |
1375 return true; | |
1376 } | |
1377 return false; | |
1378 } | |
1379 | |
1380 | |
1381 // Generate a transfer-immediate instruction that is appropriate for the | |
1382 // register class and the actual value being transferred. | |
1383 unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C, | |
1384 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) { | |
1385 unsigned Reg = MRI.createVirtualRegister(RC); | |
1386 if (RC == &Hexagon::IntRegsRegClass) { | |
1387 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg) | |
1388 .addImm(int32_t(C)); | |
1389 return Reg; | |
1390 } | |
1391 | |
1392 if (RC == &Hexagon::DoubleRegsRegClass) { | |
1393 if (isInt<8>(C)) { | |
1394 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg) | |
1395 .addImm(C); | |
1396 return Reg; | |
1397 } | |
1398 | |
1399 unsigned Lo = Lo_32(C), Hi = Hi_32(C); | |
1400 if (isInt<8>(Lo) || isInt<8>(Hi)) { | |
1401 unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii | |
1402 : Hexagon::A4_combineii; | |
1403 BuildMI(B, At, DL, HII.get(Opc), Reg) | |
1404 .addImm(int32_t(Hi)) | |
1405 .addImm(int32_t(Lo)); | |
1406 return Reg; | |
1407 } | |
1408 | |
1409 BuildMI(B, At, DL, HII.get(Hexagon::CONST64_Int_Real), Reg) | |
1410 .addImm(C); | |
1411 return Reg; | |
1412 } | |
1413 | |
1414 if (RC == &Hexagon::PredRegsRegClass) { | |
1415 unsigned Opc; | |
1416 if (C == 0) | |
1417 Opc = Hexagon::TFR_PdFalse; | |
1418 else if ((C & 0xFF) == 0xFF) | |
1419 Opc = Hexagon::TFR_PdTrue; | |
1420 else | |
1421 return 0; | |
1422 BuildMI(B, At, DL, HII.get(Opc), Reg); | |
1423 return Reg; | |
1424 } | |
1425 | |
1426 return 0; | |
1427 } | |
1428 | |
1429 | |
1430 bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) { | |
1431 bool Changed = false; | |
1432 RegisterSet Defs; | |
1433 | |
1434 for (auto I = B.begin(), E = B.end(); I != E; ++I) { | |
1435 if (isTfrConst(I)) | |
1436 continue; | |
1437 Defs.clear(); | |
1438 HBS::getInstrDefs(*I, Defs); | |
1439 if (Defs.count() != 1) | |
1440 continue; | |
1441 unsigned DR = Defs.find_first(); | |
1442 if (!TargetRegisterInfo::isVirtualRegister(DR)) | |
1443 continue; | |
1444 int64_t C; | |
1445 if (isConst(DR, C)) { | |
1446 DebugLoc DL = I->getDebugLoc(); | |
1447 auto At = I->isPHI() ? B.getFirstNonPHI() : I; | |
1448 unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL); | |
1449 if (ImmReg) { | |
1450 HBS::replaceReg(DR, ImmReg, MRI); | |
1451 BT.put(ImmReg, BT.lookup(DR)); | |
1452 Changed = true; | |
1453 } | |
1454 } | |
1455 } | |
1456 return Changed; | |
1457 } | |
1458 | |
1459 | |
1460 // | |
1461 // Copy generation | |
1462 // | |
1463 // Identify pairs of available registers which hold identical values. | |
1464 // In such cases, only one of them needs to be calculated, the other one | |
1465 // will be defined as a copy of the first. | |
1466 // | |
1467 // Copy propagation | |
1468 // | |
1469 // Eliminate register copies RD = RS, by replacing the uses of RD with | |
1470 // with uses of RS. | |
1471 namespace { | |
1472 class CopyGeneration : public Transformation { | |
1473 public: | |
1474 CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii, | |
1475 MachineRegisterInfo &mri) | |
1476 : Transformation(true), HII(hii), MRI(mri), BT(bt) {} | |
1477 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; | |
1478 private: | |
1479 bool findMatch(const BitTracker::RegisterRef &Inp, | |
1480 BitTracker::RegisterRef &Out, const RegisterSet &AVs); | |
1481 | |
1482 const HexagonInstrInfo &HII; | |
1483 MachineRegisterInfo &MRI; | |
1484 BitTracker &BT; | |
1485 }; | |
1486 | |
1487 class CopyPropagation : public Transformation { | |
1488 public: | |
1489 CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri) | |
1490 : Transformation(false), MRI(mri) {} | |
1491 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; | |
1492 static bool isCopyReg(unsigned Opc); | |
1493 private: | |
1494 bool propagateRegCopy(MachineInstr &MI); | |
1495 | |
1496 MachineRegisterInfo &MRI; | |
1497 }; | |
1498 | |
1499 } | |
1500 | |
1501 | |
1502 /// Check if there is a register in AVs that is identical to Inp. If so, | |
1503 /// set Out to the found register. The output may be a pair Reg:Sub. | |
1504 bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp, | |
1505 BitTracker::RegisterRef &Out, const RegisterSet &AVs) { | |
1506 if (!BT.has(Inp.Reg)) | |
1507 return false; | |
1508 const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg); | |
1509 unsigned B, W; | |
1510 if (!HBS::getSubregMask(Inp, B, W, MRI)) | |
1511 return false; | |
1512 | |
1513 for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) { | |
1514 if (!BT.has(R) || !HBS::isTransparentCopy(R, Inp, MRI)) | |
1515 continue; | |
1516 const BitTracker::RegisterCell &RC = BT.lookup(R); | |
1517 unsigned RW = RC.width(); | |
1518 if (W == RW) { | |
1519 if (MRI.getRegClass(Inp.Reg) != MRI.getRegClass(R)) | |
1520 continue; | |
1521 if (!HBS::isEqual(InpRC, B, RC, 0, W)) | |
1522 continue; | |
1523 Out.Reg = R; | |
1524 Out.Sub = 0; | |
1525 return true; | |
1526 } | |
1527 // Check if there is a super-register, whose part (with a subregister) | |
1528 // is equal to the input. | |
1529 // Only do double registers for now. | |
1530 if (W*2 != RW) | |
1531 continue; | |
1532 if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass) | |
1533 continue; | |
1534 | |
1535 if (HBS::isEqual(InpRC, B, RC, 0, W)) | |
1536 Out.Sub = Hexagon::subreg_loreg; | |
1537 else if (HBS::isEqual(InpRC, B, RC, W, W)) | |
1538 Out.Sub = Hexagon::subreg_hireg; | |
1539 else | |
1540 continue; | |
1541 Out.Reg = R; | |
1542 return true; | |
1543 } | |
1544 return false; | |
1545 } | |
1546 | |
1547 | |
1548 bool CopyGeneration::processBlock(MachineBasicBlock &B, | |
1549 const RegisterSet &AVs) { | |
1550 RegisterSet AVB(AVs); | |
1551 bool Changed = false; | |
1552 RegisterSet Defs; | |
1553 | |
1554 for (auto I = B.begin(), E = B.end(), NextI = I; I != E; | |
1555 ++I, AVB.insert(Defs)) { | |
1556 NextI = std::next(I); | |
1557 Defs.clear(); | |
1558 HBS::getInstrDefs(*I, Defs); | |
1559 | |
1560 unsigned Opc = I->getOpcode(); | |
1561 if (CopyPropagation::isCopyReg(Opc)) | |
1562 continue; | |
1563 | |
1564 for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) { | |
1565 BitTracker::RegisterRef MR; | |
1566 if (!findMatch(R, MR, AVB)) | |
1567 continue; | |
1568 DebugLoc DL = I->getDebugLoc(); | |
1569 auto *FRC = HBS::getFinalVRegClass(MR, MRI); | |
1570 unsigned NewR = MRI.createVirtualRegister(FRC); | |
1571 auto At = I->isPHI() ? B.getFirstNonPHI() : I; | |
1572 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) | |
1573 .addReg(MR.Reg, 0, MR.Sub); | |
1574 BT.put(BitTracker::RegisterRef(NewR), BT.get(MR)); | |
1575 } | |
1576 } | |
1577 | |
1578 return Changed; | |
1579 } | |
1580 | |
1581 | |
1582 bool CopyPropagation::isCopyReg(unsigned Opc) { | |
1583 switch (Opc) { | |
1584 case TargetOpcode::COPY: | |
1585 case TargetOpcode::REG_SEQUENCE: | |
1586 case Hexagon::A2_tfr: | |
1587 case Hexagon::A2_tfrp: | |
1588 case Hexagon::A2_combinew: | |
1589 case Hexagon::A4_combineir: | |
1590 case Hexagon::A4_combineri: | |
1591 return true; | |
1592 default: | |
1593 break; | |
1594 } | |
1595 return false; | |
1596 } | |
1597 | |
1598 | |
1599 bool CopyPropagation::propagateRegCopy(MachineInstr &MI) { | |
1600 bool Changed = false; | |
1601 unsigned Opc = MI.getOpcode(); | |
1602 BitTracker::RegisterRef RD = MI.getOperand(0); | |
1603 assert(MI.getOperand(0).getSubReg() == 0); | |
1604 | |
1605 switch (Opc) { | |
1606 case TargetOpcode::COPY: | |
1607 case Hexagon::A2_tfr: | |
1608 case Hexagon::A2_tfrp: { | |
1609 BitTracker::RegisterRef RS = MI.getOperand(1); | |
1610 if (!HBS::isTransparentCopy(RD, RS, MRI)) | |
1611 break; | |
1612 if (RS.Sub != 0) | |
1613 Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI); | |
1614 else | |
1615 Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI); | |
1616 break; | |
1617 } | |
1618 case TargetOpcode::REG_SEQUENCE: { | |
1619 BitTracker::RegisterRef SL, SH; | |
1620 if (HBS::parseRegSequence(MI, SL, SH)) { | |
1621 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg, | |
1622 SL.Reg, SL.Sub, MRI); | |
1623 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg, | |
1624 SH.Reg, SH.Sub, MRI); | |
1625 } | |
1626 break; | |
1627 } | |
1628 case Hexagon::A2_combinew: { | |
1629 BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2); | |
1630 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg, | |
1631 RL.Reg, RL.Sub, MRI); | |
1632 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg, | |
1633 RH.Reg, RH.Sub, MRI); | |
1634 break; | |
1635 } | |
1636 case Hexagon::A4_combineir: | |
1637 case Hexagon::A4_combineri: { | |
1638 unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1; | |
1639 unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::subreg_loreg | |
1640 : Hexagon::subreg_hireg; | |
1641 BitTracker::RegisterRef RS = MI.getOperand(SrcX); | |
1642 Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI); | |
1643 break; | |
1644 } | |
1645 } | |
1646 return Changed; | |
1647 } | |
1648 | |
1649 | |
1650 bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) { | |
1651 std::vector<MachineInstr*> Instrs; | |
1652 for (auto I = B.rbegin(), E = B.rend(); I != E; ++I) | |
1653 Instrs.push_back(&*I); | |
1654 | |
1655 bool Changed = false; | |
1656 for (auto I : Instrs) { | |
1657 unsigned Opc = I->getOpcode(); | |
1658 if (!CopyPropagation::isCopyReg(Opc)) | |
1659 continue; | |
1660 Changed |= propagateRegCopy(*I); | |
1661 } | |
1662 | |
1663 return Changed; | |
1664 } | |
1665 | |
1666 | |
1667 // | |
1668 // Bit simplification | |
1669 // | |
1670 // Recognize patterns that can be simplified and replace them with the | |
1671 // simpler forms. | |
1672 // This is by no means complete | |
1673 namespace { | |
1674 class BitSimplification : public Transformation { | |
1675 public: | |
1676 BitSimplification(BitTracker &bt, const HexagonInstrInfo &hii, | |
1677 MachineRegisterInfo &mri) | |
1678 : Transformation(true), HII(hii), MRI(mri), BT(bt) {} | |
1679 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override; | |
1680 private: | |
1681 struct RegHalf : public BitTracker::RegisterRef { | |
1682 bool Low; // Low/High halfword. | |
1683 }; | |
1684 | |
1685 bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC, | |
1686 unsigned B, RegHalf &RH); | |
1687 | |
1688 bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC, | |
1689 BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt); | |
1690 unsigned getCombineOpcode(bool HLow, bool LLow); | |
1691 | |
1692 bool genStoreUpperHalf(MachineInstr *MI); | |
1693 bool genStoreImmediate(MachineInstr *MI); | |
1694 bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD, | |
1695 const BitTracker::RegisterCell &RC); | |
1696 bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD, | |
1697 const BitTracker::RegisterCell &RC); | |
1698 bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD, | |
1699 const BitTracker::RegisterCell &RC); | |
1700 bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD, | |
1701 const BitTracker::RegisterCell &RC); | |
1702 bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD, | |
1703 const BitTracker::RegisterCell &RC); | |
1704 | |
1705 const HexagonInstrInfo &HII; | |
1706 MachineRegisterInfo &MRI; | |
1707 BitTracker &BT; | |
1708 }; | |
1709 } | |
1710 | |
1711 | |
1712 // Check if the bits [B..B+16) in register cell RC form a valid halfword, | |
1713 // i.e. [0..16), [16..32), etc. of some register. If so, return true and | |
1714 // set the information about the found register in RH. | |
1715 bool BitSimplification::matchHalf(unsigned SelfR, | |
1716 const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) { | |
1717 // XXX This could be searching in the set of available registers, in case | |
1718 // the match is not exact. | |
1719 | |
1720 // Match 16-bit chunks, where the RC[B..B+15] references exactly one | |
1721 // register and all the bits B..B+15 match between RC and the register. | |
1722 // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... }, | |
1723 // and RC = { [0]:0 [1-15]:v1[1-15]... }. | |
1724 bool Low = false; | |
1725 unsigned I = B; | |
1726 while (I < B+16 && RC[I].num()) | |
1727 I++; | |
1728 if (I == B+16) | |
1729 return false; | |
1730 | |
1731 unsigned Reg = RC[I].RefI.Reg; | |
1732 unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B. | |
1733 if (P < I-B) | |
1734 return false; | |
1735 unsigned Pos = P - (I-B); | |
1736 | |
1737 if (Reg == 0 || Reg == SelfR) // Don't match "self". | |
1738 return false; | |
1739 if (!TargetRegisterInfo::isVirtualRegister(Reg)) | |
1740 return false; | |
1741 if (!BT.has(Reg)) | |
1742 return false; | |
1743 | |
1744 const BitTracker::RegisterCell &SC = BT.lookup(Reg); | |
1745 if (Pos+16 > SC.width()) | |
1746 return false; | |
1747 | |
1748 for (unsigned i = 0; i < 16; ++i) { | |
1749 const BitTracker::BitValue &RV = RC[i+B]; | |
1750 if (RV.Type == BitTracker::BitValue::Ref) { | |
1751 if (RV.RefI.Reg != Reg) | |
1752 return false; | |
1753 if (RV.RefI.Pos != i+Pos) | |
1754 return false; | |
1755 continue; | |
1756 } | |
1757 if (RC[i+B] != SC[i+Pos]) | |
1758 return false; | |
1759 } | |
1760 | |
1761 unsigned Sub = 0; | |
1762 switch (Pos) { | |
1763 case 0: | |
1764 Sub = Hexagon::subreg_loreg; | |
1765 Low = true; | |
1766 break; | |
1767 case 16: | |
1768 Sub = Hexagon::subreg_loreg; | |
1769 Low = false; | |
1770 break; | |
1771 case 32: | |
1772 Sub = Hexagon::subreg_hireg; | |
1773 Low = true; | |
1774 break; | |
1775 case 48: | |
1776 Sub = Hexagon::subreg_hireg; | |
1777 Low = false; | |
1778 break; | |
1779 default: | |
1780 return false; | |
1781 } | |
1782 | |
1783 RH.Reg = Reg; | |
1784 RH.Sub = Sub; | |
1785 RH.Low = Low; | |
1786 // If the subregister is not valid with the register, set it to 0. | |
1787 if (!HBS::getFinalVRegClass(RH, MRI)) | |
1788 RH.Sub = 0; | |
1789 | |
1790 return true; | |
1791 } | |
1792 | |
1793 | |
1794 // Check if RC matches the pattern of a S2_packhl. If so, return true and | |
1795 // set the inputs Rs and Rt. | |
1796 bool BitSimplification::matchPackhl(unsigned SelfR, | |
1797 const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs, | |
1798 BitTracker::RegisterRef &Rt) { | |
1799 RegHalf L1, H1, L2, H2; | |
1800 | |
1801 if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1)) | |
1802 return false; | |
1803 if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1)) | |
1804 return false; | |
1805 | |
1806 // Rs = H1.L1, Rt = H2.L2 | |
1807 if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low) | |
1808 return false; | |
1809 if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low) | |
1810 return false; | |
1811 | |
1812 Rs = H1; | |
1813 Rt = H2; | |
1814 return true; | |
1815 } | |
1816 | |
1817 | |
1818 unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) { | |
1819 return HLow ? LLow ? Hexagon::A2_combine_ll | |
1820 : Hexagon::A2_combine_lh | |
1821 : LLow ? Hexagon::A2_combine_hl | |
1822 : Hexagon::A2_combine_hh; | |
1823 } | |
1824 | |
1825 | |
1826 // If MI stores the upper halfword of a register (potentially obtained via | |
1827 // shifts or extracts), replace it with a storerf instruction. This could | |
1828 // cause the "extraction" code to become dead. | |
1829 bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) { | |
1830 unsigned Opc = MI->getOpcode(); | |
1831 if (Opc != Hexagon::S2_storerh_io) | |
1832 return false; | |
1833 | |
1834 MachineOperand &ValOp = MI->getOperand(2); | |
1835 BitTracker::RegisterRef RS = ValOp; | |
1836 if (!BT.has(RS.Reg)) | |
1837 return false; | |
1838 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg); | |
1839 RegHalf H; | |
1840 if (!matchHalf(0, RC, 0, H)) | |
1841 return false; | |
1842 if (H.Low) | |
1843 return false; | |
1844 MI->setDesc(HII.get(Hexagon::S2_storerf_io)); | |
1845 ValOp.setReg(H.Reg); | |
1846 ValOp.setSubReg(H.Sub); | |
1847 return true; | |
1848 } | |
1849 | |
1850 | |
1851 // If MI stores a value known at compile-time, and the value is within a range | |
1852 // that avoids using constant-extenders, replace it with a store-immediate. | |
1853 bool BitSimplification::genStoreImmediate(MachineInstr *MI) { | |
1854 unsigned Opc = MI->getOpcode(); | |
1855 unsigned Align = 0; | |
1856 switch (Opc) { | |
1857 case Hexagon::S2_storeri_io: | |
1858 Align++; | |
1859 case Hexagon::S2_storerh_io: | |
1860 Align++; | |
1861 case Hexagon::S2_storerb_io: | |
1862 break; | |
1863 default: | |
1864 return false; | |
1865 } | |
1866 | |
1867 // Avoid stores to frame-indices (due to an unknown offset). | |
1868 if (!MI->getOperand(0).isReg()) | |
1869 return false; | |
1870 MachineOperand &OffOp = MI->getOperand(1); | |
1871 if (!OffOp.isImm()) | |
1872 return false; | |
1873 | |
1874 int64_t Off = OffOp.getImm(); | |
1875 // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x). | |
1876 if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1))) | |
1877 return false; | |
1878 // Source register: | |
1879 BitTracker::RegisterRef RS = MI->getOperand(2); | |
1880 if (!BT.has(RS.Reg)) | |
1881 return false; | |
1882 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg); | |
1883 uint64_t U; | |
1884 if (!HBS::getConst(RC, 0, RC.width(), U)) | |
1885 return false; | |
1886 | |
1887 // Only consider 8-bit values to avoid constant-extenders. | |
1888 int V; | |
1889 switch (Opc) { | |
1890 case Hexagon::S2_storerb_io: | |
1891 V = int8_t(U); | |
1892 break; | |
1893 case Hexagon::S2_storerh_io: | |
1894 V = int16_t(U); | |
1895 break; | |
1896 case Hexagon::S2_storeri_io: | |
1897 V = int32_t(U); | |
1898 break; | |
1899 } | |
1900 if (!isInt<8>(V)) | |
1901 return false; | |
1902 | |
1903 MI->RemoveOperand(2); | |
1904 switch (Opc) { | |
1905 case Hexagon::S2_storerb_io: | |
1906 MI->setDesc(HII.get(Hexagon::S4_storeirb_io)); | |
1907 break; | |
1908 case Hexagon::S2_storerh_io: | |
1909 MI->setDesc(HII.get(Hexagon::S4_storeirh_io)); | |
1910 break; | |
1911 case Hexagon::S2_storeri_io: | |
1912 MI->setDesc(HII.get(Hexagon::S4_storeiri_io)); | |
1913 break; | |
1914 } | |
1915 MI->addOperand(MachineOperand::CreateImm(V)); | |
1916 return true; | |
1917 } | |
1918 | |
1919 | |
1920 // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the | |
1921 // last instruction in a sequence that results in something equivalent to | |
1922 // the pack-halfwords. The intent is to cause the entire sequence to become | |
1923 // dead. | |
1924 bool BitSimplification::genPackhl(MachineInstr *MI, | |
1925 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { | |
1926 unsigned Opc = MI->getOpcode(); | |
1927 if (Opc == Hexagon::S2_packhl) | |
1928 return false; | |
1929 BitTracker::RegisterRef Rs, Rt; | |
1930 if (!matchPackhl(RD.Reg, RC, Rs, Rt)) | |
1931 return false; | |
1932 | |
1933 MachineBasicBlock &B = *MI->getParent(); | |
1934 unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass); | |
1935 DebugLoc DL = MI->getDebugLoc(); | |
1936 auto At = MI->isPHI() ? B.getFirstNonPHI() | |
1937 : MachineBasicBlock::iterator(MI); | |
1938 BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR) | |
1939 .addReg(Rs.Reg, 0, Rs.Sub) | |
1940 .addReg(Rt.Reg, 0, Rt.Sub); | |
1941 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); | |
1942 BT.put(BitTracker::RegisterRef(NewR), RC); | |
1943 return true; | |
1944 } | |
1945 | |
1946 | |
1947 // If MI produces halfword of the input in the low half of the output, | |
1948 // replace it with zero-extend or extractu. | |
1949 bool BitSimplification::genExtractHalf(MachineInstr *MI, | |
1950 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { | |
1951 RegHalf L; | |
1952 // Check for halfword in low 16 bits, zeros elsewhere. | |
1953 if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16)) | |
1954 return false; | |
1955 | |
1956 unsigned Opc = MI->getOpcode(); | |
1957 MachineBasicBlock &B = *MI->getParent(); | |
1958 DebugLoc DL = MI->getDebugLoc(); | |
1959 | |
1960 // Prefer zxth, since zxth can go in any slot, while extractu only in | |
1961 // slots 2 and 3. | |
1962 unsigned NewR = 0; | |
1963 auto At = MI->isPHI() ? B.getFirstNonPHI() | |
1964 : MachineBasicBlock::iterator(MI); | |
1965 if (L.Low && Opc != Hexagon::A2_zxth) { | |
1966 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | |
1967 BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR) | |
1968 .addReg(L.Reg, 0, L.Sub); | |
1969 } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) { | |
1970 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | |
1971 BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR) | |
1972 .addReg(L.Reg, 0, L.Sub) | |
1973 .addImm(16); | |
1974 } | |
1975 if (NewR == 0) | |
1976 return false; | |
1977 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); | |
1978 BT.put(BitTracker::RegisterRef(NewR), RC); | |
1979 return true; | |
1980 } | |
1981 | |
1982 | |
1983 // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the | |
1984 // combine. | |
1985 bool BitSimplification::genCombineHalf(MachineInstr *MI, | |
1986 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { | |
1987 RegHalf L, H; | |
1988 // Check for combine h/l | |
1989 if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H)) | |
1990 return false; | |
1991 // Do nothing if this is just a reg copy. | |
1992 if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low) | |
1993 return false; | |
1994 | |
1995 unsigned Opc = MI->getOpcode(); | |
1996 unsigned COpc = getCombineOpcode(H.Low, L.Low); | |
1997 if (COpc == Opc) | |
1998 return false; | |
1999 | |
2000 MachineBasicBlock &B = *MI->getParent(); | |
2001 DebugLoc DL = MI->getDebugLoc(); | |
2002 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | |
2003 auto At = MI->isPHI() ? B.getFirstNonPHI() | |
2004 : MachineBasicBlock::iterator(MI); | |
2005 BuildMI(B, At, DL, HII.get(COpc), NewR) | |
2006 .addReg(H.Reg, 0, H.Sub) | |
2007 .addReg(L.Reg, 0, L.Sub); | |
2008 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); | |
2009 BT.put(BitTracker::RegisterRef(NewR), RC); | |
2010 return true; | |
2011 } | |
2012 | |
2013 | |
2014 // If MI resets high bits of a register and keeps the lower ones, replace it | |
2015 // with zero-extend byte/half, and-immediate, or extractu, as appropriate. | |
2016 bool BitSimplification::genExtractLow(MachineInstr *MI, | |
2017 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { | |
2018 unsigned Opc = MI->getOpcode(); | |
2019 switch (Opc) { | |
2020 case Hexagon::A2_zxtb: | |
2021 case Hexagon::A2_zxth: | |
2022 case Hexagon::S2_extractu: | |
2023 return false; | |
2024 } | |
2025 if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) { | |
2026 int32_t Imm = MI->getOperand(2).getImm(); | |
2027 if (isInt<10>(Imm)) | |
2028 return false; | |
2029 } | |
2030 | |
2031 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm()) | |
2032 return false; | |
2033 unsigned W = RC.width(); | |
2034 while (W > 0 && RC[W-1].is(0)) | |
2035 W--; | |
2036 if (W == 0 || W == RC.width()) | |
2037 return false; | |
2038 unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb | |
2039 : (W == 16) ? Hexagon::A2_zxth | |
2040 : (W < 10) ? Hexagon::A2_andir | |
2041 : Hexagon::S2_extractu; | |
2042 MachineBasicBlock &B = *MI->getParent(); | |
2043 DebugLoc DL = MI->getDebugLoc(); | |
2044 | |
2045 for (auto &Op : MI->uses()) { | |
2046 if (!Op.isReg()) | |
2047 continue; | |
2048 BitTracker::RegisterRef RS = Op; | |
2049 if (!BT.has(RS.Reg)) | |
2050 continue; | |
2051 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); | |
2052 unsigned BN, BW; | |
2053 if (!HBS::getSubregMask(RS, BN, BW, MRI)) | |
2054 continue; | |
2055 if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W)) | |
2056 continue; | |
2057 | |
2058 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); | |
2059 auto At = MI->isPHI() ? B.getFirstNonPHI() | |
2060 : MachineBasicBlock::iterator(MI); | |
2061 auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR) | |
2062 .addReg(RS.Reg, 0, RS.Sub); | |
2063 if (NewOpc == Hexagon::A2_andir) | |
2064 MIB.addImm((1 << W) - 1); | |
2065 else if (NewOpc == Hexagon::S2_extractu) | |
2066 MIB.addImm(W).addImm(0); | |
2067 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI); | |
2068 BT.put(BitTracker::RegisterRef(NewR), RC); | |
2069 return true; | |
2070 } | |
2071 return false; | |
2072 } | |
2073 | |
2074 | |
2075 // Check for tstbit simplification opportunity, where the bit being checked | |
2076 // can be tracked back to another register. For example: | |
2077 // vreg2 = S2_lsr_i_r vreg1, 5 | |
2078 // vreg3 = S2_tstbit_i vreg2, 0 | |
2079 // => | |
2080 // vreg3 = S2_tstbit_i vreg1, 5 | |
2081 bool BitSimplification::simplifyTstbit(MachineInstr *MI, | |
2082 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) { | |
2083 unsigned Opc = MI->getOpcode(); | |
2084 if (Opc != Hexagon::S2_tstbit_i) | |
2085 return false; | |
2086 | |
2087 unsigned BN = MI->getOperand(2).getImm(); | |
2088 BitTracker::RegisterRef RS = MI->getOperand(1); | |
2089 unsigned F, W; | |
2090 DebugLoc DL = MI->getDebugLoc(); | |
2091 if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI)) | |
2092 return false; | |
2093 MachineBasicBlock &B = *MI->getParent(); | |
2094 auto At = MI->isPHI() ? B.getFirstNonPHI() | |
2095 : MachineBasicBlock::iterator(MI); | |
2096 | |
2097 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg); | |
2098 const BitTracker::BitValue &V = SC[F+BN]; | |
2099 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) { | |
2100 const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg); | |
2101 // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is | |
2102 // a double register, need to use a subregister and adjust bit | |
2103 // number. | |
2104 unsigned P = UINT_MAX; | |
2105 BitTracker::RegisterRef RR(V.RefI.Reg, 0); | |
2106 if (TC == &Hexagon::DoubleRegsRegClass) { | |
2107 P = V.RefI.Pos; | |
2108 RR.Sub = Hexagon::subreg_loreg; | |
2109 if (P >= 32) { | |
2110 P -= 32; | |
2111 RR.Sub = Hexagon::subreg_hireg; | |
2112 } | |
2113 } else if (TC == &Hexagon::IntRegsRegClass) { | |
2114 P = V.RefI.Pos; | |
2115 } | |
2116 if (P != UINT_MAX) { | |
2117 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); | |
2118 BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR) | |
2119 .addReg(RR.Reg, 0, RR.Sub) | |
2120 .addImm(P); | |
2121 HBS::replaceReg(RD.Reg, NewR, MRI); | |
2122 BT.put(NewR, RC); | |
2123 return true; | |
2124 } | |
2125 } else if (V.is(0) || V.is(1)) { | |
2126 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass); | |
2127 unsigned NewOpc = V.is(0) ? Hexagon::TFR_PdFalse : Hexagon::TFR_PdTrue; | |
2128 BuildMI(B, At, DL, HII.get(NewOpc), NewR); | |
2129 HBS::replaceReg(RD.Reg, NewR, MRI); | |
2130 return true; | |
2131 } | |
2132 | |
2133 return false; | |
2134 } | |
2135 | |
2136 | |
2137 bool BitSimplification::processBlock(MachineBasicBlock &B, | |
2138 const RegisterSet &AVs) { | |
2139 bool Changed = false; | |
2140 RegisterSet AVB = AVs; | |
2141 RegisterSet Defs; | |
2142 | |
2143 for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) { | |
2144 MachineInstr *MI = &*I; | |
2145 Defs.clear(); | |
2146 HBS::getInstrDefs(*MI, Defs); | |
2147 | |
2148 unsigned Opc = MI->getOpcode(); | |
2149 if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE) | |
2150 continue; | |
2151 | |
2152 if (MI->mayStore()) { | |
2153 bool T = genStoreUpperHalf(MI); | |
2154 T = T || genStoreImmediate(MI); | |
2155 Changed |= T; | |
2156 continue; | |
2157 } | |
2158 | |
2159 if (Defs.count() != 1) | |
2160 continue; | |
2161 const MachineOperand &Op0 = MI->getOperand(0); | |
2162 if (!Op0.isReg() || !Op0.isDef()) | |
2163 continue; | |
2164 BitTracker::RegisterRef RD = Op0; | |
2165 if (!BT.has(RD.Reg)) | |
2166 continue; | |
2167 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI); | |
2168 const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg); | |
2169 | |
2170 if (FRC->getID() == Hexagon::DoubleRegsRegClassID) { | |
2171 bool T = genPackhl(MI, RD, RC); | |
2172 Changed |= T; | |
2173 continue; | |
2174 } | |
2175 | |
2176 if (FRC->getID() == Hexagon::IntRegsRegClassID) { | |
2177 bool T = genExtractHalf(MI, RD, RC); | |
2178 T = T || genCombineHalf(MI, RD, RC); | |
2179 T = T || genExtractLow(MI, RD, RC); | |
2180 Changed |= T; | |
2181 continue; | |
2182 } | |
2183 | |
2184 if (FRC->getID() == Hexagon::PredRegsRegClassID) { | |
2185 bool T = simplifyTstbit(MI, RD, RC); | |
2186 Changed |= T; | |
2187 continue; | |
2188 } | |
2189 } | |
2190 return Changed; | |
2191 } | |
2192 | |
2193 | |
2194 bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) { | |
2195 auto &HST = MF.getSubtarget<HexagonSubtarget>(); | |
2196 auto &HRI = *HST.getRegisterInfo(); | |
2197 auto &HII = *HST.getInstrInfo(); | |
2198 | |
2199 MDT = &getAnalysis<MachineDominatorTree>(); | |
2200 MachineRegisterInfo &MRI = MF.getRegInfo(); | |
2201 bool Changed; | |
2202 | |
2203 Changed = DeadCodeElimination(MF, *MDT).run(); | |
2204 | |
2205 const HexagonEvaluator HE(HRI, MRI, HII, MF); | |
2206 BitTracker BT(HE, MF); | |
2207 DEBUG(BT.trace(true)); | |
2208 BT.run(); | |
2209 | |
2210 MachineBasicBlock &Entry = MF.front(); | |
2211 | |
2212 RegisterSet AIG; // Available registers for IG. | |
2213 ConstGeneration ImmG(BT, HII, MRI); | |
2214 Changed |= visitBlock(Entry, ImmG, AIG); | |
2215 | |
2216 RegisterSet ARE; // Available registers for RIE. | |
2217 RedundantInstrElimination RIE(BT, HII, MRI); | |
2218 Changed |= visitBlock(Entry, RIE, ARE); | |
2219 | |
2220 RegisterSet ACG; // Available registers for CG. | |
2221 CopyGeneration CopyG(BT, HII, MRI); | |
2222 Changed |= visitBlock(Entry, CopyG, ACG); | |
2223 | |
2224 RegisterSet ACP; // Available registers for CP. | |
2225 CopyPropagation CopyP(HRI, MRI); | |
2226 Changed |= visitBlock(Entry, CopyP, ACP); | |
2227 | |
2228 Changed = DeadCodeElimination(MF, *MDT).run() || Changed; | |
2229 | |
2230 BT.run(); | |
2231 RegisterSet ABS; // Available registers for BS. | |
2232 BitSimplification BitS(BT, HII, MRI); | |
2233 Changed |= visitBlock(Entry, BitS, ABS); | |
2234 | |
2235 Changed = DeadCodeElimination(MF, *MDT).run() || Changed; | |
2236 | |
2237 if (Changed) { | |
2238 for (auto &B : MF) | |
2239 for (auto &I : B) | |
2240 I.clearKillInfo(); | |
2241 DeadCodeElimination(MF, *MDT).run(); | |
2242 } | |
2243 return Changed; | |
2244 } | |
2245 | |
2246 | |
2247 // Recognize loops where the code at the end of the loop matches the code | |
2248 // before the entry of the loop, and the matching code is such that is can | |
2249 // be simplified. This pass relies on the bit simplification above and only | |
2250 // prepares code in a way that can be handled by the bit simplifcation. | |
2251 // | |
2252 // This is the motivating testcase (and explanation): | |
2253 // | |
2254 // { | |
2255 // loop0(.LBB0_2, r1) // %for.body.preheader | |
2256 // r5:4 = memd(r0++#8) | |
2257 // } | |
2258 // { | |
2259 // r3 = lsr(r4, #16) | |
2260 // r7:6 = combine(r5, r5) | |
2261 // } | |
2262 // { | |
2263 // r3 = insert(r5, #16, #16) | |
2264 // r7:6 = vlsrw(r7:6, #16) | |
2265 // } | |
2266 // .LBB0_2: | |
2267 // { | |
2268 // memh(r2+#4) = r5 | |
2269 // memh(r2+#6) = r6 # R6 is really R5.H | |
2270 // } | |
2271 // { | |
2272 // r2 = add(r2, #8) | |
2273 // memh(r2+#0) = r4 | |
2274 // memh(r2+#2) = r3 # R3 is really R4.H | |
2275 // } | |
2276 // { | |
2277 // r5:4 = memd(r0++#8) | |
2278 // } | |
2279 // { # "Shuffling" code that sets up R3 and R6 | |
2280 // r3 = lsr(r4, #16) # so that their halves can be stored in the | |
2281 // r7:6 = combine(r5, r5) # next iteration. This could be folded into | |
2282 // } # the stores if the code was at the beginning | |
2283 // { # of the loop iteration. Since the same code | |
2284 // r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved | |
2285 // r7:6 = vlsrw(r7:6, #16) # there. | |
2286 // }:endloop0 | |
2287 // | |
2288 // | |
2289 // The outcome: | |
2290 // | |
2291 // { | |
2292 // loop0(.LBB0_2, r1) | |
2293 // r5:4 = memd(r0++#8) | |
2294 // } | |
2295 // .LBB0_2: | |
2296 // { | |
2297 // memh(r2+#4) = r5 | |
2298 // memh(r2+#6) = r5.h | |
2299 // } | |
2300 // { | |
2301 // r2 = add(r2, #8) | |
2302 // memh(r2+#0) = r4 | |
2303 // memh(r2+#2) = r4.h | |
2304 // } | |
2305 // { | |
2306 // r5:4 = memd(r0++#8) | |
2307 // }:endloop0 | |
2308 | |
2309 namespace llvm { | |
2310 FunctionPass *createHexagonLoopRescheduling(); | |
2311 void initializeHexagonLoopReschedulingPass(PassRegistry&); | |
2312 } | |
2313 | |
2314 namespace { | |
2315 class HexagonLoopRescheduling : public MachineFunctionPass { | |
2316 public: | |
2317 static char ID; | |
2318 HexagonLoopRescheduling() : MachineFunctionPass(ID), | |
2319 HII(0), HRI(0), MRI(0), BTP(0) { | |
2320 initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry()); | |
2321 } | |
2322 | |
2323 bool runOnMachineFunction(MachineFunction &MF) override; | |
2324 | |
2325 private: | |
2326 const HexagonInstrInfo *HII; | |
2327 const HexagonRegisterInfo *HRI; | |
2328 MachineRegisterInfo *MRI; | |
2329 BitTracker *BTP; | |
2330 | |
2331 struct LoopCand { | |
2332 LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb, | |
2333 MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {} | |
2334 MachineBasicBlock *LB, *PB, *EB; | |
2335 }; | |
2336 typedef std::vector<MachineInstr*> InstrList; | |
2337 struct InstrGroup { | |
2338 BitTracker::RegisterRef Inp, Out; | |
2339 InstrList Ins; | |
2340 }; | |
2341 struct PhiInfo { | |
2342 PhiInfo(MachineInstr &P, MachineBasicBlock &B); | |
2343 unsigned DefR; | |
2344 BitTracker::RegisterRef LR, PR; | |
2345 MachineBasicBlock *LB, *PB; | |
2346 }; | |
2347 | |
2348 static unsigned getDefReg(const MachineInstr *MI); | |
2349 bool isConst(unsigned Reg) const; | |
2350 bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const; | |
2351 bool isStoreInput(const MachineInstr *MI, unsigned DefR) const; | |
2352 bool isShuffleOf(unsigned OutR, unsigned InpR) const; | |
2353 bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2, | |
2354 unsigned &InpR2) const; | |
2355 void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB, | |
2356 MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR); | |
2357 bool processLoop(LoopCand &C); | |
2358 }; | |
2359 } | |
2360 | |
2361 char HexagonLoopRescheduling::ID = 0; | |
2362 | |
2363 INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched", | |
2364 "Hexagon Loop Rescheduling", false, false) | |
2365 | |
2366 | |
2367 HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P, | |
2368 MachineBasicBlock &B) { | |
2369 DefR = HexagonLoopRescheduling::getDefReg(&P); | |
2370 LB = &B; | |
2371 PB = nullptr; | |
2372 for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) { | |
2373 const MachineOperand &OpB = P.getOperand(i+1); | |
2374 if (OpB.getMBB() == &B) { | |
2375 LR = P.getOperand(i); | |
2376 continue; | |
2377 } | |
2378 PB = OpB.getMBB(); | |
2379 PR = P.getOperand(i); | |
2380 } | |
2381 } | |
2382 | |
2383 | |
2384 unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) { | |
2385 RegisterSet Defs; | |
2386 HBS::getInstrDefs(*MI, Defs); | |
2387 if (Defs.count() != 1) | |
2388 return 0; | |
2389 return Defs.find_first(); | |
2390 } | |
2391 | |
2392 | |
2393 bool HexagonLoopRescheduling::isConst(unsigned Reg) const { | |
2394 if (!BTP->has(Reg)) | |
2395 return false; | |
2396 const BitTracker::RegisterCell &RC = BTP->lookup(Reg); | |
2397 for (unsigned i = 0, w = RC.width(); i < w; ++i) { | |
2398 const BitTracker::BitValue &V = RC[i]; | |
2399 if (!V.is(0) && !V.is(1)) | |
2400 return false; | |
2401 } | |
2402 return true; | |
2403 } | |
2404 | |
2405 | |
2406 bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI, | |
2407 unsigned DefR) const { | |
2408 unsigned Opc = MI->getOpcode(); | |
2409 switch (Opc) { | |
2410 case TargetOpcode::COPY: | |
2411 case Hexagon::S2_lsr_i_r: | |
2412 case Hexagon::S2_asr_i_r: | |
2413 case Hexagon::S2_asl_i_r: | |
2414 case Hexagon::S2_lsr_i_p: | |
2415 case Hexagon::S2_asr_i_p: | |
2416 case Hexagon::S2_asl_i_p: | |
2417 case Hexagon::S2_insert: | |
2418 case Hexagon::A2_or: | |
2419 case Hexagon::A2_orp: | |
2420 case Hexagon::A2_and: | |
2421 case Hexagon::A2_andp: | |
2422 case Hexagon::A2_combinew: | |
2423 case Hexagon::A4_combineri: | |
2424 case Hexagon::A4_combineir: | |
2425 case Hexagon::A2_combineii: | |
2426 case Hexagon::A4_combineii: | |
2427 case Hexagon::A2_combine_ll: | |
2428 case Hexagon::A2_combine_lh: | |
2429 case Hexagon::A2_combine_hl: | |
2430 case Hexagon::A2_combine_hh: | |
2431 return true; | |
2432 } | |
2433 return false; | |
2434 } | |
2435 | |
2436 | |
2437 bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI, | |
2438 unsigned InpR) const { | |
2439 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { | |
2440 const MachineOperand &Op = MI->getOperand(i); | |
2441 if (!Op.isReg()) | |
2442 continue; | |
2443 if (Op.getReg() == InpR) | |
2444 return i == n-1; | |
2445 } | |
2446 return false; | |
2447 } | |
2448 | |
2449 | |
2450 bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const { | |
2451 if (!BTP->has(OutR) || !BTP->has(InpR)) | |
2452 return false; | |
2453 const BitTracker::RegisterCell &OutC = BTP->lookup(OutR); | |
2454 for (unsigned i = 0, w = OutC.width(); i < w; ++i) { | |
2455 const BitTracker::BitValue &V = OutC[i]; | |
2456 if (V.Type != BitTracker::BitValue::Ref) | |
2457 continue; | |
2458 if (V.RefI.Reg != InpR) | |
2459 return false; | |
2460 } | |
2461 return true; | |
2462 } | |
2463 | |
2464 | |
2465 bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1, | |
2466 unsigned OutR2, unsigned &InpR2) const { | |
2467 if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2)) | |
2468 return false; | |
2469 const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1); | |
2470 const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2); | |
2471 unsigned W = OutC1.width(); | |
2472 unsigned MatchR = 0; | |
2473 if (W != OutC2.width()) | |
2474 return false; | |
2475 for (unsigned i = 0; i < W; ++i) { | |
2476 const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i]; | |
2477 if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One) | |
2478 return false; | |
2479 if (V1.Type != BitTracker::BitValue::Ref) | |
2480 continue; | |
2481 if (V1.RefI.Pos != V2.RefI.Pos) | |
2482 return false; | |
2483 if (V1.RefI.Reg != InpR1) | |
2484 return false; | |
2485 if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2) | |
2486 return false; | |
2487 if (!MatchR) | |
2488 MatchR = V2.RefI.Reg; | |
2489 else if (V2.RefI.Reg != MatchR) | |
2490 return false; | |
2491 } | |
2492 InpR2 = MatchR; | |
2493 return true; | |
2494 } | |
2495 | |
2496 | |
2497 void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB, | |
2498 MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR, | |
2499 unsigned NewPredR) { | |
2500 DenseMap<unsigned,unsigned> RegMap; | |
2501 | |
2502 const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR); | |
2503 unsigned PhiR = MRI->createVirtualRegister(PhiRC); | |
2504 BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR) | |
2505 .addReg(NewPredR) | |
2506 .addMBB(&PB) | |
2507 .addReg(G.Inp.Reg) | |
2508 .addMBB(&LB); | |
2509 RegMap.insert(std::make_pair(G.Inp.Reg, PhiR)); | |
2510 | |
2511 for (unsigned i = G.Ins.size(); i > 0; --i) { | |
2512 const MachineInstr *SI = G.Ins[i-1]; | |
2513 unsigned DR = getDefReg(SI); | |
2514 const TargetRegisterClass *RC = MRI->getRegClass(DR); | |
2515 unsigned NewDR = MRI->createVirtualRegister(RC); | |
2516 DebugLoc DL = SI->getDebugLoc(); | |
2517 | |
2518 auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR); | |
2519 for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) { | |
2520 const MachineOperand &Op = SI->getOperand(j); | |
2521 if (!Op.isReg()) { | |
2522 MIB.addOperand(Op); | |
2523 continue; | |
2524 } | |
2525 if (!Op.isUse()) | |
2526 continue; | |
2527 unsigned UseR = RegMap[Op.getReg()]; | |
2528 MIB.addReg(UseR, 0, Op.getSubReg()); | |
2529 } | |
2530 RegMap.insert(std::make_pair(DR, NewDR)); | |
2531 } | |
2532 | |
2533 HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI); | |
2534 } | |
2535 | |
2536 | |
2537 bool HexagonLoopRescheduling::processLoop(LoopCand &C) { | |
2538 DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n"); | |
2539 std::vector<PhiInfo> Phis; | |
2540 for (auto &I : *C.LB) { | |
2541 if (!I.isPHI()) | |
2542 break; | |
2543 unsigned PR = getDefReg(&I); | |
2544 if (isConst(PR)) | |
2545 continue; | |
2546 bool BadUse = false, GoodUse = false; | |
2547 for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) { | |
2548 MachineInstr *UseI = UI->getParent(); | |
2549 if (UseI->getParent() != C.LB) { | |
2550 BadUse = true; | |
2551 break; | |
2552 } | |
2553 if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR)) | |
2554 GoodUse = true; | |
2555 } | |
2556 if (BadUse || !GoodUse) | |
2557 continue; | |
2558 | |
2559 Phis.push_back(PhiInfo(I, *C.LB)); | |
2560 } | |
2561 | |
2562 DEBUG({ | |
2563 dbgs() << "Phis: {"; | |
2564 for (auto &I : Phis) { | |
2565 dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi(" | |
2566 << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber() | |
2567 << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b" | |
2568 << I.LB->getNumber() << ')'; | |
2569 } | |
2570 dbgs() << " }\n"; | |
2571 }); | |
2572 | |
2573 if (Phis.empty()) | |
2574 return false; | |
2575 | |
2576 bool Changed = false; | |
2577 InstrList ShufIns; | |
2578 | |
2579 // Go backwards in the block: for each bit shuffling instruction, check | |
2580 // if that instruction could potentially be moved to the front of the loop: | |
2581 // the output of the loop cannot be used in a non-shuffling instruction | |
2582 // in this loop. | |
2583 for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) { | |
2584 if (I->isTerminator()) | |
2585 continue; | |
2586 if (I->isPHI()) | |
2587 break; | |
2588 | |
2589 RegisterSet Defs; | |
2590 HBS::getInstrDefs(*I, Defs); | |
2591 if (Defs.count() != 1) | |
2592 continue; | |
2593 unsigned DefR = Defs.find_first(); | |
2594 if (!TargetRegisterInfo::isVirtualRegister(DefR)) | |
2595 continue; | |
2596 if (!isBitShuffle(&*I, DefR)) | |
2597 continue; | |
2598 | |
2599 bool BadUse = false; | |
2600 for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) { | |
2601 MachineInstr *UseI = UI->getParent(); | |
2602 if (UseI->getParent() == C.LB) { | |
2603 if (UseI->isPHI()) { | |
2604 // If the use is in a phi node in this loop, then it should be | |
2605 // the value corresponding to the back edge. | |
2606 unsigned Idx = UI.getOperandNo(); | |
2607 if (UseI->getOperand(Idx+1).getMBB() != C.LB) | |
2608 BadUse = true; | |
2609 } else { | |
2610 auto F = std::find(ShufIns.begin(), ShufIns.end(), UseI); | |
2611 if (F == ShufIns.end()) | |
2612 BadUse = true; | |
2613 } | |
2614 } else { | |
2615 // There is a use outside of the loop, but there is no epilog block | |
2616 // suitable for a copy-out. | |
2617 if (C.EB == nullptr) | |
2618 BadUse = true; | |
2619 } | |
2620 if (BadUse) | |
2621 break; | |
2622 } | |
2623 | |
2624 if (BadUse) | |
2625 continue; | |
2626 ShufIns.push_back(&*I); | |
2627 } | |
2628 | |
2629 // Partition the list of shuffling instructions into instruction groups, | |
2630 // where each group has to be moved as a whole (i.e. a group is a chain of | |
2631 // dependent instructions). A group produces a single live output register, | |
2632 // which is meant to be the input of the loop phi node (although this is | |
2633 // not checked here yet). It also uses a single register as its input, | |
2634 // which is some value produced in the loop body. After moving the group | |
2635 // to the beginning of the loop, that input register would need to be | |
2636 // the loop-carried register (through a phi node) instead of the (currently | |
2637 // loop-carried) output register. | |
2638 typedef std::vector<InstrGroup> InstrGroupList; | |
2639 InstrGroupList Groups; | |
2640 | |
2641 for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) { | |
2642 MachineInstr *SI = ShufIns[i]; | |
2643 if (SI == nullptr) | |
2644 continue; | |
2645 | |
2646 InstrGroup G; | |
2647 G.Ins.push_back(SI); | |
2648 G.Out.Reg = getDefReg(SI); | |
2649 RegisterSet Inputs; | |
2650 HBS::getInstrUses(*SI, Inputs); | |
2651 | |
2652 for (unsigned j = i+1; j < n; ++j) { | |
2653 MachineInstr *MI = ShufIns[j]; | |
2654 if (MI == nullptr) | |
2655 continue; | |
2656 RegisterSet Defs; | |
2657 HBS::getInstrDefs(*MI, Defs); | |
2658 // If this instruction does not define any pending inputs, skip it. | |
2659 if (!Defs.intersects(Inputs)) | |
2660 continue; | |
2661 // Otherwise, add it to the current group and remove the inputs that | |
2662 // are defined by MI. | |
2663 G.Ins.push_back(MI); | |
2664 Inputs.remove(Defs); | |
2665 // Then add all registers used by MI. | |
2666 HBS::getInstrUses(*MI, Inputs); | |
2667 ShufIns[j] = nullptr; | |
2668 } | |
2669 | |
2670 // Only add a group if it requires at most one register. | |
2671 if (Inputs.count() > 1) | |
2672 continue; | |
2673 auto LoopInpEq = [G] (const PhiInfo &P) -> bool { | |
2674 return G.Out.Reg == P.LR.Reg; | |
2675 }; | |
2676 if (std::find_if(Phis.begin(), Phis.end(), LoopInpEq) == Phis.end()) | |
2677 continue; | |
2678 | |
2679 G.Inp.Reg = Inputs.find_first(); | |
2680 Groups.push_back(G); | |
2681 } | |
2682 | |
2683 DEBUG({ | |
2684 for (unsigned i = 0, n = Groups.size(); i < n; ++i) { | |
2685 InstrGroup &G = Groups[i]; | |
2686 dbgs() << "Group[" << i << "] inp: " | |
2687 << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub) | |
2688 << " out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n"; | |
2689 for (unsigned j = 0, m = G.Ins.size(); j < m; ++j) | |
2690 dbgs() << " " << *G.Ins[j]; | |
2691 } | |
2692 }); | |
2693 | |
2694 for (unsigned i = 0, n = Groups.size(); i < n; ++i) { | |
2695 InstrGroup &G = Groups[i]; | |
2696 if (!isShuffleOf(G.Out.Reg, G.Inp.Reg)) | |
2697 continue; | |
2698 auto LoopInpEq = [G] (const PhiInfo &P) -> bool { | |
2699 return G.Out.Reg == P.LR.Reg; | |
2700 }; | |
2701 auto F = std::find_if(Phis.begin(), Phis.end(), LoopInpEq); | |
2702 if (F == Phis.end()) | |
2703 continue; | |
2704 unsigned PredR = 0; | |
2705 if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PredR)) { | |
2706 const MachineInstr *DefPredR = MRI->getVRegDef(F->PR.Reg); | |
2707 unsigned Opc = DefPredR->getOpcode(); | |
2708 if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi) | |
2709 continue; | |
2710 if (!DefPredR->getOperand(1).isImm()) | |
2711 continue; | |
2712 if (DefPredR->getOperand(1).getImm() != 0) | |
2713 continue; | |
2714 const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg); | |
2715 if (RC != MRI->getRegClass(F->PR.Reg)) { | |
2716 PredR = MRI->createVirtualRegister(RC); | |
2717 unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi | |
2718 : Hexagon::A2_tfrpi; | |
2719 auto T = C.PB->getFirstTerminator(); | |
2720 DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc(); | |
2721 BuildMI(*C.PB, T, DL, HII->get(TfrI), PredR) | |
2722 .addImm(0); | |
2723 } else { | |
2724 PredR = F->PR.Reg; | |
2725 } | |
2726 } | |
2727 assert(MRI->getRegClass(PredR) == MRI->getRegClass(G.Inp.Reg)); | |
2728 moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PredR); | |
2729 Changed = true; | |
2730 } | |
2731 | |
2732 return Changed; | |
2733 } | |
2734 | |
2735 | |
2736 bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) { | |
2737 auto &HST = MF.getSubtarget<HexagonSubtarget>(); | |
2738 HII = HST.getInstrInfo(); | |
2739 HRI = HST.getRegisterInfo(); | |
2740 MRI = &MF.getRegInfo(); | |
2741 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF); | |
2742 BitTracker BT(HE, MF); | |
2743 DEBUG(BT.trace(true)); | |
2744 BT.run(); | |
2745 BTP = &BT; | |
2746 | |
2747 std::vector<LoopCand> Cand; | |
2748 | |
2749 for (auto &B : MF) { | |
2750 if (B.pred_size() != 2 || B.succ_size() != 2) | |
2751 continue; | |
2752 MachineBasicBlock *PB = nullptr; | |
2753 bool IsLoop = false; | |
2754 for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) { | |
2755 if (*PI != &B) | |
2756 PB = *PI; | |
2757 else | |
2758 IsLoop = true; | |
2759 } | |
2760 if (!IsLoop) | |
2761 continue; | |
2762 | |
2763 MachineBasicBlock *EB = nullptr; | |
2764 for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) { | |
2765 if (*SI == &B) | |
2766 continue; | |
2767 // Set EP to the epilog block, if it has only 1 predecessor (i.e. the | |
2768 // edge from B to EP is non-critical. | |
2769 if ((*SI)->pred_size() == 1) | |
2770 EB = *SI; | |
2771 break; | |
2772 } | |
2773 | |
2774 Cand.push_back(LoopCand(&B, PB, EB)); | |
2775 } | |
2776 | |
2777 bool Changed = false; | |
2778 for (auto &C : Cand) | |
2779 Changed |= processLoop(C); | |
2780 | |
2781 return Changed; | |
2782 } | |
2783 | |
2784 //===----------------------------------------------------------------------===// | |
2785 // Public Constructor Functions | |
2786 //===----------------------------------------------------------------------===// | |
2787 | |
2788 FunctionPass *llvm::createHexagonLoopRescheduling() { | |
2789 return new HexagonLoopRescheduling(); | |
2790 } | |
2791 | |
2792 FunctionPass *llvm::createHexagonBitSimplify() { | |
2793 return new HexagonBitSimplify(); | |
2794 } | |
2795 |