comparison lib/Target/Hexagon/HexagonBitSimplify.cpp @ 100:7d135dc70f03 LLVM 3.9

LLVM 3.9
author Miyagi Mitsuki <e135756@ie.u-ryukyu.ac.jp>
date Tue, 26 Jan 2016 22:53:40 +0900
parents
children 1172e4bd9c6f
comparison
equal deleted inserted replaced
96:6418606d0ead 100:7d135dc70f03
1 //===--- HexagonBitSimplify.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #define DEBUG_TYPE "hexbit"
11
12 #include "llvm/CodeGen/Passes.h"
13 #include "llvm/CodeGen/MachineDominators.h"
14 #include "llvm/CodeGen/MachineFunctionPass.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 #include "llvm/Support/CommandLine.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/raw_ostream.h"
20 #include "llvm/Target/TargetMachine.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "HexagonTargetMachine.h"
23 #include "HexagonBitTracker.h"
24
25 using namespace llvm;
26
27 namespace llvm {
28 void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
29 FunctionPass *createHexagonBitSimplify();
30 }
31
32 namespace {
33 // Set of virtual registers, based on BitVector.
34 struct RegisterSet : private BitVector {
35 RegisterSet() : BitVector() {}
36 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
37 RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
38
39 using BitVector::clear;
40 using BitVector::count;
41
42 unsigned find_first() const {
43 int First = BitVector::find_first();
44 if (First < 0)
45 return 0;
46 return x2v(First);
47 }
48
49 unsigned find_next(unsigned Prev) const {
50 int Next = BitVector::find_next(v2x(Prev));
51 if (Next < 0)
52 return 0;
53 return x2v(Next);
54 }
55
56 RegisterSet &insert(unsigned R) {
57 unsigned Idx = v2x(R);
58 ensure(Idx);
59 return static_cast<RegisterSet&>(BitVector::set(Idx));
60 }
61 RegisterSet &remove(unsigned R) {
62 unsigned Idx = v2x(R);
63 if (Idx >= size())
64 return *this;
65 return static_cast<RegisterSet&>(BitVector::reset(Idx));
66 }
67
68 RegisterSet &insert(const RegisterSet &Rs) {
69 return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
70 }
71 RegisterSet &remove(const RegisterSet &Rs) {
72 return static_cast<RegisterSet&>(BitVector::reset(Rs));
73 }
74
75 reference operator[](unsigned R) {
76 unsigned Idx = v2x(R);
77 ensure(Idx);
78 return BitVector::operator[](Idx);
79 }
80 bool operator[](unsigned R) const {
81 unsigned Idx = v2x(R);
82 assert(Idx < size());
83 return BitVector::operator[](Idx);
84 }
85 bool has(unsigned R) const {
86 unsigned Idx = v2x(R);
87 if (Idx >= size())
88 return false;
89 return BitVector::test(Idx);
90 }
91
92 bool empty() const {
93 return !BitVector::any();
94 }
95 bool includes(const RegisterSet &Rs) const {
96 // A.BitVector::test(B) <=> A-B != {}
97 return !Rs.BitVector::test(*this);
98 }
99 bool intersects(const RegisterSet &Rs) const {
100 return BitVector::anyCommon(Rs);
101 }
102
103 private:
104 void ensure(unsigned Idx) {
105 if (size() <= Idx)
106 resize(std::max(Idx+1, 32U));
107 }
108 static inline unsigned v2x(unsigned v) {
109 return TargetRegisterInfo::virtReg2Index(v);
110 }
111 static inline unsigned x2v(unsigned x) {
112 return TargetRegisterInfo::index2VirtReg(x);
113 }
114 };
115
116
117 struct PrintRegSet {
118 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
119 : RS(S), TRI(RI) {}
120 friend raw_ostream &operator<< (raw_ostream &OS,
121 const PrintRegSet &P);
122 private:
123 const RegisterSet &RS;
124 const TargetRegisterInfo *TRI;
125 };
126
127 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
128 LLVM_ATTRIBUTE_UNUSED;
129 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
130 OS << '{';
131 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
132 OS << ' ' << PrintReg(R, P.TRI);
133 OS << " }";
134 return OS;
135 }
136 }
137
138
139 namespace {
140 class Transformation;
141
142 class HexagonBitSimplify : public MachineFunctionPass {
143 public:
144 static char ID;
145 HexagonBitSimplify() : MachineFunctionPass(ID), MDT(0) {
146 initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry());
147 }
148 virtual const char *getPassName() const {
149 return "Hexagon bit simplification";
150 }
151 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
152 AU.addRequired<MachineDominatorTree>();
153 AU.addPreserved<MachineDominatorTree>();
154 MachineFunctionPass::getAnalysisUsage(AU);
155 }
156 virtual bool runOnMachineFunction(MachineFunction &MF);
157
158 static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
159 static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
160 static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
161 const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
162 static bool isConst(const BitTracker::RegisterCell &RC, uint16_t B,
163 uint16_t W);
164 static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
165 uint16_t W);
166 static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
167 uint16_t W, uint64_t &U);
168 static bool replaceReg(unsigned OldR, unsigned NewR,
169 MachineRegisterInfo &MRI);
170 static bool getSubregMask(const BitTracker::RegisterRef &RR,
171 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
172 static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
173 unsigned NewSR, MachineRegisterInfo &MRI);
174 static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
175 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
176 static bool parseRegSequence(const MachineInstr &I,
177 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH);
178
179 static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
180 uint16_t Begin);
181 static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
182 uint16_t Begin, const HexagonInstrInfo &HII);
183
184 static const TargetRegisterClass *getFinalVRegClass(
185 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
186 static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
187 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
188
189 private:
190 MachineDominatorTree *MDT;
191
192 bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
193 };
194
195 char HexagonBitSimplify::ID = 0;
196 typedef HexagonBitSimplify HBS;
197
198
199 // The purpose of this class is to provide a common facility to traverse
200 // the function top-down or bottom-up via the dominator tree, and keep
201 // track of the available registers.
202 class Transformation {
203 public:
204 bool TopDown;
205 Transformation(bool TD) : TopDown(TD) {}
206 virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
207 virtual ~Transformation() {}
208 };
209 }
210
211 INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit",
212 "Hexagon bit simplification", false, false)
213 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
214 INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit",
215 "Hexagon bit simplification", false, false)
216
217
218 bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
219 RegisterSet &AVs) {
220 MachineDomTreeNode *N = MDT->getNode(&B);
221 typedef GraphTraits<MachineDomTreeNode*> GTN;
222 bool Changed = false;
223
224 if (T.TopDown)
225 Changed = T.processBlock(B, AVs);
226
227 RegisterSet Defs;
228 for (auto &I : B)
229 getInstrDefs(I, Defs);
230 RegisterSet NewAVs = AVs;
231 NewAVs.insert(Defs);
232
233 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
234 MachineBasicBlock *SB = (*I)->getBlock();
235 Changed |= visitBlock(*SB, T, NewAVs);
236 }
237 if (!T.TopDown)
238 Changed |= T.processBlock(B, AVs);
239
240 return Changed;
241 }
242
243 //
244 // Utility functions:
245 //
246 void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
247 RegisterSet &Defs) {
248 for (auto &Op : MI.operands()) {
249 if (!Op.isReg() || !Op.isDef())
250 continue;
251 unsigned R = Op.getReg();
252 if (!TargetRegisterInfo::isVirtualRegister(R))
253 continue;
254 Defs.insert(R);
255 }
256 }
257
258 void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
259 RegisterSet &Uses) {
260 for (auto &Op : MI.operands()) {
261 if (!Op.isReg() || !Op.isUse())
262 continue;
263 unsigned R = Op.getReg();
264 if (!TargetRegisterInfo::isVirtualRegister(R))
265 continue;
266 Uses.insert(R);
267 }
268 }
269
270 // Check if all the bits in range [B, E) in both cells are equal.
271 bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
272 uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
273 uint16_t W) {
274 for (uint16_t i = 0; i < W; ++i) {
275 // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
276 if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
277 return false;
278 // Same for RC2[i].
279 if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
280 return false;
281 if (RC1[B1+i] != RC2[B2+i])
282 return false;
283 }
284 return true;
285 }
286
287
288 bool HexagonBitSimplify::isConst(const BitTracker::RegisterCell &RC,
289 uint16_t B, uint16_t W) {
290 assert(B < RC.width() && B+W <= RC.width());
291 for (uint16_t i = B; i < B+W; ++i)
292 if (!RC[i].num())
293 return false;
294 return true;
295 }
296
297
298 bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
299 uint16_t B, uint16_t W) {
300 assert(B < RC.width() && B+W <= RC.width());
301 for (uint16_t i = B; i < B+W; ++i)
302 if (!RC[i].is(0))
303 return false;
304 return true;
305 }
306
307
308 bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
309 uint16_t B, uint16_t W, uint64_t &U) {
310 assert(B < RC.width() && B+W <= RC.width());
311 int64_t T = 0;
312 for (uint16_t i = B+W; i > B; --i) {
313 const BitTracker::BitValue &BV = RC[i-1];
314 T <<= 1;
315 if (BV.is(1))
316 T |= 1;
317 else if (!BV.is(0))
318 return false;
319 }
320 U = T;
321 return true;
322 }
323
324
325 bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
326 MachineRegisterInfo &MRI) {
327 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
328 !TargetRegisterInfo::isVirtualRegister(NewR))
329 return false;
330 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
331 decltype(End) NextI;
332 for (auto I = Begin; I != End; I = NextI) {
333 NextI = std::next(I);
334 I->setReg(NewR);
335 }
336 return Begin != End;
337 }
338
339
340 bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
341 unsigned NewSR, MachineRegisterInfo &MRI) {
342 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
343 !TargetRegisterInfo::isVirtualRegister(NewR))
344 return false;
345 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
346 decltype(End) NextI;
347 for (auto I = Begin; I != End; I = NextI) {
348 NextI = std::next(I);
349 I->setReg(NewR);
350 I->setSubReg(NewSR);
351 }
352 return Begin != End;
353 }
354
355
356 bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
357 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
358 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
359 !TargetRegisterInfo::isVirtualRegister(NewR))
360 return false;
361 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
362 decltype(End) NextI;
363 for (auto I = Begin; I != End; I = NextI) {
364 NextI = std::next(I);
365 if (I->getSubReg() != OldSR)
366 continue;
367 I->setReg(NewR);
368 I->setSubReg(NewSR);
369 }
370 return Begin != End;
371 }
372
373
374 // For a register ref (pair Reg:Sub), set Begin to the position of the LSB
375 // of Sub in Reg, and set Width to the size of Sub in bits. Return true,
376 // if this succeeded, otherwise return false.
377 bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
378 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
379 const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
380 if (RC == &Hexagon::IntRegsRegClass) {
381 assert(RR.Sub == 0);
382 Begin = 0;
383 Width = 32;
384 return true;
385 }
386 if (RC == &Hexagon::DoubleRegsRegClass) {
387 if (RR.Sub == 0) {
388 Begin = 0;
389 Width = 64;
390 return true;
391 }
392 assert(RR.Sub == Hexagon::subreg_loreg || RR.Sub == Hexagon::subreg_hireg);
393 Width = 32;
394 Begin = (RR.Sub == Hexagon::subreg_loreg ? 0 : 32);
395 return true;
396 }
397 return false;
398 }
399
400
401 // For a REG_SEQUENCE, set SL to the low subregister and SH to the high
402 // subregister.
403 bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
404 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH) {
405 assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
406 unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
407 assert(Sub1 != Sub2);
408 if (Sub1 == Hexagon::subreg_loreg && Sub2 == Hexagon::subreg_hireg) {
409 SL = I.getOperand(1);
410 SH = I.getOperand(3);
411 return true;
412 }
413 if (Sub1 == Hexagon::subreg_hireg && Sub2 == Hexagon::subreg_loreg) {
414 SH = I.getOperand(1);
415 SL = I.getOperand(3);
416 return true;
417 }
418 return false;
419 }
420
421
422 // All stores (except 64-bit stores) take a 32-bit register as the source
423 // of the value to be stored. If the instruction stores into a location
424 // that is shorter than 32 bits, some bits of the source register are not
425 // used. For each store instruction, calculate the set of used bits in
426 // the source register, and set appropriate bits in Bits. Return true if
427 // the bits are calculated, false otherwise.
428 bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
429 uint16_t Begin) {
430 using namespace Hexagon;
431
432 switch (Opc) {
433 // Store byte
434 case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32
435 case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new
436 case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32
437 case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32
438 case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
439 case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
440 case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
441 case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
442 case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
443 case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
444 case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32
445 case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new
446 case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32
447 case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32
448 case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
449 case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
450 case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
451 case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
452 case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
453 case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
454 case S4_storerb_ap: // memb(Re32=#U6)=Rt32
455 case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new
456 case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32
457 case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new
458 case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32
459 case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new
460 case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32
461 case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new
462 case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32
463 case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
464 case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32
465 case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new
466 case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32
467 case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new
468 case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
469 case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
470 case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
471 case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
472 case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
473 case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
474 case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
475 case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
476 case S2_storerbgp: // memb(gp+#u16:0)=Rt32
477 case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new
478 case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32
479 case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32
480 case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32
481 case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32
482 case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new
483 case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new
484 case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new
485 case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new
486 Bits.set(Begin, Begin+8);
487 return true;
488
489 // Store low half
490 case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32
491 case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new
492 case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32
493 case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32
494 case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
495 case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
496 case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
497 case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
498 case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
499 case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
500 case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32
501 case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new
502 case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32
503 case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32
504 case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
505 case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
506 case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
507 case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
508 case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
509 case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
510 case S4_storerh_ap: // memh(Re32=#U6)=Rt32
511 case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new
512 case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32
513 case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new
514 case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32
515 case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new
516 case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32
517 case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new
518 case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32
519 case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
520 case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32
521 case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new
522 case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32
523 case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
524 case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
525 case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
526 case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
527 case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new
528 case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
529 case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
530 case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
531 case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
532 case S2_storerhgp: // memh(gp+#u16:1)=Rt32
533 case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new
534 case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32
535 case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32
536 case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32
537 case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32
538 case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new
539 case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new
540 case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new
541 case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new
542 Bits.set(Begin, Begin+16);
543 return true;
544
545 // Store high half
546 case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32
547 case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
548 case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
549 case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
550 case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
551 case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32
552 case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
553 case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
554 case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
555 case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
556 case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32
557 case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32
558 case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32
559 case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32
560 case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
561 case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32
562 case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32
563 case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
564 case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
565 case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
566 case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
567 case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32
568 case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32
569 case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32
570 case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32
571 case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32
572 Bits.set(Begin+16, Begin+32);
573 return true;
574 }
575
576 return false;
577 }
578
579
580 // For an instruction with opcode Opc, calculate the set of bits that it
581 // uses in a register in operand OpN. This only calculates the set of used
582 // bits for cases where it does not depend on any operands (as is the case
583 // in shifts, for example). For concrete instructions from a program, the
584 // operand may be a subregister of a larger register, while Bits would
585 // correspond to the larger register in its entirety. Because of that,
586 // the parameter Begin can be used to indicate which bit of Bits should be
587 // considered the LSB of of the operand.
588 bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
589 BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
590 using namespace Hexagon;
591
592 const MCInstrDesc &D = HII.get(Opc);
593 if (D.mayStore()) {
594 if (OpN == D.getNumOperands()-1)
595 return getUsedBitsInStore(Opc, Bits, Begin);
596 return false;
597 }
598
599 switch (Opc) {
600 // One register source. Used bits: R1[0-7].
601 case A2_sxtb:
602 case A2_zxtb:
603 case A4_cmpbeqi:
604 case A4_cmpbgti:
605 case A4_cmpbgtui:
606 if (OpN == 1) {
607 Bits.set(Begin, Begin+8);
608 return true;
609 }
610 break;
611
612 // One register source. Used bits: R1[0-15].
613 case A2_aslh:
614 case A2_sxth:
615 case A2_zxth:
616 case A4_cmpheqi:
617 case A4_cmphgti:
618 case A4_cmphgtui:
619 if (OpN == 1) {
620 Bits.set(Begin, Begin+16);
621 return true;
622 }
623 break;
624
625 // One register source. Used bits: R1[16-31].
626 case A2_asrh:
627 if (OpN == 1) {
628 Bits.set(Begin+16, Begin+32);
629 return true;
630 }
631 break;
632
633 // Two register sources. Used bits: R1[0-7], R2[0-7].
634 case A4_cmpbeq:
635 case A4_cmpbgt:
636 case A4_cmpbgtu:
637 if (OpN == 1) {
638 Bits.set(Begin, Begin+8);
639 return true;
640 }
641 break;
642
643 // Two register sources. Used bits: R1[0-15], R2[0-15].
644 case A4_cmpheq:
645 case A4_cmphgt:
646 case A4_cmphgtu:
647 case A2_addh_h16_ll:
648 case A2_addh_h16_sat_ll:
649 case A2_addh_l16_ll:
650 case A2_addh_l16_sat_ll:
651 case A2_combine_ll:
652 case A2_subh_h16_ll:
653 case A2_subh_h16_sat_ll:
654 case A2_subh_l16_ll:
655 case A2_subh_l16_sat_ll:
656 case M2_mpy_acc_ll_s0:
657 case M2_mpy_acc_ll_s1:
658 case M2_mpy_acc_sat_ll_s0:
659 case M2_mpy_acc_sat_ll_s1:
660 case M2_mpy_ll_s0:
661 case M2_mpy_ll_s1:
662 case M2_mpy_nac_ll_s0:
663 case M2_mpy_nac_ll_s1:
664 case M2_mpy_nac_sat_ll_s0:
665 case M2_mpy_nac_sat_ll_s1:
666 case M2_mpy_rnd_ll_s0:
667 case M2_mpy_rnd_ll_s1:
668 case M2_mpy_sat_ll_s0:
669 case M2_mpy_sat_ll_s1:
670 case M2_mpy_sat_rnd_ll_s0:
671 case M2_mpy_sat_rnd_ll_s1:
672 case M2_mpyd_acc_ll_s0:
673 case M2_mpyd_acc_ll_s1:
674 case M2_mpyd_ll_s0:
675 case M2_mpyd_ll_s1:
676 case M2_mpyd_nac_ll_s0:
677 case M2_mpyd_nac_ll_s1:
678 case M2_mpyd_rnd_ll_s0:
679 case M2_mpyd_rnd_ll_s1:
680 case M2_mpyu_acc_ll_s0:
681 case M2_mpyu_acc_ll_s1:
682 case M2_mpyu_ll_s0:
683 case M2_mpyu_ll_s1:
684 case M2_mpyu_nac_ll_s0:
685 case M2_mpyu_nac_ll_s1:
686 case M2_mpyud_acc_ll_s0:
687 case M2_mpyud_acc_ll_s1:
688 case M2_mpyud_ll_s0:
689 case M2_mpyud_ll_s1:
690 case M2_mpyud_nac_ll_s0:
691 case M2_mpyud_nac_ll_s1:
692 if (OpN == 1 || OpN == 2) {
693 Bits.set(Begin, Begin+16);
694 return true;
695 }
696 break;
697
698 // Two register sources. Used bits: R1[0-15], R2[16-31].
699 case A2_addh_h16_lh:
700 case A2_addh_h16_sat_lh:
701 case A2_combine_lh:
702 case A2_subh_h16_lh:
703 case A2_subh_h16_sat_lh:
704 case M2_mpy_acc_lh_s0:
705 case M2_mpy_acc_lh_s1:
706 case M2_mpy_acc_sat_lh_s0:
707 case M2_mpy_acc_sat_lh_s1:
708 case M2_mpy_lh_s0:
709 case M2_mpy_lh_s1:
710 case M2_mpy_nac_lh_s0:
711 case M2_mpy_nac_lh_s1:
712 case M2_mpy_nac_sat_lh_s0:
713 case M2_mpy_nac_sat_lh_s1:
714 case M2_mpy_rnd_lh_s0:
715 case M2_mpy_rnd_lh_s1:
716 case M2_mpy_sat_lh_s0:
717 case M2_mpy_sat_lh_s1:
718 case M2_mpy_sat_rnd_lh_s0:
719 case M2_mpy_sat_rnd_lh_s1:
720 case M2_mpyd_acc_lh_s0:
721 case M2_mpyd_acc_lh_s1:
722 case M2_mpyd_lh_s0:
723 case M2_mpyd_lh_s1:
724 case M2_mpyd_nac_lh_s0:
725 case M2_mpyd_nac_lh_s1:
726 case M2_mpyd_rnd_lh_s0:
727 case M2_mpyd_rnd_lh_s1:
728 case M2_mpyu_acc_lh_s0:
729 case M2_mpyu_acc_lh_s1:
730 case M2_mpyu_lh_s0:
731 case M2_mpyu_lh_s1:
732 case M2_mpyu_nac_lh_s0:
733 case M2_mpyu_nac_lh_s1:
734 case M2_mpyud_acc_lh_s0:
735 case M2_mpyud_acc_lh_s1:
736 case M2_mpyud_lh_s0:
737 case M2_mpyud_lh_s1:
738 case M2_mpyud_nac_lh_s0:
739 case M2_mpyud_nac_lh_s1:
740 // These four are actually LH.
741 case A2_addh_l16_hl:
742 case A2_addh_l16_sat_hl:
743 case A2_subh_l16_hl:
744 case A2_subh_l16_sat_hl:
745 if (OpN == 1) {
746 Bits.set(Begin, Begin+16);
747 return true;
748 }
749 if (OpN == 2) {
750 Bits.set(Begin+16, Begin+32);
751 return true;
752 }
753 break;
754
755 // Two register sources, used bits: R1[16-31], R2[0-15].
756 case A2_addh_h16_hl:
757 case A2_addh_h16_sat_hl:
758 case A2_combine_hl:
759 case A2_subh_h16_hl:
760 case A2_subh_h16_sat_hl:
761 case M2_mpy_acc_hl_s0:
762 case M2_mpy_acc_hl_s1:
763 case M2_mpy_acc_sat_hl_s0:
764 case M2_mpy_acc_sat_hl_s1:
765 case M2_mpy_hl_s0:
766 case M2_mpy_hl_s1:
767 case M2_mpy_nac_hl_s0:
768 case M2_mpy_nac_hl_s1:
769 case M2_mpy_nac_sat_hl_s0:
770 case M2_mpy_nac_sat_hl_s1:
771 case M2_mpy_rnd_hl_s0:
772 case M2_mpy_rnd_hl_s1:
773 case M2_mpy_sat_hl_s0:
774 case M2_mpy_sat_hl_s1:
775 case M2_mpy_sat_rnd_hl_s0:
776 case M2_mpy_sat_rnd_hl_s1:
777 case M2_mpyd_acc_hl_s0:
778 case M2_mpyd_acc_hl_s1:
779 case M2_mpyd_hl_s0:
780 case M2_mpyd_hl_s1:
781 case M2_mpyd_nac_hl_s0:
782 case M2_mpyd_nac_hl_s1:
783 case M2_mpyd_rnd_hl_s0:
784 case M2_mpyd_rnd_hl_s1:
785 case M2_mpyu_acc_hl_s0:
786 case M2_mpyu_acc_hl_s1:
787 case M2_mpyu_hl_s0:
788 case M2_mpyu_hl_s1:
789 case M2_mpyu_nac_hl_s0:
790 case M2_mpyu_nac_hl_s1:
791 case M2_mpyud_acc_hl_s0:
792 case M2_mpyud_acc_hl_s1:
793 case M2_mpyud_hl_s0:
794 case M2_mpyud_hl_s1:
795 case M2_mpyud_nac_hl_s0:
796 case M2_mpyud_nac_hl_s1:
797 if (OpN == 1) {
798 Bits.set(Begin+16, Begin+32);
799 return true;
800 }
801 if (OpN == 2) {
802 Bits.set(Begin, Begin+16);
803 return true;
804 }
805 break;
806
807 // Two register sources, used bits: R1[16-31], R2[16-31].
808 case A2_addh_h16_hh:
809 case A2_addh_h16_sat_hh:
810 case A2_combine_hh:
811 case A2_subh_h16_hh:
812 case A2_subh_h16_sat_hh:
813 case M2_mpy_acc_hh_s0:
814 case M2_mpy_acc_hh_s1:
815 case M2_mpy_acc_sat_hh_s0:
816 case M2_mpy_acc_sat_hh_s1:
817 case M2_mpy_hh_s0:
818 case M2_mpy_hh_s1:
819 case M2_mpy_nac_hh_s0:
820 case M2_mpy_nac_hh_s1:
821 case M2_mpy_nac_sat_hh_s0:
822 case M2_mpy_nac_sat_hh_s1:
823 case M2_mpy_rnd_hh_s0:
824 case M2_mpy_rnd_hh_s1:
825 case M2_mpy_sat_hh_s0:
826 case M2_mpy_sat_hh_s1:
827 case M2_mpy_sat_rnd_hh_s0:
828 case M2_mpy_sat_rnd_hh_s1:
829 case M2_mpyd_acc_hh_s0:
830 case M2_mpyd_acc_hh_s1:
831 case M2_mpyd_hh_s0:
832 case M2_mpyd_hh_s1:
833 case M2_mpyd_nac_hh_s0:
834 case M2_mpyd_nac_hh_s1:
835 case M2_mpyd_rnd_hh_s0:
836 case M2_mpyd_rnd_hh_s1:
837 case M2_mpyu_acc_hh_s0:
838 case M2_mpyu_acc_hh_s1:
839 case M2_mpyu_hh_s0:
840 case M2_mpyu_hh_s1:
841 case M2_mpyu_nac_hh_s0:
842 case M2_mpyu_nac_hh_s1:
843 case M2_mpyud_acc_hh_s0:
844 case M2_mpyud_acc_hh_s1:
845 case M2_mpyud_hh_s0:
846 case M2_mpyud_hh_s1:
847 case M2_mpyud_nac_hh_s0:
848 case M2_mpyud_nac_hh_s1:
849 if (OpN == 1 || OpN == 2) {
850 Bits.set(Begin+16, Begin+32);
851 return true;
852 }
853 break;
854 }
855
856 return false;
857 }
858
859
860 // Calculate the register class that matches Reg:Sub. For example, if
861 // vreg1 is a double register, then vreg1:subreg_hireg would match "int"
862 // register class.
863 const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
864 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
865 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
866 return nullptr;
867 auto *RC = MRI.getRegClass(RR.Reg);
868 if (RR.Sub == 0)
869 return RC;
870
871 auto VerifySR = [] (unsigned Sub) -> void {
872 assert(Sub == Hexagon::subreg_hireg || Sub == Hexagon::subreg_loreg);
873 };
874
875 switch (RC->getID()) {
876 case Hexagon::DoubleRegsRegClassID:
877 VerifySR(RR.Sub);
878 return &Hexagon::IntRegsRegClass;
879 case Hexagon::VecDblRegsRegClassID:
880 VerifySR(RR.Sub);
881 return &Hexagon::VectorRegsRegClass;
882 case Hexagon::VecDblRegs128BRegClassID:
883 VerifySR(RR.Sub);
884 return &Hexagon::VectorRegs128BRegClass;
885 }
886 return nullptr;
887 }
888
889
890 // Check if RD could be replaced with RS at any possible use of RD.
891 // For example a predicate register cannot be replaced with a integer
892 // register, but a 64-bit register with a subregister can be replaced
893 // with a 32-bit register.
894 bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
895 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
896 if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
897 !TargetRegisterInfo::isVirtualRegister(RS.Reg))
898 return false;
899 // Return false if one (or both) classes are nullptr.
900 auto *DRC = getFinalVRegClass(RD, MRI);
901 if (!DRC)
902 return false;
903
904 return DRC == getFinalVRegClass(RS, MRI);
905 }
906
907
908 //
909 // Dead code elimination
910 //
911 namespace {
912 class DeadCodeElimination {
913 public:
914 DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
915 : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
916 MDT(mdt), MRI(mf.getRegInfo()) {}
917
918 bool run() {
919 return runOnNode(MDT.getRootNode());
920 }
921
922 private:
923 bool isDead(unsigned R) const;
924 bool runOnNode(MachineDomTreeNode *N);
925
926 MachineFunction &MF;
927 const HexagonInstrInfo &HII;
928 MachineDominatorTree &MDT;
929 MachineRegisterInfo &MRI;
930 };
931 }
932
933
934 bool DeadCodeElimination::isDead(unsigned R) const {
935 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
936 MachineInstr *UseI = I->getParent();
937 if (UseI->isDebugValue())
938 continue;
939 if (UseI->isPHI()) {
940 assert(!UseI->getOperand(0).getSubReg());
941 unsigned DR = UseI->getOperand(0).getReg();
942 if (DR == R)
943 continue;
944 }
945 return false;
946 }
947 return true;
948 }
949
950
951 bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
952 bool Changed = false;
953 typedef GraphTraits<MachineDomTreeNode*> GTN;
954 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
955 Changed |= runOnNode(*I);
956
957 MachineBasicBlock *B = N->getBlock();
958 std::vector<MachineInstr*> Instrs;
959 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
960 Instrs.push_back(&*I);
961
962 for (auto MI : Instrs) {
963 unsigned Opc = MI->getOpcode();
964 // Do not touch lifetime markers. This is why the target-independent DCE
965 // cannot be used.
966 if (Opc == TargetOpcode::LIFETIME_START ||
967 Opc == TargetOpcode::LIFETIME_END)
968 continue;
969 bool Store = false;
970 if (MI->isInlineAsm())
971 continue;
972 // Delete PHIs if possible.
973 if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
974 continue;
975
976 bool AllDead = true;
977 SmallVector<unsigned,2> Regs;
978 for (auto &Op : MI->operands()) {
979 if (!Op.isReg() || !Op.isDef())
980 continue;
981 unsigned R = Op.getReg();
982 if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
983 AllDead = false;
984 break;
985 }
986 Regs.push_back(R);
987 }
988 if (!AllDead)
989 continue;
990
991 B->erase(MI);
992 for (unsigned i = 0, n = Regs.size(); i != n; ++i)
993 MRI.markUsesInDebugValueAsUndef(Regs[i]);
994 Changed = true;
995 }
996
997 return Changed;
998 }
999
1000
1001 //
1002 // Eliminate redundant instructions
1003 //
1004 // This transformation will identify instructions where the output register
1005 // is the same as one of its input registers. This only works on instructions
1006 // that define a single register (unlike post-increment loads, for example).
1007 // The equality check is actually more detailed: the code calculates which
1008 // bits of the output are used, and only compares these bits with the input
1009 // registers.
1010 // If the output matches an input, the instruction is replaced with COPY.
1011 // The copies will be removed by another transformation.
1012 namespace {
1013 class RedundantInstrElimination : public Transformation {
1014 public:
1015 RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1016 MachineRegisterInfo &mri)
1017 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1018 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1019 private:
1020 bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1021 unsigned &LostB, unsigned &LostE);
1022 bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1023 unsigned &LostB, unsigned &LostE);
1024 bool computeUsedBits(unsigned Reg, BitVector &Bits);
1025 bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1026 uint16_t Begin);
1027 bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1028
1029 const HexagonInstrInfo &HII;
1030 MachineRegisterInfo &MRI;
1031 BitTracker &BT;
1032 };
1033 }
1034
1035
1036 // Check if the instruction is a lossy shift left, where the input being
1037 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1038 // of bit indices that are lost.
1039 bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1040 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1041 using namespace Hexagon;
1042 unsigned Opc = MI.getOpcode();
1043 unsigned ImN, RegN, Width;
1044 switch (Opc) {
1045 case S2_asl_i_p:
1046 ImN = 2;
1047 RegN = 1;
1048 Width = 64;
1049 break;
1050 case S2_asl_i_p_acc:
1051 case S2_asl_i_p_and:
1052 case S2_asl_i_p_nac:
1053 case S2_asl_i_p_or:
1054 case S2_asl_i_p_xacc:
1055 ImN = 3;
1056 RegN = 2;
1057 Width = 64;
1058 break;
1059 case S2_asl_i_r:
1060 ImN = 2;
1061 RegN = 1;
1062 Width = 32;
1063 break;
1064 case S2_addasl_rrri:
1065 case S4_andi_asl_ri:
1066 case S4_ori_asl_ri:
1067 case S4_addi_asl_ri:
1068 case S4_subi_asl_ri:
1069 case S2_asl_i_r_acc:
1070 case S2_asl_i_r_and:
1071 case S2_asl_i_r_nac:
1072 case S2_asl_i_r_or:
1073 case S2_asl_i_r_sat:
1074 case S2_asl_i_r_xacc:
1075 ImN = 3;
1076 RegN = 2;
1077 Width = 32;
1078 break;
1079 default:
1080 return false;
1081 }
1082
1083 if (RegN != OpN)
1084 return false;
1085
1086 assert(MI.getOperand(ImN).isImm());
1087 unsigned S = MI.getOperand(ImN).getImm();
1088 if (S == 0)
1089 return false;
1090 LostB = Width-S;
1091 LostE = Width;
1092 return true;
1093 }
1094
1095
1096 // Check if the instruction is a lossy shift right, where the input being
1097 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1098 // of bit indices that are lost.
1099 bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1100 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1101 using namespace Hexagon;
1102 unsigned Opc = MI.getOpcode();
1103 unsigned ImN, RegN;
1104 switch (Opc) {
1105 case S2_asr_i_p:
1106 case S2_lsr_i_p:
1107 ImN = 2;
1108 RegN = 1;
1109 break;
1110 case S2_asr_i_p_acc:
1111 case S2_asr_i_p_and:
1112 case S2_asr_i_p_nac:
1113 case S2_asr_i_p_or:
1114 case S2_lsr_i_p_acc:
1115 case S2_lsr_i_p_and:
1116 case S2_lsr_i_p_nac:
1117 case S2_lsr_i_p_or:
1118 case S2_lsr_i_p_xacc:
1119 ImN = 3;
1120 RegN = 2;
1121 break;
1122 case S2_asr_i_r:
1123 case S2_lsr_i_r:
1124 ImN = 2;
1125 RegN = 1;
1126 break;
1127 case S4_andi_lsr_ri:
1128 case S4_ori_lsr_ri:
1129 case S4_addi_lsr_ri:
1130 case S4_subi_lsr_ri:
1131 case S2_asr_i_r_acc:
1132 case S2_asr_i_r_and:
1133 case S2_asr_i_r_nac:
1134 case S2_asr_i_r_or:
1135 case S2_lsr_i_r_acc:
1136 case S2_lsr_i_r_and:
1137 case S2_lsr_i_r_nac:
1138 case S2_lsr_i_r_or:
1139 case S2_lsr_i_r_xacc:
1140 ImN = 3;
1141 RegN = 2;
1142 break;
1143
1144 default:
1145 return false;
1146 }
1147
1148 if (RegN != OpN)
1149 return false;
1150
1151 assert(MI.getOperand(ImN).isImm());
1152 unsigned S = MI.getOperand(ImN).getImm();
1153 LostB = 0;
1154 LostE = S;
1155 return true;
1156 }
1157
1158
1159 // Calculate the bit vector that corresponds to the used bits of register Reg.
1160 // The vector Bits has the same size, as the size of Reg in bits. If the cal-
1161 // culation fails (i.e. the used bits are unknown), it returns false. Other-
1162 // wise, it returns true and sets the corresponding bits in Bits.
1163 bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1164 BitVector Used(Bits.size());
1165 RegisterSet Visited;
1166 std::vector<unsigned> Pending;
1167 Pending.push_back(Reg);
1168
1169 for (unsigned i = 0; i < Pending.size(); ++i) {
1170 unsigned R = Pending[i];
1171 if (Visited.has(R))
1172 continue;
1173 Visited.insert(R);
1174 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1175 BitTracker::RegisterRef UR = *I;
1176 unsigned B, W;
1177 if (!HBS::getSubregMask(UR, B, W, MRI))
1178 return false;
1179 MachineInstr &UseI = *I->getParent();
1180 if (UseI.isPHI() || UseI.isCopy()) {
1181 unsigned DefR = UseI.getOperand(0).getReg();
1182 if (!TargetRegisterInfo::isVirtualRegister(DefR))
1183 return false;
1184 Pending.push_back(DefR);
1185 } else {
1186 if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1187 return false;
1188 }
1189 }
1190 }
1191 Bits |= Used;
1192 return true;
1193 }
1194
1195
1196 // Calculate the bits used by instruction MI in a register in operand OpN.
1197 // Return true/false if the calculation succeeds/fails. If is succeeds, set
1198 // used bits in Bits. This function does not reset any bits in Bits, so
1199 // subsequent calls over different instructions will result in the union
1200 // of the used bits in all these instructions.
1201 // The register in question may be used with a sub-register, whereas Bits
1202 // holds the bits for the entire register. To keep track of that, the
1203 // argument Begin indicates where in Bits is the lowest-significant bit
1204 // of the register used in operand OpN. For example, in instruction:
1205 // vreg1 = S2_lsr_i_r vreg2:subreg_hireg, 10
1206 // the operand 1 is a 32-bit register, which happens to be a subregister
1207 // of the 64-bit register vreg2, and that subregister starts at position 32.
1208 // In this case Begin=32, since Bits[32] would be the lowest-significant bit
1209 // of vreg2:subreg_hireg.
1210 bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1211 unsigned OpN, BitVector &Bits, uint16_t Begin) {
1212 unsigned Opc = MI.getOpcode();
1213 BitVector T(Bits.size());
1214 bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1215 // Even if we don't have bits yet, we could still provide some information
1216 // if the instruction is a lossy shift: the lost bits will be marked as
1217 // not used.
1218 unsigned LB, LE;
1219 if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1220 assert(MI.getOperand(OpN).isReg());
1221 BitTracker::RegisterRef RR = MI.getOperand(OpN);
1222 const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1223 uint16_t Width = RC->getSize()*8;
1224
1225 if (!GotBits)
1226 T.set(Begin, Begin+Width);
1227 assert(LB <= LE && LB < Width && LE <= Width);
1228 T.reset(Begin+LB, Begin+LE);
1229 GotBits = true;
1230 }
1231 if (GotBits)
1232 Bits |= T;
1233 return GotBits;
1234 }
1235
1236
1237 // Calculates the used bits in RD ("defined register"), and checks if these
1238 // bits in RS ("used register") and RD are identical.
1239 bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1240 BitTracker::RegisterRef RS) {
1241 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1242 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1243
1244 unsigned DB, DW;
1245 if (!HBS::getSubregMask(RD, DB, DW, MRI))
1246 return false;
1247 unsigned SB, SW;
1248 if (!HBS::getSubregMask(RS, SB, SW, MRI))
1249 return false;
1250 if (SW != DW)
1251 return false;
1252
1253 BitVector Used(DC.width());
1254 if (!computeUsedBits(RD.Reg, Used))
1255 return false;
1256
1257 for (unsigned i = 0; i != DW; ++i)
1258 if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1259 return false;
1260 return true;
1261 }
1262
1263
1264 bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1265 const RegisterSet&) {
1266 bool Changed = false;
1267
1268 for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1269 NextI = std::next(I);
1270 MachineInstr *MI = &*I;
1271
1272 if (MI->getOpcode() == TargetOpcode::COPY)
1273 continue;
1274 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1275 continue;
1276 unsigned NumD = MI->getDesc().getNumDefs();
1277 if (NumD != 1)
1278 continue;
1279
1280 BitTracker::RegisterRef RD = MI->getOperand(0);
1281 if (!BT.has(RD.Reg))
1282 continue;
1283 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1284 auto At = MI->isPHI() ? B.getFirstNonPHI()
1285 : MachineBasicBlock::iterator(MI);
1286
1287 // Find a source operand that is equal to the result.
1288 for (auto &Op : MI->uses()) {
1289 if (!Op.isReg())
1290 continue;
1291 BitTracker::RegisterRef RS = Op;
1292 if (!BT.has(RS.Reg))
1293 continue;
1294 if (!HBS::isTransparentCopy(RD, RS, MRI))
1295 continue;
1296
1297 unsigned BN, BW;
1298 if (!HBS::getSubregMask(RS, BN, BW, MRI))
1299 continue;
1300
1301 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1302 if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1303 continue;
1304
1305 // If found, replace the instruction with a COPY.
1306 DebugLoc DL = MI->getDebugLoc();
1307 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1308 unsigned NewR = MRI.createVirtualRegister(FRC);
1309 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1310 .addReg(RS.Reg, 0, RS.Sub);
1311 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1312 BT.put(BitTracker::RegisterRef(NewR), SC);
1313 Changed = true;
1314 break;
1315 }
1316 }
1317
1318 return Changed;
1319 }
1320
1321
1322 //
1323 // Const generation
1324 //
1325 // Recognize instructions that produce constant values known at compile-time.
1326 // Replace them with register definitions that load these constants directly.
1327 namespace {
1328 class ConstGeneration : public Transformation {
1329 public:
1330 ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1331 MachineRegisterInfo &mri)
1332 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1333 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1334 private:
1335 bool isTfrConst(const MachineInstr *MI) const;
1336 bool isConst(unsigned R, int64_t &V) const;
1337 unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
1338 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
1339
1340 const HexagonInstrInfo &HII;
1341 MachineRegisterInfo &MRI;
1342 BitTracker &BT;
1343 };
1344 }
1345
1346 bool ConstGeneration::isConst(unsigned R, int64_t &C) const {
1347 if (!BT.has(R))
1348 return false;
1349 const BitTracker::RegisterCell &RC = BT.lookup(R);
1350 int64_t T = 0;
1351 for (unsigned i = RC.width(); i > 0; --i) {
1352 const BitTracker::BitValue &V = RC[i-1];
1353 T <<= 1;
1354 if (V.is(1))
1355 T |= 1;
1356 else if (!V.is(0))
1357 return false;
1358 }
1359 C = T;
1360 return true;
1361 }
1362
1363
1364 bool ConstGeneration::isTfrConst(const MachineInstr *MI) const {
1365 unsigned Opc = MI->getOpcode();
1366 switch (Opc) {
1367 case Hexagon::A2_combineii:
1368 case Hexagon::A4_combineii:
1369 case Hexagon::A2_tfrsi:
1370 case Hexagon::A2_tfrpi:
1371 case Hexagon::TFR_PdTrue:
1372 case Hexagon::TFR_PdFalse:
1373 case Hexagon::CONST32_Int_Real:
1374 case Hexagon::CONST64_Int_Real:
1375 return true;
1376 }
1377 return false;
1378 }
1379
1380
1381 // Generate a transfer-immediate instruction that is appropriate for the
1382 // register class and the actual value being transferred.
1383 unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1384 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
1385 unsigned Reg = MRI.createVirtualRegister(RC);
1386 if (RC == &Hexagon::IntRegsRegClass) {
1387 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1388 .addImm(int32_t(C));
1389 return Reg;
1390 }
1391
1392 if (RC == &Hexagon::DoubleRegsRegClass) {
1393 if (isInt<8>(C)) {
1394 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1395 .addImm(C);
1396 return Reg;
1397 }
1398
1399 unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1400 if (isInt<8>(Lo) || isInt<8>(Hi)) {
1401 unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1402 : Hexagon::A4_combineii;
1403 BuildMI(B, At, DL, HII.get(Opc), Reg)
1404 .addImm(int32_t(Hi))
1405 .addImm(int32_t(Lo));
1406 return Reg;
1407 }
1408
1409 BuildMI(B, At, DL, HII.get(Hexagon::CONST64_Int_Real), Reg)
1410 .addImm(C);
1411 return Reg;
1412 }
1413
1414 if (RC == &Hexagon::PredRegsRegClass) {
1415 unsigned Opc;
1416 if (C == 0)
1417 Opc = Hexagon::TFR_PdFalse;
1418 else if ((C & 0xFF) == 0xFF)
1419 Opc = Hexagon::TFR_PdTrue;
1420 else
1421 return 0;
1422 BuildMI(B, At, DL, HII.get(Opc), Reg);
1423 return Reg;
1424 }
1425
1426 return 0;
1427 }
1428
1429
1430 bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1431 bool Changed = false;
1432 RegisterSet Defs;
1433
1434 for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1435 if (isTfrConst(I))
1436 continue;
1437 Defs.clear();
1438 HBS::getInstrDefs(*I, Defs);
1439 if (Defs.count() != 1)
1440 continue;
1441 unsigned DR = Defs.find_first();
1442 if (!TargetRegisterInfo::isVirtualRegister(DR))
1443 continue;
1444 int64_t C;
1445 if (isConst(DR, C)) {
1446 DebugLoc DL = I->getDebugLoc();
1447 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1448 unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1449 if (ImmReg) {
1450 HBS::replaceReg(DR, ImmReg, MRI);
1451 BT.put(ImmReg, BT.lookup(DR));
1452 Changed = true;
1453 }
1454 }
1455 }
1456 return Changed;
1457 }
1458
1459
1460 //
1461 // Copy generation
1462 //
1463 // Identify pairs of available registers which hold identical values.
1464 // In such cases, only one of them needs to be calculated, the other one
1465 // will be defined as a copy of the first.
1466 //
1467 // Copy propagation
1468 //
1469 // Eliminate register copies RD = RS, by replacing the uses of RD with
1470 // with uses of RS.
1471 namespace {
1472 class CopyGeneration : public Transformation {
1473 public:
1474 CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1475 MachineRegisterInfo &mri)
1476 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1477 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1478 private:
1479 bool findMatch(const BitTracker::RegisterRef &Inp,
1480 BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1481
1482 const HexagonInstrInfo &HII;
1483 MachineRegisterInfo &MRI;
1484 BitTracker &BT;
1485 };
1486
1487 class CopyPropagation : public Transformation {
1488 public:
1489 CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1490 : Transformation(false), MRI(mri) {}
1491 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1492 static bool isCopyReg(unsigned Opc);
1493 private:
1494 bool propagateRegCopy(MachineInstr &MI);
1495
1496 MachineRegisterInfo &MRI;
1497 };
1498
1499 }
1500
1501
1502 /// Check if there is a register in AVs that is identical to Inp. If so,
1503 /// set Out to the found register. The output may be a pair Reg:Sub.
1504 bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1505 BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1506 if (!BT.has(Inp.Reg))
1507 return false;
1508 const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1509 unsigned B, W;
1510 if (!HBS::getSubregMask(Inp, B, W, MRI))
1511 return false;
1512
1513 for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
1514 if (!BT.has(R) || !HBS::isTransparentCopy(R, Inp, MRI))
1515 continue;
1516 const BitTracker::RegisterCell &RC = BT.lookup(R);
1517 unsigned RW = RC.width();
1518 if (W == RW) {
1519 if (MRI.getRegClass(Inp.Reg) != MRI.getRegClass(R))
1520 continue;
1521 if (!HBS::isEqual(InpRC, B, RC, 0, W))
1522 continue;
1523 Out.Reg = R;
1524 Out.Sub = 0;
1525 return true;
1526 }
1527 // Check if there is a super-register, whose part (with a subregister)
1528 // is equal to the input.
1529 // Only do double registers for now.
1530 if (W*2 != RW)
1531 continue;
1532 if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1533 continue;
1534
1535 if (HBS::isEqual(InpRC, B, RC, 0, W))
1536 Out.Sub = Hexagon::subreg_loreg;
1537 else if (HBS::isEqual(InpRC, B, RC, W, W))
1538 Out.Sub = Hexagon::subreg_hireg;
1539 else
1540 continue;
1541 Out.Reg = R;
1542 return true;
1543 }
1544 return false;
1545 }
1546
1547
1548 bool CopyGeneration::processBlock(MachineBasicBlock &B,
1549 const RegisterSet &AVs) {
1550 RegisterSet AVB(AVs);
1551 bool Changed = false;
1552 RegisterSet Defs;
1553
1554 for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1555 ++I, AVB.insert(Defs)) {
1556 NextI = std::next(I);
1557 Defs.clear();
1558 HBS::getInstrDefs(*I, Defs);
1559
1560 unsigned Opc = I->getOpcode();
1561 if (CopyPropagation::isCopyReg(Opc))
1562 continue;
1563
1564 for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
1565 BitTracker::RegisterRef MR;
1566 if (!findMatch(R, MR, AVB))
1567 continue;
1568 DebugLoc DL = I->getDebugLoc();
1569 auto *FRC = HBS::getFinalVRegClass(MR, MRI);
1570 unsigned NewR = MRI.createVirtualRegister(FRC);
1571 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1572 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1573 .addReg(MR.Reg, 0, MR.Sub);
1574 BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1575 }
1576 }
1577
1578 return Changed;
1579 }
1580
1581
1582 bool CopyPropagation::isCopyReg(unsigned Opc) {
1583 switch (Opc) {
1584 case TargetOpcode::COPY:
1585 case TargetOpcode::REG_SEQUENCE:
1586 case Hexagon::A2_tfr:
1587 case Hexagon::A2_tfrp:
1588 case Hexagon::A2_combinew:
1589 case Hexagon::A4_combineir:
1590 case Hexagon::A4_combineri:
1591 return true;
1592 default:
1593 break;
1594 }
1595 return false;
1596 }
1597
1598
1599 bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1600 bool Changed = false;
1601 unsigned Opc = MI.getOpcode();
1602 BitTracker::RegisterRef RD = MI.getOperand(0);
1603 assert(MI.getOperand(0).getSubReg() == 0);
1604
1605 switch (Opc) {
1606 case TargetOpcode::COPY:
1607 case Hexagon::A2_tfr:
1608 case Hexagon::A2_tfrp: {
1609 BitTracker::RegisterRef RS = MI.getOperand(1);
1610 if (!HBS::isTransparentCopy(RD, RS, MRI))
1611 break;
1612 if (RS.Sub != 0)
1613 Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1614 else
1615 Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1616 break;
1617 }
1618 case TargetOpcode::REG_SEQUENCE: {
1619 BitTracker::RegisterRef SL, SH;
1620 if (HBS::parseRegSequence(MI, SL, SH)) {
1621 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1622 SL.Reg, SL.Sub, MRI);
1623 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1624 SH.Reg, SH.Sub, MRI);
1625 }
1626 break;
1627 }
1628 case Hexagon::A2_combinew: {
1629 BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1630 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1631 RL.Reg, RL.Sub, MRI);
1632 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1633 RH.Reg, RH.Sub, MRI);
1634 break;
1635 }
1636 case Hexagon::A4_combineir:
1637 case Hexagon::A4_combineri: {
1638 unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1639 unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::subreg_loreg
1640 : Hexagon::subreg_hireg;
1641 BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1642 Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1643 break;
1644 }
1645 }
1646 return Changed;
1647 }
1648
1649
1650 bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1651 std::vector<MachineInstr*> Instrs;
1652 for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1653 Instrs.push_back(&*I);
1654
1655 bool Changed = false;
1656 for (auto I : Instrs) {
1657 unsigned Opc = I->getOpcode();
1658 if (!CopyPropagation::isCopyReg(Opc))
1659 continue;
1660 Changed |= propagateRegCopy(*I);
1661 }
1662
1663 return Changed;
1664 }
1665
1666
1667 //
1668 // Bit simplification
1669 //
1670 // Recognize patterns that can be simplified and replace them with the
1671 // simpler forms.
1672 // This is by no means complete
1673 namespace {
1674 class BitSimplification : public Transformation {
1675 public:
1676 BitSimplification(BitTracker &bt, const HexagonInstrInfo &hii,
1677 MachineRegisterInfo &mri)
1678 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1679 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1680 private:
1681 struct RegHalf : public BitTracker::RegisterRef {
1682 bool Low; // Low/High halfword.
1683 };
1684
1685 bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1686 unsigned B, RegHalf &RH);
1687
1688 bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1689 BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1690 unsigned getCombineOpcode(bool HLow, bool LLow);
1691
1692 bool genStoreUpperHalf(MachineInstr *MI);
1693 bool genStoreImmediate(MachineInstr *MI);
1694 bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1695 const BitTracker::RegisterCell &RC);
1696 bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1697 const BitTracker::RegisterCell &RC);
1698 bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1699 const BitTracker::RegisterCell &RC);
1700 bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1701 const BitTracker::RegisterCell &RC);
1702 bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1703 const BitTracker::RegisterCell &RC);
1704
1705 const HexagonInstrInfo &HII;
1706 MachineRegisterInfo &MRI;
1707 BitTracker &BT;
1708 };
1709 }
1710
1711
1712 // Check if the bits [B..B+16) in register cell RC form a valid halfword,
1713 // i.e. [0..16), [16..32), etc. of some register. If so, return true and
1714 // set the information about the found register in RH.
1715 bool BitSimplification::matchHalf(unsigned SelfR,
1716 const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1717 // XXX This could be searching in the set of available registers, in case
1718 // the match is not exact.
1719
1720 // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1721 // register and all the bits B..B+15 match between RC and the register.
1722 // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1723 // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1724 bool Low = false;
1725 unsigned I = B;
1726 while (I < B+16 && RC[I].num())
1727 I++;
1728 if (I == B+16)
1729 return false;
1730
1731 unsigned Reg = RC[I].RefI.Reg;
1732 unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B.
1733 if (P < I-B)
1734 return false;
1735 unsigned Pos = P - (I-B);
1736
1737 if (Reg == 0 || Reg == SelfR) // Don't match "self".
1738 return false;
1739 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1740 return false;
1741 if (!BT.has(Reg))
1742 return false;
1743
1744 const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1745 if (Pos+16 > SC.width())
1746 return false;
1747
1748 for (unsigned i = 0; i < 16; ++i) {
1749 const BitTracker::BitValue &RV = RC[i+B];
1750 if (RV.Type == BitTracker::BitValue::Ref) {
1751 if (RV.RefI.Reg != Reg)
1752 return false;
1753 if (RV.RefI.Pos != i+Pos)
1754 return false;
1755 continue;
1756 }
1757 if (RC[i+B] != SC[i+Pos])
1758 return false;
1759 }
1760
1761 unsigned Sub = 0;
1762 switch (Pos) {
1763 case 0:
1764 Sub = Hexagon::subreg_loreg;
1765 Low = true;
1766 break;
1767 case 16:
1768 Sub = Hexagon::subreg_loreg;
1769 Low = false;
1770 break;
1771 case 32:
1772 Sub = Hexagon::subreg_hireg;
1773 Low = true;
1774 break;
1775 case 48:
1776 Sub = Hexagon::subreg_hireg;
1777 Low = false;
1778 break;
1779 default:
1780 return false;
1781 }
1782
1783 RH.Reg = Reg;
1784 RH.Sub = Sub;
1785 RH.Low = Low;
1786 // If the subregister is not valid with the register, set it to 0.
1787 if (!HBS::getFinalVRegClass(RH, MRI))
1788 RH.Sub = 0;
1789
1790 return true;
1791 }
1792
1793
1794 // Check if RC matches the pattern of a S2_packhl. If so, return true and
1795 // set the inputs Rs and Rt.
1796 bool BitSimplification::matchPackhl(unsigned SelfR,
1797 const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1798 BitTracker::RegisterRef &Rt) {
1799 RegHalf L1, H1, L2, H2;
1800
1801 if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1))
1802 return false;
1803 if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1804 return false;
1805
1806 // Rs = H1.L1, Rt = H2.L2
1807 if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1808 return false;
1809 if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1810 return false;
1811
1812 Rs = H1;
1813 Rt = H2;
1814 return true;
1815 }
1816
1817
1818 unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1819 return HLow ? LLow ? Hexagon::A2_combine_ll
1820 : Hexagon::A2_combine_lh
1821 : LLow ? Hexagon::A2_combine_hl
1822 : Hexagon::A2_combine_hh;
1823 }
1824
1825
1826 // If MI stores the upper halfword of a register (potentially obtained via
1827 // shifts or extracts), replace it with a storerf instruction. This could
1828 // cause the "extraction" code to become dead.
1829 bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1830 unsigned Opc = MI->getOpcode();
1831 if (Opc != Hexagon::S2_storerh_io)
1832 return false;
1833
1834 MachineOperand &ValOp = MI->getOperand(2);
1835 BitTracker::RegisterRef RS = ValOp;
1836 if (!BT.has(RS.Reg))
1837 return false;
1838 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1839 RegHalf H;
1840 if (!matchHalf(0, RC, 0, H))
1841 return false;
1842 if (H.Low)
1843 return false;
1844 MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1845 ValOp.setReg(H.Reg);
1846 ValOp.setSubReg(H.Sub);
1847 return true;
1848 }
1849
1850
1851 // If MI stores a value known at compile-time, and the value is within a range
1852 // that avoids using constant-extenders, replace it with a store-immediate.
1853 bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1854 unsigned Opc = MI->getOpcode();
1855 unsigned Align = 0;
1856 switch (Opc) {
1857 case Hexagon::S2_storeri_io:
1858 Align++;
1859 case Hexagon::S2_storerh_io:
1860 Align++;
1861 case Hexagon::S2_storerb_io:
1862 break;
1863 default:
1864 return false;
1865 }
1866
1867 // Avoid stores to frame-indices (due to an unknown offset).
1868 if (!MI->getOperand(0).isReg())
1869 return false;
1870 MachineOperand &OffOp = MI->getOperand(1);
1871 if (!OffOp.isImm())
1872 return false;
1873
1874 int64_t Off = OffOp.getImm();
1875 // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1876 if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1877 return false;
1878 // Source register:
1879 BitTracker::RegisterRef RS = MI->getOperand(2);
1880 if (!BT.has(RS.Reg))
1881 return false;
1882 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1883 uint64_t U;
1884 if (!HBS::getConst(RC, 0, RC.width(), U))
1885 return false;
1886
1887 // Only consider 8-bit values to avoid constant-extenders.
1888 int V;
1889 switch (Opc) {
1890 case Hexagon::S2_storerb_io:
1891 V = int8_t(U);
1892 break;
1893 case Hexagon::S2_storerh_io:
1894 V = int16_t(U);
1895 break;
1896 case Hexagon::S2_storeri_io:
1897 V = int32_t(U);
1898 break;
1899 }
1900 if (!isInt<8>(V))
1901 return false;
1902
1903 MI->RemoveOperand(2);
1904 switch (Opc) {
1905 case Hexagon::S2_storerb_io:
1906 MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
1907 break;
1908 case Hexagon::S2_storerh_io:
1909 MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
1910 break;
1911 case Hexagon::S2_storeri_io:
1912 MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
1913 break;
1914 }
1915 MI->addOperand(MachineOperand::CreateImm(V));
1916 return true;
1917 }
1918
1919
1920 // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
1921 // last instruction in a sequence that results in something equivalent to
1922 // the pack-halfwords. The intent is to cause the entire sequence to become
1923 // dead.
1924 bool BitSimplification::genPackhl(MachineInstr *MI,
1925 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1926 unsigned Opc = MI->getOpcode();
1927 if (Opc == Hexagon::S2_packhl)
1928 return false;
1929 BitTracker::RegisterRef Rs, Rt;
1930 if (!matchPackhl(RD.Reg, RC, Rs, Rt))
1931 return false;
1932
1933 MachineBasicBlock &B = *MI->getParent();
1934 unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
1935 DebugLoc DL = MI->getDebugLoc();
1936 auto At = MI->isPHI() ? B.getFirstNonPHI()
1937 : MachineBasicBlock::iterator(MI);
1938 BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
1939 .addReg(Rs.Reg, 0, Rs.Sub)
1940 .addReg(Rt.Reg, 0, Rt.Sub);
1941 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1942 BT.put(BitTracker::RegisterRef(NewR), RC);
1943 return true;
1944 }
1945
1946
1947 // If MI produces halfword of the input in the low half of the output,
1948 // replace it with zero-extend or extractu.
1949 bool BitSimplification::genExtractHalf(MachineInstr *MI,
1950 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1951 RegHalf L;
1952 // Check for halfword in low 16 bits, zeros elsewhere.
1953 if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
1954 return false;
1955
1956 unsigned Opc = MI->getOpcode();
1957 MachineBasicBlock &B = *MI->getParent();
1958 DebugLoc DL = MI->getDebugLoc();
1959
1960 // Prefer zxth, since zxth can go in any slot, while extractu only in
1961 // slots 2 and 3.
1962 unsigned NewR = 0;
1963 auto At = MI->isPHI() ? B.getFirstNonPHI()
1964 : MachineBasicBlock::iterator(MI);
1965 if (L.Low && Opc != Hexagon::A2_zxth) {
1966 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1967 BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
1968 .addReg(L.Reg, 0, L.Sub);
1969 } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
1970 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
1971 BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
1972 .addReg(L.Reg, 0, L.Sub)
1973 .addImm(16);
1974 }
1975 if (NewR == 0)
1976 return false;
1977 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1978 BT.put(BitTracker::RegisterRef(NewR), RC);
1979 return true;
1980 }
1981
1982
1983 // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
1984 // combine.
1985 bool BitSimplification::genCombineHalf(MachineInstr *MI,
1986 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1987 RegHalf L, H;
1988 // Check for combine h/l
1989 if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
1990 return false;
1991 // Do nothing if this is just a reg copy.
1992 if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
1993 return false;
1994
1995 unsigned Opc = MI->getOpcode();
1996 unsigned COpc = getCombineOpcode(H.Low, L.Low);
1997 if (COpc == Opc)
1998 return false;
1999
2000 MachineBasicBlock &B = *MI->getParent();
2001 DebugLoc DL = MI->getDebugLoc();
2002 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2003 auto At = MI->isPHI() ? B.getFirstNonPHI()
2004 : MachineBasicBlock::iterator(MI);
2005 BuildMI(B, At, DL, HII.get(COpc), NewR)
2006 .addReg(H.Reg, 0, H.Sub)
2007 .addReg(L.Reg, 0, L.Sub);
2008 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2009 BT.put(BitTracker::RegisterRef(NewR), RC);
2010 return true;
2011 }
2012
2013
2014 // If MI resets high bits of a register and keeps the lower ones, replace it
2015 // with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2016 bool BitSimplification::genExtractLow(MachineInstr *MI,
2017 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2018 unsigned Opc = MI->getOpcode();
2019 switch (Opc) {
2020 case Hexagon::A2_zxtb:
2021 case Hexagon::A2_zxth:
2022 case Hexagon::S2_extractu:
2023 return false;
2024 }
2025 if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2026 int32_t Imm = MI->getOperand(2).getImm();
2027 if (isInt<10>(Imm))
2028 return false;
2029 }
2030
2031 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2032 return false;
2033 unsigned W = RC.width();
2034 while (W > 0 && RC[W-1].is(0))
2035 W--;
2036 if (W == 0 || W == RC.width())
2037 return false;
2038 unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb
2039 : (W == 16) ? Hexagon::A2_zxth
2040 : (W < 10) ? Hexagon::A2_andir
2041 : Hexagon::S2_extractu;
2042 MachineBasicBlock &B = *MI->getParent();
2043 DebugLoc DL = MI->getDebugLoc();
2044
2045 for (auto &Op : MI->uses()) {
2046 if (!Op.isReg())
2047 continue;
2048 BitTracker::RegisterRef RS = Op;
2049 if (!BT.has(RS.Reg))
2050 continue;
2051 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2052 unsigned BN, BW;
2053 if (!HBS::getSubregMask(RS, BN, BW, MRI))
2054 continue;
2055 if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2056 continue;
2057
2058 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2059 auto At = MI->isPHI() ? B.getFirstNonPHI()
2060 : MachineBasicBlock::iterator(MI);
2061 auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
2062 .addReg(RS.Reg, 0, RS.Sub);
2063 if (NewOpc == Hexagon::A2_andir)
2064 MIB.addImm((1 << W) - 1);
2065 else if (NewOpc == Hexagon::S2_extractu)
2066 MIB.addImm(W).addImm(0);
2067 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2068 BT.put(BitTracker::RegisterRef(NewR), RC);
2069 return true;
2070 }
2071 return false;
2072 }
2073
2074
2075 // Check for tstbit simplification opportunity, where the bit being checked
2076 // can be tracked back to another register. For example:
2077 // vreg2 = S2_lsr_i_r vreg1, 5
2078 // vreg3 = S2_tstbit_i vreg2, 0
2079 // =>
2080 // vreg3 = S2_tstbit_i vreg1, 5
2081 bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2082 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2083 unsigned Opc = MI->getOpcode();
2084 if (Opc != Hexagon::S2_tstbit_i)
2085 return false;
2086
2087 unsigned BN = MI->getOperand(2).getImm();
2088 BitTracker::RegisterRef RS = MI->getOperand(1);
2089 unsigned F, W;
2090 DebugLoc DL = MI->getDebugLoc();
2091 if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2092 return false;
2093 MachineBasicBlock &B = *MI->getParent();
2094 auto At = MI->isPHI() ? B.getFirstNonPHI()
2095 : MachineBasicBlock::iterator(MI);
2096
2097 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2098 const BitTracker::BitValue &V = SC[F+BN];
2099 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2100 const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2101 // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2102 // a double register, need to use a subregister and adjust bit
2103 // number.
2104 unsigned P = UINT_MAX;
2105 BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2106 if (TC == &Hexagon::DoubleRegsRegClass) {
2107 P = V.RefI.Pos;
2108 RR.Sub = Hexagon::subreg_loreg;
2109 if (P >= 32) {
2110 P -= 32;
2111 RR.Sub = Hexagon::subreg_hireg;
2112 }
2113 } else if (TC == &Hexagon::IntRegsRegClass) {
2114 P = V.RefI.Pos;
2115 }
2116 if (P != UINT_MAX) {
2117 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2118 BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
2119 .addReg(RR.Reg, 0, RR.Sub)
2120 .addImm(P);
2121 HBS::replaceReg(RD.Reg, NewR, MRI);
2122 BT.put(NewR, RC);
2123 return true;
2124 }
2125 } else if (V.is(0) || V.is(1)) {
2126 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2127 unsigned NewOpc = V.is(0) ? Hexagon::TFR_PdFalse : Hexagon::TFR_PdTrue;
2128 BuildMI(B, At, DL, HII.get(NewOpc), NewR);
2129 HBS::replaceReg(RD.Reg, NewR, MRI);
2130 return true;
2131 }
2132
2133 return false;
2134 }
2135
2136
2137 bool BitSimplification::processBlock(MachineBasicBlock &B,
2138 const RegisterSet &AVs) {
2139 bool Changed = false;
2140 RegisterSet AVB = AVs;
2141 RegisterSet Defs;
2142
2143 for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2144 MachineInstr *MI = &*I;
2145 Defs.clear();
2146 HBS::getInstrDefs(*MI, Defs);
2147
2148 unsigned Opc = MI->getOpcode();
2149 if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2150 continue;
2151
2152 if (MI->mayStore()) {
2153 bool T = genStoreUpperHalf(MI);
2154 T = T || genStoreImmediate(MI);
2155 Changed |= T;
2156 continue;
2157 }
2158
2159 if (Defs.count() != 1)
2160 continue;
2161 const MachineOperand &Op0 = MI->getOperand(0);
2162 if (!Op0.isReg() || !Op0.isDef())
2163 continue;
2164 BitTracker::RegisterRef RD = Op0;
2165 if (!BT.has(RD.Reg))
2166 continue;
2167 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2168 const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2169
2170 if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2171 bool T = genPackhl(MI, RD, RC);
2172 Changed |= T;
2173 continue;
2174 }
2175
2176 if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2177 bool T = genExtractHalf(MI, RD, RC);
2178 T = T || genCombineHalf(MI, RD, RC);
2179 T = T || genExtractLow(MI, RD, RC);
2180 Changed |= T;
2181 continue;
2182 }
2183
2184 if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2185 bool T = simplifyTstbit(MI, RD, RC);
2186 Changed |= T;
2187 continue;
2188 }
2189 }
2190 return Changed;
2191 }
2192
2193
2194 bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2195 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2196 auto &HRI = *HST.getRegisterInfo();
2197 auto &HII = *HST.getInstrInfo();
2198
2199 MDT = &getAnalysis<MachineDominatorTree>();
2200 MachineRegisterInfo &MRI = MF.getRegInfo();
2201 bool Changed;
2202
2203 Changed = DeadCodeElimination(MF, *MDT).run();
2204
2205 const HexagonEvaluator HE(HRI, MRI, HII, MF);
2206 BitTracker BT(HE, MF);
2207 DEBUG(BT.trace(true));
2208 BT.run();
2209
2210 MachineBasicBlock &Entry = MF.front();
2211
2212 RegisterSet AIG; // Available registers for IG.
2213 ConstGeneration ImmG(BT, HII, MRI);
2214 Changed |= visitBlock(Entry, ImmG, AIG);
2215
2216 RegisterSet ARE; // Available registers for RIE.
2217 RedundantInstrElimination RIE(BT, HII, MRI);
2218 Changed |= visitBlock(Entry, RIE, ARE);
2219
2220 RegisterSet ACG; // Available registers for CG.
2221 CopyGeneration CopyG(BT, HII, MRI);
2222 Changed |= visitBlock(Entry, CopyG, ACG);
2223
2224 RegisterSet ACP; // Available registers for CP.
2225 CopyPropagation CopyP(HRI, MRI);
2226 Changed |= visitBlock(Entry, CopyP, ACP);
2227
2228 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2229
2230 BT.run();
2231 RegisterSet ABS; // Available registers for BS.
2232 BitSimplification BitS(BT, HII, MRI);
2233 Changed |= visitBlock(Entry, BitS, ABS);
2234
2235 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2236
2237 if (Changed) {
2238 for (auto &B : MF)
2239 for (auto &I : B)
2240 I.clearKillInfo();
2241 DeadCodeElimination(MF, *MDT).run();
2242 }
2243 return Changed;
2244 }
2245
2246
2247 // Recognize loops where the code at the end of the loop matches the code
2248 // before the entry of the loop, and the matching code is such that is can
2249 // be simplified. This pass relies on the bit simplification above and only
2250 // prepares code in a way that can be handled by the bit simplifcation.
2251 //
2252 // This is the motivating testcase (and explanation):
2253 //
2254 // {
2255 // loop0(.LBB0_2, r1) // %for.body.preheader
2256 // r5:4 = memd(r0++#8)
2257 // }
2258 // {
2259 // r3 = lsr(r4, #16)
2260 // r7:6 = combine(r5, r5)
2261 // }
2262 // {
2263 // r3 = insert(r5, #16, #16)
2264 // r7:6 = vlsrw(r7:6, #16)
2265 // }
2266 // .LBB0_2:
2267 // {
2268 // memh(r2+#4) = r5
2269 // memh(r2+#6) = r6 # R6 is really R5.H
2270 // }
2271 // {
2272 // r2 = add(r2, #8)
2273 // memh(r2+#0) = r4
2274 // memh(r2+#2) = r3 # R3 is really R4.H
2275 // }
2276 // {
2277 // r5:4 = memd(r0++#8)
2278 // }
2279 // { # "Shuffling" code that sets up R3 and R6
2280 // r3 = lsr(r4, #16) # so that their halves can be stored in the
2281 // r7:6 = combine(r5, r5) # next iteration. This could be folded into
2282 // } # the stores if the code was at the beginning
2283 // { # of the loop iteration. Since the same code
2284 // r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved
2285 // r7:6 = vlsrw(r7:6, #16) # there.
2286 // }:endloop0
2287 //
2288 //
2289 // The outcome:
2290 //
2291 // {
2292 // loop0(.LBB0_2, r1)
2293 // r5:4 = memd(r0++#8)
2294 // }
2295 // .LBB0_2:
2296 // {
2297 // memh(r2+#4) = r5
2298 // memh(r2+#6) = r5.h
2299 // }
2300 // {
2301 // r2 = add(r2, #8)
2302 // memh(r2+#0) = r4
2303 // memh(r2+#2) = r4.h
2304 // }
2305 // {
2306 // r5:4 = memd(r0++#8)
2307 // }:endloop0
2308
2309 namespace llvm {
2310 FunctionPass *createHexagonLoopRescheduling();
2311 void initializeHexagonLoopReschedulingPass(PassRegistry&);
2312 }
2313
2314 namespace {
2315 class HexagonLoopRescheduling : public MachineFunctionPass {
2316 public:
2317 static char ID;
2318 HexagonLoopRescheduling() : MachineFunctionPass(ID),
2319 HII(0), HRI(0), MRI(0), BTP(0) {
2320 initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2321 }
2322
2323 bool runOnMachineFunction(MachineFunction &MF) override;
2324
2325 private:
2326 const HexagonInstrInfo *HII;
2327 const HexagonRegisterInfo *HRI;
2328 MachineRegisterInfo *MRI;
2329 BitTracker *BTP;
2330
2331 struct LoopCand {
2332 LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2333 MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2334 MachineBasicBlock *LB, *PB, *EB;
2335 };
2336 typedef std::vector<MachineInstr*> InstrList;
2337 struct InstrGroup {
2338 BitTracker::RegisterRef Inp, Out;
2339 InstrList Ins;
2340 };
2341 struct PhiInfo {
2342 PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2343 unsigned DefR;
2344 BitTracker::RegisterRef LR, PR;
2345 MachineBasicBlock *LB, *PB;
2346 };
2347
2348 static unsigned getDefReg(const MachineInstr *MI);
2349 bool isConst(unsigned Reg) const;
2350 bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2351 bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2352 bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2353 bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2354 unsigned &InpR2) const;
2355 void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2356 MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2357 bool processLoop(LoopCand &C);
2358 };
2359 }
2360
2361 char HexagonLoopRescheduling::ID = 0;
2362
2363 INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2364 "Hexagon Loop Rescheduling", false, false)
2365
2366
2367 HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2368 MachineBasicBlock &B) {
2369 DefR = HexagonLoopRescheduling::getDefReg(&P);
2370 LB = &B;
2371 PB = nullptr;
2372 for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2373 const MachineOperand &OpB = P.getOperand(i+1);
2374 if (OpB.getMBB() == &B) {
2375 LR = P.getOperand(i);
2376 continue;
2377 }
2378 PB = OpB.getMBB();
2379 PR = P.getOperand(i);
2380 }
2381 }
2382
2383
2384 unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2385 RegisterSet Defs;
2386 HBS::getInstrDefs(*MI, Defs);
2387 if (Defs.count() != 1)
2388 return 0;
2389 return Defs.find_first();
2390 }
2391
2392
2393 bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2394 if (!BTP->has(Reg))
2395 return false;
2396 const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2397 for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2398 const BitTracker::BitValue &V = RC[i];
2399 if (!V.is(0) && !V.is(1))
2400 return false;
2401 }
2402 return true;
2403 }
2404
2405
2406 bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2407 unsigned DefR) const {
2408 unsigned Opc = MI->getOpcode();
2409 switch (Opc) {
2410 case TargetOpcode::COPY:
2411 case Hexagon::S2_lsr_i_r:
2412 case Hexagon::S2_asr_i_r:
2413 case Hexagon::S2_asl_i_r:
2414 case Hexagon::S2_lsr_i_p:
2415 case Hexagon::S2_asr_i_p:
2416 case Hexagon::S2_asl_i_p:
2417 case Hexagon::S2_insert:
2418 case Hexagon::A2_or:
2419 case Hexagon::A2_orp:
2420 case Hexagon::A2_and:
2421 case Hexagon::A2_andp:
2422 case Hexagon::A2_combinew:
2423 case Hexagon::A4_combineri:
2424 case Hexagon::A4_combineir:
2425 case Hexagon::A2_combineii:
2426 case Hexagon::A4_combineii:
2427 case Hexagon::A2_combine_ll:
2428 case Hexagon::A2_combine_lh:
2429 case Hexagon::A2_combine_hl:
2430 case Hexagon::A2_combine_hh:
2431 return true;
2432 }
2433 return false;
2434 }
2435
2436
2437 bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
2438 unsigned InpR) const {
2439 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
2440 const MachineOperand &Op = MI->getOperand(i);
2441 if (!Op.isReg())
2442 continue;
2443 if (Op.getReg() == InpR)
2444 return i == n-1;
2445 }
2446 return false;
2447 }
2448
2449
2450 bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
2451 if (!BTP->has(OutR) || !BTP->has(InpR))
2452 return false;
2453 const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
2454 for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
2455 const BitTracker::BitValue &V = OutC[i];
2456 if (V.Type != BitTracker::BitValue::Ref)
2457 continue;
2458 if (V.RefI.Reg != InpR)
2459 return false;
2460 }
2461 return true;
2462 }
2463
2464
2465 bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
2466 unsigned OutR2, unsigned &InpR2) const {
2467 if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
2468 return false;
2469 const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
2470 const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
2471 unsigned W = OutC1.width();
2472 unsigned MatchR = 0;
2473 if (W != OutC2.width())
2474 return false;
2475 for (unsigned i = 0; i < W; ++i) {
2476 const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
2477 if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
2478 return false;
2479 if (V1.Type != BitTracker::BitValue::Ref)
2480 continue;
2481 if (V1.RefI.Pos != V2.RefI.Pos)
2482 return false;
2483 if (V1.RefI.Reg != InpR1)
2484 return false;
2485 if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
2486 return false;
2487 if (!MatchR)
2488 MatchR = V2.RefI.Reg;
2489 else if (V2.RefI.Reg != MatchR)
2490 return false;
2491 }
2492 InpR2 = MatchR;
2493 return true;
2494 }
2495
2496
2497 void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
2498 MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
2499 unsigned NewPredR) {
2500 DenseMap<unsigned,unsigned> RegMap;
2501
2502 const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
2503 unsigned PhiR = MRI->createVirtualRegister(PhiRC);
2504 BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
2505 .addReg(NewPredR)
2506 .addMBB(&PB)
2507 .addReg(G.Inp.Reg)
2508 .addMBB(&LB);
2509 RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
2510
2511 for (unsigned i = G.Ins.size(); i > 0; --i) {
2512 const MachineInstr *SI = G.Ins[i-1];
2513 unsigned DR = getDefReg(SI);
2514 const TargetRegisterClass *RC = MRI->getRegClass(DR);
2515 unsigned NewDR = MRI->createVirtualRegister(RC);
2516 DebugLoc DL = SI->getDebugLoc();
2517
2518 auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
2519 for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
2520 const MachineOperand &Op = SI->getOperand(j);
2521 if (!Op.isReg()) {
2522 MIB.addOperand(Op);
2523 continue;
2524 }
2525 if (!Op.isUse())
2526 continue;
2527 unsigned UseR = RegMap[Op.getReg()];
2528 MIB.addReg(UseR, 0, Op.getSubReg());
2529 }
2530 RegMap.insert(std::make_pair(DR, NewDR));
2531 }
2532
2533 HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
2534 }
2535
2536
2537 bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
2538 DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n");
2539 std::vector<PhiInfo> Phis;
2540 for (auto &I : *C.LB) {
2541 if (!I.isPHI())
2542 break;
2543 unsigned PR = getDefReg(&I);
2544 if (isConst(PR))
2545 continue;
2546 bool BadUse = false, GoodUse = false;
2547 for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
2548 MachineInstr *UseI = UI->getParent();
2549 if (UseI->getParent() != C.LB) {
2550 BadUse = true;
2551 break;
2552 }
2553 if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
2554 GoodUse = true;
2555 }
2556 if (BadUse || !GoodUse)
2557 continue;
2558
2559 Phis.push_back(PhiInfo(I, *C.LB));
2560 }
2561
2562 DEBUG({
2563 dbgs() << "Phis: {";
2564 for (auto &I : Phis) {
2565 dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi("
2566 << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
2567 << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
2568 << I.LB->getNumber() << ')';
2569 }
2570 dbgs() << " }\n";
2571 });
2572
2573 if (Phis.empty())
2574 return false;
2575
2576 bool Changed = false;
2577 InstrList ShufIns;
2578
2579 // Go backwards in the block: for each bit shuffling instruction, check
2580 // if that instruction could potentially be moved to the front of the loop:
2581 // the output of the loop cannot be used in a non-shuffling instruction
2582 // in this loop.
2583 for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
2584 if (I->isTerminator())
2585 continue;
2586 if (I->isPHI())
2587 break;
2588
2589 RegisterSet Defs;
2590 HBS::getInstrDefs(*I, Defs);
2591 if (Defs.count() != 1)
2592 continue;
2593 unsigned DefR = Defs.find_first();
2594 if (!TargetRegisterInfo::isVirtualRegister(DefR))
2595 continue;
2596 if (!isBitShuffle(&*I, DefR))
2597 continue;
2598
2599 bool BadUse = false;
2600 for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
2601 MachineInstr *UseI = UI->getParent();
2602 if (UseI->getParent() == C.LB) {
2603 if (UseI->isPHI()) {
2604 // If the use is in a phi node in this loop, then it should be
2605 // the value corresponding to the back edge.
2606 unsigned Idx = UI.getOperandNo();
2607 if (UseI->getOperand(Idx+1).getMBB() != C.LB)
2608 BadUse = true;
2609 } else {
2610 auto F = std::find(ShufIns.begin(), ShufIns.end(), UseI);
2611 if (F == ShufIns.end())
2612 BadUse = true;
2613 }
2614 } else {
2615 // There is a use outside of the loop, but there is no epilog block
2616 // suitable for a copy-out.
2617 if (C.EB == nullptr)
2618 BadUse = true;
2619 }
2620 if (BadUse)
2621 break;
2622 }
2623
2624 if (BadUse)
2625 continue;
2626 ShufIns.push_back(&*I);
2627 }
2628
2629 // Partition the list of shuffling instructions into instruction groups,
2630 // where each group has to be moved as a whole (i.e. a group is a chain of
2631 // dependent instructions). A group produces a single live output register,
2632 // which is meant to be the input of the loop phi node (although this is
2633 // not checked here yet). It also uses a single register as its input,
2634 // which is some value produced in the loop body. After moving the group
2635 // to the beginning of the loop, that input register would need to be
2636 // the loop-carried register (through a phi node) instead of the (currently
2637 // loop-carried) output register.
2638 typedef std::vector<InstrGroup> InstrGroupList;
2639 InstrGroupList Groups;
2640
2641 for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
2642 MachineInstr *SI = ShufIns[i];
2643 if (SI == nullptr)
2644 continue;
2645
2646 InstrGroup G;
2647 G.Ins.push_back(SI);
2648 G.Out.Reg = getDefReg(SI);
2649 RegisterSet Inputs;
2650 HBS::getInstrUses(*SI, Inputs);
2651
2652 for (unsigned j = i+1; j < n; ++j) {
2653 MachineInstr *MI = ShufIns[j];
2654 if (MI == nullptr)
2655 continue;
2656 RegisterSet Defs;
2657 HBS::getInstrDefs(*MI, Defs);
2658 // If this instruction does not define any pending inputs, skip it.
2659 if (!Defs.intersects(Inputs))
2660 continue;
2661 // Otherwise, add it to the current group and remove the inputs that
2662 // are defined by MI.
2663 G.Ins.push_back(MI);
2664 Inputs.remove(Defs);
2665 // Then add all registers used by MI.
2666 HBS::getInstrUses(*MI, Inputs);
2667 ShufIns[j] = nullptr;
2668 }
2669
2670 // Only add a group if it requires at most one register.
2671 if (Inputs.count() > 1)
2672 continue;
2673 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2674 return G.Out.Reg == P.LR.Reg;
2675 };
2676 if (std::find_if(Phis.begin(), Phis.end(), LoopInpEq) == Phis.end())
2677 continue;
2678
2679 G.Inp.Reg = Inputs.find_first();
2680 Groups.push_back(G);
2681 }
2682
2683 DEBUG({
2684 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2685 InstrGroup &G = Groups[i];
2686 dbgs() << "Group[" << i << "] inp: "
2687 << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub)
2688 << " out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
2689 for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
2690 dbgs() << " " << *G.Ins[j];
2691 }
2692 });
2693
2694 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2695 InstrGroup &G = Groups[i];
2696 if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
2697 continue;
2698 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2699 return G.Out.Reg == P.LR.Reg;
2700 };
2701 auto F = std::find_if(Phis.begin(), Phis.end(), LoopInpEq);
2702 if (F == Phis.end())
2703 continue;
2704 unsigned PredR = 0;
2705 if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PredR)) {
2706 const MachineInstr *DefPredR = MRI->getVRegDef(F->PR.Reg);
2707 unsigned Opc = DefPredR->getOpcode();
2708 if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
2709 continue;
2710 if (!DefPredR->getOperand(1).isImm())
2711 continue;
2712 if (DefPredR->getOperand(1).getImm() != 0)
2713 continue;
2714 const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
2715 if (RC != MRI->getRegClass(F->PR.Reg)) {
2716 PredR = MRI->createVirtualRegister(RC);
2717 unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
2718 : Hexagon::A2_tfrpi;
2719 auto T = C.PB->getFirstTerminator();
2720 DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
2721 BuildMI(*C.PB, T, DL, HII->get(TfrI), PredR)
2722 .addImm(0);
2723 } else {
2724 PredR = F->PR.Reg;
2725 }
2726 }
2727 assert(MRI->getRegClass(PredR) == MRI->getRegClass(G.Inp.Reg));
2728 moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PredR);
2729 Changed = true;
2730 }
2731
2732 return Changed;
2733 }
2734
2735
2736 bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
2737 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2738 HII = HST.getInstrInfo();
2739 HRI = HST.getRegisterInfo();
2740 MRI = &MF.getRegInfo();
2741 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
2742 BitTracker BT(HE, MF);
2743 DEBUG(BT.trace(true));
2744 BT.run();
2745 BTP = &BT;
2746
2747 std::vector<LoopCand> Cand;
2748
2749 for (auto &B : MF) {
2750 if (B.pred_size() != 2 || B.succ_size() != 2)
2751 continue;
2752 MachineBasicBlock *PB = nullptr;
2753 bool IsLoop = false;
2754 for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
2755 if (*PI != &B)
2756 PB = *PI;
2757 else
2758 IsLoop = true;
2759 }
2760 if (!IsLoop)
2761 continue;
2762
2763 MachineBasicBlock *EB = nullptr;
2764 for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
2765 if (*SI == &B)
2766 continue;
2767 // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
2768 // edge from B to EP is non-critical.
2769 if ((*SI)->pred_size() == 1)
2770 EB = *SI;
2771 break;
2772 }
2773
2774 Cand.push_back(LoopCand(&B, PB, EB));
2775 }
2776
2777 bool Changed = false;
2778 for (auto &C : Cand)
2779 Changed |= processLoop(C);
2780
2781 return Changed;
2782 }
2783
2784 //===----------------------------------------------------------------------===//
2785 // Public Constructor Functions
2786 //===----------------------------------------------------------------------===//
2787
2788 FunctionPass *llvm::createHexagonLoopRescheduling() {
2789 return new HexagonLoopRescheduling();
2790 }
2791
2792 FunctionPass *llvm::createHexagonBitSimplify() {
2793 return new HexagonBitSimplify();
2794 }
2795