Mercurial > hg > CbC > CbC_llvm
comparison lib/CodeGen/MachineOutliner.cpp @ 121:803732b1fca8
LLVM 5.0
author | kono |
---|---|
date | Fri, 27 Oct 2017 17:07:41 +0900 |
parents | |
children | 3a76565eade5 |
comparison
equal
deleted
inserted
replaced
120:1172e4bd9c6f | 121:803732b1fca8 |
---|---|
1 //===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 /// | |
10 /// \file | |
11 /// Replaces repeated sequences of instructions with function calls. | |
12 /// | |
13 /// This works by placing every instruction from every basic block in a | |
14 /// suffix tree, and repeatedly querying that tree for repeated sequences of | |
15 /// instructions. If a sequence of instructions appears often, then it ought | |
16 /// to be beneficial to pull out into a function. | |
17 /// | |
18 /// The MachineOutliner communicates with a given target using hooks defined in | |
19 /// TargetInstrInfo.h. The target supplies the outliner with information on how | |
20 /// a specific sequence of instructions should be outlined. This information | |
21 /// is used to deduce the number of instructions necessary to | |
22 /// | |
23 /// * Create an outlined function | |
24 /// * Call that outlined function | |
25 /// | |
26 /// Targets must implement | |
27 /// * getOutliningCandidateInfo | |
28 /// * insertOutlinerEpilogue | |
29 /// * insertOutlinedCall | |
30 /// * insertOutlinerPrologue | |
31 /// * isFunctionSafeToOutlineFrom | |
32 /// | |
33 /// in order to make use of the MachineOutliner. | |
34 /// | |
35 /// This was originally presented at the 2016 LLVM Developers' Meeting in the | |
36 /// talk "Reducing Code Size Using Outlining". For a high-level overview of | |
37 /// how this pass works, the talk is available on YouTube at | |
38 /// | |
39 /// https://www.youtube.com/watch?v=yorld-WSOeU | |
40 /// | |
41 /// The slides for the talk are available at | |
42 /// | |
43 /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf | |
44 /// | |
45 /// The talk provides an overview of how the outliner finds candidates and | |
46 /// ultimately outlines them. It describes how the main data structure for this | |
47 /// pass, the suffix tree, is queried and purged for candidates. It also gives | |
48 /// a simplified suffix tree construction algorithm for suffix trees based off | |
49 /// of the algorithm actually used here, Ukkonen's algorithm. | |
50 /// | |
51 /// For the original RFC for this pass, please see | |
52 /// | |
53 /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html | |
54 /// | |
55 /// For more information on the suffix tree data structure, please see | |
56 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf | |
57 /// | |
58 //===----------------------------------------------------------------------===// | |
59 #include "llvm/ADT/DenseMap.h" | |
60 #include "llvm/ADT/Statistic.h" | |
61 #include "llvm/ADT/Twine.h" | |
62 #include "llvm/CodeGen/MachineFrameInfo.h" | |
63 #include "llvm/CodeGen/MachineFunction.h" | |
64 #include "llvm/CodeGen/MachineInstrBuilder.h" | |
65 #include "llvm/CodeGen/MachineModuleInfo.h" | |
66 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" | |
67 #include "llvm/CodeGen/Passes.h" | |
68 #include "llvm/IR/IRBuilder.h" | |
69 #include "llvm/Support/Allocator.h" | |
70 #include "llvm/Support/Debug.h" | |
71 #include "llvm/Support/raw_ostream.h" | |
72 #include "llvm/Target/TargetInstrInfo.h" | |
73 #include "llvm/Target/TargetMachine.h" | |
74 #include "llvm/Target/TargetRegisterInfo.h" | |
75 #include "llvm/Target/TargetSubtargetInfo.h" | |
76 #include <functional> | |
77 #include <map> | |
78 #include <sstream> | |
79 #include <tuple> | |
80 #include <vector> | |
81 | |
82 #define DEBUG_TYPE "machine-outliner" | |
83 | |
84 using namespace llvm; | |
85 using namespace ore; | |
86 | |
87 STATISTIC(NumOutlined, "Number of candidates outlined"); | |
88 STATISTIC(FunctionsCreated, "Number of functions created"); | |
89 | |
90 namespace { | |
91 | |
92 /// \brief An individual sequence of instructions to be replaced with a call to | |
93 /// an outlined function. | |
94 struct Candidate { | |
95 private: | |
96 /// The start index of this \p Candidate in the instruction list. | |
97 unsigned StartIdx; | |
98 | |
99 /// The number of instructions in this \p Candidate. | |
100 unsigned Len; | |
101 | |
102 public: | |
103 /// Set to false if the candidate overlapped with another candidate. | |
104 bool InCandidateList = true; | |
105 | |
106 /// \brief The index of this \p Candidate's \p OutlinedFunction in the list of | |
107 /// \p OutlinedFunctions. | |
108 unsigned FunctionIdx; | |
109 | |
110 /// Contains all target-specific information for this \p Candidate. | |
111 TargetInstrInfo::MachineOutlinerInfo MInfo; | |
112 | |
113 /// Return the number of instructions in this Candidate. | |
114 unsigned getLength() const { return Len; } | |
115 | |
116 /// Return the start index of this candidate. | |
117 unsigned getStartIdx() const { return StartIdx; } | |
118 | |
119 // Return the end index of this candidate. | |
120 unsigned getEndIdx() const { return StartIdx + Len - 1; } | |
121 | |
122 /// \brief The number of instructions that would be saved by outlining every | |
123 /// candidate of this type. | |
124 /// | |
125 /// This is a fixed value which is not updated during the candidate pruning | |
126 /// process. It is only used for deciding which candidate to keep if two | |
127 /// candidates overlap. The true benefit is stored in the OutlinedFunction | |
128 /// for some given candidate. | |
129 unsigned Benefit = 0; | |
130 | |
131 Candidate(unsigned StartIdx, unsigned Len, unsigned FunctionIdx) | |
132 : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {} | |
133 | |
134 Candidate() {} | |
135 | |
136 /// \brief Used to ensure that \p Candidates are outlined in an order that | |
137 /// preserves the start and end indices of other \p Candidates. | |
138 bool operator<(const Candidate &RHS) const { | |
139 return getStartIdx() > RHS.getStartIdx(); | |
140 } | |
141 }; | |
142 | |
143 /// \brief The information necessary to create an outlined function for some | |
144 /// class of candidate. | |
145 struct OutlinedFunction { | |
146 | |
147 private: | |
148 /// The number of candidates for this \p OutlinedFunction. | |
149 unsigned OccurrenceCount = 0; | |
150 | |
151 public: | |
152 std::vector<std::shared_ptr<Candidate>> Candidates; | |
153 | |
154 /// The actual outlined function created. | |
155 /// This is initialized after we go through and create the actual function. | |
156 MachineFunction *MF = nullptr; | |
157 | |
158 /// A number assigned to this function which appears at the end of its name. | |
159 unsigned Name; | |
160 | |
161 /// \brief The sequence of integers corresponding to the instructions in this | |
162 /// function. | |
163 std::vector<unsigned> Sequence; | |
164 | |
165 /// Contains all target-specific information for this \p OutlinedFunction. | |
166 TargetInstrInfo::MachineOutlinerInfo MInfo; | |
167 | |
168 /// Return the number of candidates for this \p OutlinedFunction. | |
169 unsigned getOccurrenceCount() { return OccurrenceCount; } | |
170 | |
171 /// Decrement the occurrence count of this OutlinedFunction and return the | |
172 /// new count. | |
173 unsigned decrement() { | |
174 assert(OccurrenceCount > 0 && "Can't decrement an empty function!"); | |
175 OccurrenceCount--; | |
176 return getOccurrenceCount(); | |
177 } | |
178 | |
179 /// \brief Return the number of instructions it would take to outline this | |
180 /// function. | |
181 unsigned getOutliningCost() { | |
182 return (OccurrenceCount * MInfo.CallOverhead) + Sequence.size() + | |
183 MInfo.FrameOverhead; | |
184 } | |
185 | |
186 /// \brief Return the number of instructions that would be saved by outlining | |
187 /// this function. | |
188 unsigned getBenefit() { | |
189 unsigned NotOutlinedCost = OccurrenceCount * Sequence.size(); | |
190 unsigned OutlinedCost = getOutliningCost(); | |
191 return (NotOutlinedCost < OutlinedCost) ? 0 | |
192 : NotOutlinedCost - OutlinedCost; | |
193 } | |
194 | |
195 OutlinedFunction(unsigned Name, unsigned OccurrenceCount, | |
196 const std::vector<unsigned> &Sequence, | |
197 TargetInstrInfo::MachineOutlinerInfo &MInfo) | |
198 : OccurrenceCount(OccurrenceCount), Name(Name), Sequence(Sequence), | |
199 MInfo(MInfo) {} | |
200 }; | |
201 | |
202 /// Represents an undefined index in the suffix tree. | |
203 const unsigned EmptyIdx = -1; | |
204 | |
205 /// A node in a suffix tree which represents a substring or suffix. | |
206 /// | |
207 /// Each node has either no children or at least two children, with the root | |
208 /// being a exception in the empty tree. | |
209 /// | |
210 /// Children are represented as a map between unsigned integers and nodes. If | |
211 /// a node N has a child M on unsigned integer k, then the mapping represented | |
212 /// by N is a proper prefix of the mapping represented by M. Note that this, | |
213 /// although similar to a trie is somewhat different: each node stores a full | |
214 /// substring of the full mapping rather than a single character state. | |
215 /// | |
216 /// Each internal node contains a pointer to the internal node representing | |
217 /// the same string, but with the first character chopped off. This is stored | |
218 /// in \p Link. Each leaf node stores the start index of its respective | |
219 /// suffix in \p SuffixIdx. | |
220 struct SuffixTreeNode { | |
221 | |
222 /// The children of this node. | |
223 /// | |
224 /// A child existing on an unsigned integer implies that from the mapping | |
225 /// represented by the current node, there is a way to reach another | |
226 /// mapping by tacking that character on the end of the current string. | |
227 DenseMap<unsigned, SuffixTreeNode *> Children; | |
228 | |
229 /// A flag set to false if the node has been pruned from the tree. | |
230 bool IsInTree = true; | |
231 | |
232 /// The start index of this node's substring in the main string. | |
233 unsigned StartIdx = EmptyIdx; | |
234 | |
235 /// The end index of this node's substring in the main string. | |
236 /// | |
237 /// Every leaf node must have its \p EndIdx incremented at the end of every | |
238 /// step in the construction algorithm. To avoid having to update O(N) | |
239 /// nodes individually at the end of every step, the end index is stored | |
240 /// as a pointer. | |
241 unsigned *EndIdx = nullptr; | |
242 | |
243 /// For leaves, the start index of the suffix represented by this node. | |
244 /// | |
245 /// For all other nodes, this is ignored. | |
246 unsigned SuffixIdx = EmptyIdx; | |
247 | |
248 /// \brief For internal nodes, a pointer to the internal node representing | |
249 /// the same sequence with the first character chopped off. | |
250 /// | |
251 /// This acts as a shortcut in Ukkonen's algorithm. One of the things that | |
252 /// Ukkonen's algorithm does to achieve linear-time construction is | |
253 /// keep track of which node the next insert should be at. This makes each | |
254 /// insert O(1), and there are a total of O(N) inserts. The suffix link | |
255 /// helps with inserting children of internal nodes. | |
256 /// | |
257 /// Say we add a child to an internal node with associated mapping S. The | |
258 /// next insertion must be at the node representing S - its first character. | |
259 /// This is given by the way that we iteratively build the tree in Ukkonen's | |
260 /// algorithm. The main idea is to look at the suffixes of each prefix in the | |
261 /// string, starting with the longest suffix of the prefix, and ending with | |
262 /// the shortest. Therefore, if we keep pointers between such nodes, we can | |
263 /// move to the next insertion point in O(1) time. If we don't, then we'd | |
264 /// have to query from the root, which takes O(N) time. This would make the | |
265 /// construction algorithm O(N^2) rather than O(N). | |
266 SuffixTreeNode *Link = nullptr; | |
267 | |
268 /// The parent of this node. Every node except for the root has a parent. | |
269 SuffixTreeNode *Parent = nullptr; | |
270 | |
271 /// The number of times this node's string appears in the tree. | |
272 /// | |
273 /// This is equal to the number of leaf children of the string. It represents | |
274 /// the number of suffixes that the node's string is a prefix of. | |
275 unsigned OccurrenceCount = 0; | |
276 | |
277 /// The length of the string formed by concatenating the edge labels from the | |
278 /// root to this node. | |
279 unsigned ConcatLen = 0; | |
280 | |
281 /// Returns true if this node is a leaf. | |
282 bool isLeaf() const { return SuffixIdx != EmptyIdx; } | |
283 | |
284 /// Returns true if this node is the root of its owning \p SuffixTree. | |
285 bool isRoot() const { return StartIdx == EmptyIdx; } | |
286 | |
287 /// Return the number of elements in the substring associated with this node. | |
288 size_t size() const { | |
289 | |
290 // Is it the root? If so, it's the empty string so return 0. | |
291 if (isRoot()) | |
292 return 0; | |
293 | |
294 assert(*EndIdx != EmptyIdx && "EndIdx is undefined!"); | |
295 | |
296 // Size = the number of elements in the string. | |
297 // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1. | |
298 return *EndIdx - StartIdx + 1; | |
299 } | |
300 | |
301 SuffixTreeNode(unsigned StartIdx, unsigned *EndIdx, SuffixTreeNode *Link, | |
302 SuffixTreeNode *Parent) | |
303 : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {} | |
304 | |
305 SuffixTreeNode() {} | |
306 }; | |
307 | |
308 /// A data structure for fast substring queries. | |
309 /// | |
310 /// Suffix trees represent the suffixes of their input strings in their leaves. | |
311 /// A suffix tree is a type of compressed trie structure where each node | |
312 /// represents an entire substring rather than a single character. Each leaf | |
313 /// of the tree is a suffix. | |
314 /// | |
315 /// A suffix tree can be seen as a type of state machine where each state is a | |
316 /// substring of the full string. The tree is structured so that, for a string | |
317 /// of length N, there are exactly N leaves in the tree. This structure allows | |
318 /// us to quickly find repeated substrings of the input string. | |
319 /// | |
320 /// In this implementation, a "string" is a vector of unsigned integers. | |
321 /// These integers may result from hashing some data type. A suffix tree can | |
322 /// contain 1 or many strings, which can then be queried as one large string. | |
323 /// | |
324 /// The suffix tree is implemented using Ukkonen's algorithm for linear-time | |
325 /// suffix tree construction. Ukkonen's algorithm is explained in more detail | |
326 /// in the paper by Esko Ukkonen "On-line construction of suffix trees. The | |
327 /// paper is available at | |
328 /// | |
329 /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf | |
330 class SuffixTree { | |
331 public: | |
332 /// Stores each leaf node in the tree. | |
333 /// | |
334 /// This is used for finding outlining candidates. | |
335 std::vector<SuffixTreeNode *> LeafVector; | |
336 | |
337 /// Each element is an integer representing an instruction in the module. | |
338 ArrayRef<unsigned> Str; | |
339 | |
340 private: | |
341 /// Maintains each node in the tree. | |
342 SpecificBumpPtrAllocator<SuffixTreeNode> NodeAllocator; | |
343 | |
344 /// The root of the suffix tree. | |
345 /// | |
346 /// The root represents the empty string. It is maintained by the | |
347 /// \p NodeAllocator like every other node in the tree. | |
348 SuffixTreeNode *Root = nullptr; | |
349 | |
350 /// Maintains the end indices of the internal nodes in the tree. | |
351 /// | |
352 /// Each internal node is guaranteed to never have its end index change | |
353 /// during the construction algorithm; however, leaves must be updated at | |
354 /// every step. Therefore, we need to store leaf end indices by reference | |
355 /// to avoid updating O(N) leaves at every step of construction. Thus, | |
356 /// every internal node must be allocated its own end index. | |
357 BumpPtrAllocator InternalEndIdxAllocator; | |
358 | |
359 /// The end index of each leaf in the tree. | |
360 unsigned LeafEndIdx = -1; | |
361 | |
362 /// \brief Helper struct which keeps track of the next insertion point in | |
363 /// Ukkonen's algorithm. | |
364 struct ActiveState { | |
365 /// The next node to insert at. | |
366 SuffixTreeNode *Node; | |
367 | |
368 /// The index of the first character in the substring currently being added. | |
369 unsigned Idx = EmptyIdx; | |
370 | |
371 /// The length of the substring we have to add at the current step. | |
372 unsigned Len = 0; | |
373 }; | |
374 | |
375 /// \brief The point the next insertion will take place at in the | |
376 /// construction algorithm. | |
377 ActiveState Active; | |
378 | |
379 /// Allocate a leaf node and add it to the tree. | |
380 /// | |
381 /// \param Parent The parent of this node. | |
382 /// \param StartIdx The start index of this node's associated string. | |
383 /// \param Edge The label on the edge leaving \p Parent to this node. | |
384 /// | |
385 /// \returns A pointer to the allocated leaf node. | |
386 SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, unsigned StartIdx, | |
387 unsigned Edge) { | |
388 | |
389 assert(StartIdx <= LeafEndIdx && "String can't start after it ends!"); | |
390 | |
391 SuffixTreeNode *N = new (NodeAllocator.Allocate()) | |
392 SuffixTreeNode(StartIdx, &LeafEndIdx, nullptr, &Parent); | |
393 Parent.Children[Edge] = N; | |
394 | |
395 return N; | |
396 } | |
397 | |
398 /// Allocate an internal node and add it to the tree. | |
399 /// | |
400 /// \param Parent The parent of this node. Only null when allocating the root. | |
401 /// \param StartIdx The start index of this node's associated string. | |
402 /// \param EndIdx The end index of this node's associated string. | |
403 /// \param Edge The label on the edge leaving \p Parent to this node. | |
404 /// | |
405 /// \returns A pointer to the allocated internal node. | |
406 SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, unsigned StartIdx, | |
407 unsigned EndIdx, unsigned Edge) { | |
408 | |
409 assert(StartIdx <= EndIdx && "String can't start after it ends!"); | |
410 assert(!(!Parent && StartIdx != EmptyIdx) && | |
411 "Non-root internal nodes must have parents!"); | |
412 | |
413 unsigned *E = new (InternalEndIdxAllocator) unsigned(EndIdx); | |
414 SuffixTreeNode *N = new (NodeAllocator.Allocate()) | |
415 SuffixTreeNode(StartIdx, E, Root, Parent); | |
416 if (Parent) | |
417 Parent->Children[Edge] = N; | |
418 | |
419 return N; | |
420 } | |
421 | |
422 /// \brief Set the suffix indices of the leaves to the start indices of their | |
423 /// respective suffixes. Also stores each leaf in \p LeafVector at its | |
424 /// respective suffix index. | |
425 /// | |
426 /// \param[in] CurrNode The node currently being visited. | |
427 /// \param CurrIdx The current index of the string being visited. | |
428 void setSuffixIndices(SuffixTreeNode &CurrNode, unsigned CurrIdx) { | |
429 | |
430 bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot(); | |
431 | |
432 // Store the length of the concatenation of all strings from the root to | |
433 // this node. | |
434 if (!CurrNode.isRoot()) { | |
435 if (CurrNode.ConcatLen == 0) | |
436 CurrNode.ConcatLen = CurrNode.size(); | |
437 | |
438 if (CurrNode.Parent) | |
439 CurrNode.ConcatLen += CurrNode.Parent->ConcatLen; | |
440 } | |
441 | |
442 // Traverse the tree depth-first. | |
443 for (auto &ChildPair : CurrNode.Children) { | |
444 assert(ChildPair.second && "Node had a null child!"); | |
445 setSuffixIndices(*ChildPair.second, CurrIdx + ChildPair.second->size()); | |
446 } | |
447 | |
448 // Is this node a leaf? | |
449 if (IsLeaf) { | |
450 // If yes, give it a suffix index and bump its parent's occurrence count. | |
451 CurrNode.SuffixIdx = Str.size() - CurrIdx; | |
452 assert(CurrNode.Parent && "CurrNode had no parent!"); | |
453 CurrNode.Parent->OccurrenceCount++; | |
454 | |
455 // Store the leaf in the leaf vector for pruning later. | |
456 LeafVector[CurrNode.SuffixIdx] = &CurrNode; | |
457 } | |
458 } | |
459 | |
460 /// \brief Construct the suffix tree for the prefix of the input ending at | |
461 /// \p EndIdx. | |
462 /// | |
463 /// Used to construct the full suffix tree iteratively. At the end of each | |
464 /// step, the constructed suffix tree is either a valid suffix tree, or a | |
465 /// suffix tree with implicit suffixes. At the end of the final step, the | |
466 /// suffix tree is a valid tree. | |
467 /// | |
468 /// \param EndIdx The end index of the current prefix in the main string. | |
469 /// \param SuffixesToAdd The number of suffixes that must be added | |
470 /// to complete the suffix tree at the current phase. | |
471 /// | |
472 /// \returns The number of suffixes that have not been added at the end of | |
473 /// this step. | |
474 unsigned extend(unsigned EndIdx, unsigned SuffixesToAdd) { | |
475 SuffixTreeNode *NeedsLink = nullptr; | |
476 | |
477 while (SuffixesToAdd > 0) { | |
478 | |
479 // Are we waiting to add anything other than just the last character? | |
480 if (Active.Len == 0) { | |
481 // If not, then say the active index is the end index. | |
482 Active.Idx = EndIdx; | |
483 } | |
484 | |
485 assert(Active.Idx <= EndIdx && "Start index can't be after end index!"); | |
486 | |
487 // The first character in the current substring we're looking at. | |
488 unsigned FirstChar = Str[Active.Idx]; | |
489 | |
490 // Have we inserted anything starting with FirstChar at the current node? | |
491 if (Active.Node->Children.count(FirstChar) == 0) { | |
492 // If not, then we can just insert a leaf and move too the next step. | |
493 insertLeaf(*Active.Node, EndIdx, FirstChar); | |
494 | |
495 // The active node is an internal node, and we visited it, so it must | |
496 // need a link if it doesn't have one. | |
497 if (NeedsLink) { | |
498 NeedsLink->Link = Active.Node; | |
499 NeedsLink = nullptr; | |
500 } | |
501 } else { | |
502 // There's a match with FirstChar, so look for the point in the tree to | |
503 // insert a new node. | |
504 SuffixTreeNode *NextNode = Active.Node->Children[FirstChar]; | |
505 | |
506 unsigned SubstringLen = NextNode->size(); | |
507 | |
508 // Is the current suffix we're trying to insert longer than the size of | |
509 // the child we want to move to? | |
510 if (Active.Len >= SubstringLen) { | |
511 // If yes, then consume the characters we've seen and move to the next | |
512 // node. | |
513 Active.Idx += SubstringLen; | |
514 Active.Len -= SubstringLen; | |
515 Active.Node = NextNode; | |
516 continue; | |
517 } | |
518 | |
519 // Otherwise, the suffix we're trying to insert must be contained in the | |
520 // next node we want to move to. | |
521 unsigned LastChar = Str[EndIdx]; | |
522 | |
523 // Is the string we're trying to insert a substring of the next node? | |
524 if (Str[NextNode->StartIdx + Active.Len] == LastChar) { | |
525 // If yes, then we're done for this step. Remember our insertion point | |
526 // and move to the next end index. At this point, we have an implicit | |
527 // suffix tree. | |
528 if (NeedsLink && !Active.Node->isRoot()) { | |
529 NeedsLink->Link = Active.Node; | |
530 NeedsLink = nullptr; | |
531 } | |
532 | |
533 Active.Len++; | |
534 break; | |
535 } | |
536 | |
537 // The string we're trying to insert isn't a substring of the next node, | |
538 // but matches up to a point. Split the node. | |
539 // | |
540 // For example, say we ended our search at a node n and we're trying to | |
541 // insert ABD. Then we'll create a new node s for AB, reduce n to just | |
542 // representing C, and insert a new leaf node l to represent d. This | |
543 // allows us to ensure that if n was a leaf, it remains a leaf. | |
544 // | |
545 // | ABC ---split---> | AB | |
546 // n s | |
547 // C / \ D | |
548 // n l | |
549 | |
550 // The node s from the diagram | |
551 SuffixTreeNode *SplitNode = | |
552 insertInternalNode(Active.Node, NextNode->StartIdx, | |
553 NextNode->StartIdx + Active.Len - 1, FirstChar); | |
554 | |
555 // Insert the new node representing the new substring into the tree as | |
556 // a child of the split node. This is the node l from the diagram. | |
557 insertLeaf(*SplitNode, EndIdx, LastChar); | |
558 | |
559 // Make the old node a child of the split node and update its start | |
560 // index. This is the node n from the diagram. | |
561 NextNode->StartIdx += Active.Len; | |
562 NextNode->Parent = SplitNode; | |
563 SplitNode->Children[Str[NextNode->StartIdx]] = NextNode; | |
564 | |
565 // SplitNode is an internal node, update the suffix link. | |
566 if (NeedsLink) | |
567 NeedsLink->Link = SplitNode; | |
568 | |
569 NeedsLink = SplitNode; | |
570 } | |
571 | |
572 // We've added something new to the tree, so there's one less suffix to | |
573 // add. | |
574 SuffixesToAdd--; | |
575 | |
576 if (Active.Node->isRoot()) { | |
577 if (Active.Len > 0) { | |
578 Active.Len--; | |
579 Active.Idx = EndIdx - SuffixesToAdd + 1; | |
580 } | |
581 } else { | |
582 // Start the next phase at the next smallest suffix. | |
583 Active.Node = Active.Node->Link; | |
584 } | |
585 } | |
586 | |
587 return SuffixesToAdd; | |
588 } | |
589 | |
590 public: | |
591 /// Construct a suffix tree from a sequence of unsigned integers. | |
592 /// | |
593 /// \param Str The string to construct the suffix tree for. | |
594 SuffixTree(const std::vector<unsigned> &Str) : Str(Str) { | |
595 Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0); | |
596 Root->IsInTree = true; | |
597 Active.Node = Root; | |
598 LeafVector = std::vector<SuffixTreeNode *>(Str.size()); | |
599 | |
600 // Keep track of the number of suffixes we have to add of the current | |
601 // prefix. | |
602 unsigned SuffixesToAdd = 0; | |
603 Active.Node = Root; | |
604 | |
605 // Construct the suffix tree iteratively on each prefix of the string. | |
606 // PfxEndIdx is the end index of the current prefix. | |
607 // End is one past the last element in the string. | |
608 for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; | |
609 PfxEndIdx++) { | |
610 SuffixesToAdd++; | |
611 LeafEndIdx = PfxEndIdx; // Extend each of the leaves. | |
612 SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd); | |
613 } | |
614 | |
615 // Set the suffix indices of each leaf. | |
616 assert(Root && "Root node can't be nullptr!"); | |
617 setSuffixIndices(*Root, 0); | |
618 } | |
619 }; | |
620 | |
621 /// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings. | |
622 struct InstructionMapper { | |
623 | |
624 /// \brief The next available integer to assign to a \p MachineInstr that | |
625 /// cannot be outlined. | |
626 /// | |
627 /// Set to -3 for compatability with \p DenseMapInfo<unsigned>. | |
628 unsigned IllegalInstrNumber = -3; | |
629 | |
630 /// \brief The next available integer to assign to a \p MachineInstr that can | |
631 /// be outlined. | |
632 unsigned LegalInstrNumber = 0; | |
633 | |
634 /// Correspondence from \p MachineInstrs to unsigned integers. | |
635 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait> | |
636 InstructionIntegerMap; | |
637 | |
638 /// Corresponcence from unsigned integers to \p MachineInstrs. | |
639 /// Inverse of \p InstructionIntegerMap. | |
640 DenseMap<unsigned, MachineInstr *> IntegerInstructionMap; | |
641 | |
642 /// The vector of unsigned integers that the module is mapped to. | |
643 std::vector<unsigned> UnsignedVec; | |
644 | |
645 /// \brief Stores the location of the instruction associated with the integer | |
646 /// at index i in \p UnsignedVec for each index i. | |
647 std::vector<MachineBasicBlock::iterator> InstrList; | |
648 | |
649 /// \brief Maps \p *It to a legal integer. | |
650 /// | |
651 /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap, | |
652 /// \p IntegerInstructionMap, and \p LegalInstrNumber. | |
653 /// | |
654 /// \returns The integer that \p *It was mapped to. | |
655 unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) { | |
656 | |
657 // Get the integer for this instruction or give it the current | |
658 // LegalInstrNumber. | |
659 InstrList.push_back(It); | |
660 MachineInstr &MI = *It; | |
661 bool WasInserted; | |
662 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator | |
663 ResultIt; | |
664 std::tie(ResultIt, WasInserted) = | |
665 InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); | |
666 unsigned MINumber = ResultIt->second; | |
667 | |
668 // There was an insertion. | |
669 if (WasInserted) { | |
670 LegalInstrNumber++; | |
671 IntegerInstructionMap.insert(std::make_pair(MINumber, &MI)); | |
672 } | |
673 | |
674 UnsignedVec.push_back(MINumber); | |
675 | |
676 // Make sure we don't overflow or use any integers reserved by the DenseMap. | |
677 if (LegalInstrNumber >= IllegalInstrNumber) | |
678 report_fatal_error("Instruction mapping overflow!"); | |
679 | |
680 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && | |
681 "Tried to assign DenseMap tombstone or empty key to instruction."); | |
682 assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && | |
683 "Tried to assign DenseMap tombstone or empty key to instruction."); | |
684 | |
685 return MINumber; | |
686 } | |
687 | |
688 /// Maps \p *It to an illegal integer. | |
689 /// | |
690 /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber. | |
691 /// | |
692 /// \returns The integer that \p *It was mapped to. | |
693 unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) { | |
694 unsigned MINumber = IllegalInstrNumber; | |
695 | |
696 InstrList.push_back(It); | |
697 UnsignedVec.push_back(IllegalInstrNumber); | |
698 IllegalInstrNumber--; | |
699 | |
700 assert(LegalInstrNumber < IllegalInstrNumber && | |
701 "Instruction mapping overflow!"); | |
702 | |
703 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() && | |
704 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); | |
705 | |
706 assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() && | |
707 "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); | |
708 | |
709 return MINumber; | |
710 } | |
711 | |
712 /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds | |
713 /// and appends it to \p UnsignedVec and \p InstrList. | |
714 /// | |
715 /// Two instructions are assigned the same integer if they are identical. | |
716 /// If an instruction is deemed unsafe to outline, then it will be assigned an | |
717 /// unique integer. The resulting mapping is placed into a suffix tree and | |
718 /// queried for candidates. | |
719 /// | |
720 /// \param MBB The \p MachineBasicBlock to be translated into integers. | |
721 /// \param TRI \p TargetRegisterInfo for the module. | |
722 /// \param TII \p TargetInstrInfo for the module. | |
723 void convertToUnsignedVec(MachineBasicBlock &MBB, | |
724 const TargetRegisterInfo &TRI, | |
725 const TargetInstrInfo &TII) { | |
726 for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et; | |
727 It++) { | |
728 | |
729 // Keep track of where this instruction is in the module. | |
730 switch (TII.getOutliningType(*It)) { | |
731 case TargetInstrInfo::MachineOutlinerInstrType::Illegal: | |
732 mapToIllegalUnsigned(It); | |
733 break; | |
734 | |
735 case TargetInstrInfo::MachineOutlinerInstrType::Legal: | |
736 mapToLegalUnsigned(It); | |
737 break; | |
738 | |
739 case TargetInstrInfo::MachineOutlinerInstrType::Invisible: | |
740 break; | |
741 } | |
742 } | |
743 | |
744 // After we're done every insertion, uniquely terminate this part of the | |
745 // "string". This makes sure we won't match across basic block or function | |
746 // boundaries since the "end" is encoded uniquely and thus appears in no | |
747 // repeated substring. | |
748 InstrList.push_back(MBB.end()); | |
749 UnsignedVec.push_back(IllegalInstrNumber); | |
750 IllegalInstrNumber--; | |
751 } | |
752 | |
753 InstructionMapper() { | |
754 // Make sure that the implementation of DenseMapInfo<unsigned> hasn't | |
755 // changed. | |
756 assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 && | |
757 "DenseMapInfo<unsigned>'s empty key isn't -1!"); | |
758 assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 && | |
759 "DenseMapInfo<unsigned>'s tombstone key isn't -2!"); | |
760 } | |
761 }; | |
762 | |
763 /// \brief An interprocedural pass which finds repeated sequences of | |
764 /// instructions and replaces them with calls to functions. | |
765 /// | |
766 /// Each instruction is mapped to an unsigned integer and placed in a string. | |
767 /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree | |
768 /// is then repeatedly queried for repeated sequences of instructions. Each | |
769 /// non-overlapping repeated sequence is then placed in its own | |
770 /// \p MachineFunction and each instance is then replaced with a call to that | |
771 /// function. | |
772 struct MachineOutliner : public ModulePass { | |
773 | |
774 static char ID; | |
775 | |
776 /// \brief Set to true if the outliner should consider functions with | |
777 /// linkonceodr linkage. | |
778 bool OutlineFromLinkOnceODRs = false; | |
779 | |
780 StringRef getPassName() const override { return "Machine Outliner"; } | |
781 | |
782 void getAnalysisUsage(AnalysisUsage &AU) const override { | |
783 AU.addRequired<MachineModuleInfo>(); | |
784 AU.addPreserved<MachineModuleInfo>(); | |
785 AU.setPreservesAll(); | |
786 ModulePass::getAnalysisUsage(AU); | |
787 } | |
788 | |
789 MachineOutliner(bool OutlineFromLinkOnceODRs = false) | |
790 : ModulePass(ID), OutlineFromLinkOnceODRs(OutlineFromLinkOnceODRs) { | |
791 initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); | |
792 } | |
793 | |
794 /// Find all repeated substrings that satisfy the outlining cost model. | |
795 /// | |
796 /// If a substring appears at least twice, then it must be represented by | |
797 /// an internal node which appears in at least two suffixes. Each suffix is | |
798 /// represented by a leaf node. To do this, we visit each internal node in | |
799 /// the tree, using the leaf children of each internal node. If an internal | |
800 /// node represents a beneficial substring, then we use each of its leaf | |
801 /// children to find the locations of its substring. | |
802 /// | |
803 /// \param ST A suffix tree to query. | |
804 /// \param TII TargetInstrInfo for the target. | |
805 /// \param Mapper Contains outlining mapping information. | |
806 /// \param[out] CandidateList Filled with candidates representing each | |
807 /// beneficial substring. | |
808 /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions each | |
809 /// type of candidate. | |
810 /// | |
811 /// \returns The length of the longest candidate found. | |
812 unsigned | |
813 findCandidates(SuffixTree &ST, const TargetInstrInfo &TII, | |
814 InstructionMapper &Mapper, | |
815 std::vector<std::shared_ptr<Candidate>> &CandidateList, | |
816 std::vector<OutlinedFunction> &FunctionList); | |
817 | |
818 /// \brief Replace the sequences of instructions represented by the | |
819 /// \p Candidates in \p CandidateList with calls to \p MachineFunctions | |
820 /// described in \p FunctionList. | |
821 /// | |
822 /// \param M The module we are outlining from. | |
823 /// \param CandidateList A list of candidates to be outlined. | |
824 /// \param FunctionList A list of functions to be inserted into the module. | |
825 /// \param Mapper Contains the instruction mappings for the module. | |
826 bool outline(Module &M, | |
827 const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, | |
828 std::vector<OutlinedFunction> &FunctionList, | |
829 InstructionMapper &Mapper); | |
830 | |
831 /// Creates a function for \p OF and inserts it into the module. | |
832 MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF, | |
833 InstructionMapper &Mapper); | |
834 | |
835 /// Find potential outlining candidates and store them in \p CandidateList. | |
836 /// | |
837 /// For each type of potential candidate, also build an \p OutlinedFunction | |
838 /// struct containing the information to build the function for that | |
839 /// candidate. | |
840 /// | |
841 /// \param[out] CandidateList Filled with outlining candidates for the module. | |
842 /// \param[out] FunctionList Filled with functions corresponding to each type | |
843 /// of \p Candidate. | |
844 /// \param ST The suffix tree for the module. | |
845 /// \param TII TargetInstrInfo for the module. | |
846 /// | |
847 /// \returns The length of the longest candidate found. 0 if there are none. | |
848 unsigned | |
849 buildCandidateList(std::vector<std::shared_ptr<Candidate>> &CandidateList, | |
850 std::vector<OutlinedFunction> &FunctionList, | |
851 SuffixTree &ST, InstructionMapper &Mapper, | |
852 const TargetInstrInfo &TII); | |
853 | |
854 /// Helper function for pruneOverlaps. | |
855 /// Removes \p C from the candidate list, and updates its \p OutlinedFunction. | |
856 void prune(Candidate &C, std::vector<OutlinedFunction> &FunctionList); | |
857 | |
858 /// \brief Remove any overlapping candidates that weren't handled by the | |
859 /// suffix tree's pruning method. | |
860 /// | |
861 /// Pruning from the suffix tree doesn't necessarily remove all overlaps. | |
862 /// If a short candidate is chosen for outlining, then a longer candidate | |
863 /// which has that short candidate as a suffix is chosen, the tree's pruning | |
864 /// method will not find it. Thus, we need to prune before outlining as well. | |
865 /// | |
866 /// \param[in,out] CandidateList A list of outlining candidates. | |
867 /// \param[in,out] FunctionList A list of functions to be outlined. | |
868 /// \param Mapper Contains instruction mapping info for outlining. | |
869 /// \param MaxCandidateLen The length of the longest candidate. | |
870 /// \param TII TargetInstrInfo for the module. | |
871 void pruneOverlaps(std::vector<std::shared_ptr<Candidate>> &CandidateList, | |
872 std::vector<OutlinedFunction> &FunctionList, | |
873 InstructionMapper &Mapper, unsigned MaxCandidateLen, | |
874 const TargetInstrInfo &TII); | |
875 | |
876 /// Construct a suffix tree on the instructions in \p M and outline repeated | |
877 /// strings from that tree. | |
878 bool runOnModule(Module &M) override; | |
879 }; | |
880 | |
881 } // Anonymous namespace. | |
882 | |
883 char MachineOutliner::ID = 0; | |
884 | |
885 namespace llvm { | |
886 ModulePass *createMachineOutlinerPass(bool OutlineFromLinkOnceODRs) { | |
887 return new MachineOutliner(OutlineFromLinkOnceODRs); | |
888 } | |
889 | |
890 } // namespace llvm | |
891 | |
892 INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, | |
893 false) | |
894 | |
895 unsigned MachineOutliner::findCandidates( | |
896 SuffixTree &ST, const TargetInstrInfo &TII, InstructionMapper &Mapper, | |
897 std::vector<std::shared_ptr<Candidate>> &CandidateList, | |
898 std::vector<OutlinedFunction> &FunctionList) { | |
899 CandidateList.clear(); | |
900 FunctionList.clear(); | |
901 unsigned MaxLen = 0; | |
902 | |
903 // FIXME: Visit internal nodes instead of leaves. | |
904 for (SuffixTreeNode *Leaf : ST.LeafVector) { | |
905 assert(Leaf && "Leaves in LeafVector cannot be null!"); | |
906 if (!Leaf->IsInTree) | |
907 continue; | |
908 | |
909 assert(Leaf->Parent && "All leaves must have parents!"); | |
910 SuffixTreeNode &Parent = *(Leaf->Parent); | |
911 | |
912 // If it doesn't appear enough, or we already outlined from it, skip it. | |
913 if (Parent.OccurrenceCount < 2 || Parent.isRoot() || !Parent.IsInTree) | |
914 continue; | |
915 | |
916 // Figure out if this candidate is beneficial. | |
917 unsigned StringLen = Leaf->ConcatLen - (unsigned)Leaf->size(); | |
918 | |
919 // Too short to be beneficial; skip it. | |
920 // FIXME: This isn't necessarily true for, say, X86. If we factor in | |
921 // instruction lengths we need more information than this. | |
922 if (StringLen < 2) | |
923 continue; | |
924 | |
925 // If this is a beneficial class of candidate, then every one is stored in | |
926 // this vector. | |
927 std::vector<Candidate> CandidatesForRepeatedSeq; | |
928 | |
929 // Describes the start and end point of each candidate. This allows the | |
930 // target to infer some information about each occurrence of each repeated | |
931 // sequence. | |
932 // FIXME: CandidatesForRepeatedSeq and this should be combined. | |
933 std::vector< | |
934 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator>> | |
935 RepeatedSequenceLocs; | |
936 | |
937 // Figure out the call overhead for each instance of the sequence. | |
938 for (auto &ChildPair : Parent.Children) { | |
939 SuffixTreeNode *M = ChildPair.second; | |
940 | |
941 if (M && M->IsInTree && M->isLeaf()) { | |
942 // Each sequence is over [StartIt, EndIt]. | |
943 MachineBasicBlock::iterator StartIt = Mapper.InstrList[M->SuffixIdx]; | |
944 MachineBasicBlock::iterator EndIt = | |
945 Mapper.InstrList[M->SuffixIdx + StringLen - 1]; | |
946 | |
947 CandidatesForRepeatedSeq.emplace_back(M->SuffixIdx, StringLen, | |
948 FunctionList.size()); | |
949 RepeatedSequenceLocs.emplace_back(std::make_pair(StartIt, EndIt)); | |
950 | |
951 // Never visit this leaf again. | |
952 M->IsInTree = false; | |
953 } | |
954 } | |
955 | |
956 // We've found something we might want to outline. | |
957 // Create an OutlinedFunction to store it and check if it'd be beneficial | |
958 // to outline. | |
959 TargetInstrInfo::MachineOutlinerInfo MInfo = | |
960 TII.getOutlininingCandidateInfo(RepeatedSequenceLocs); | |
961 std::vector<unsigned> Seq; | |
962 for (unsigned i = Leaf->SuffixIdx; i < Leaf->SuffixIdx + StringLen; i++) | |
963 Seq.push_back(ST.Str[i]); | |
964 OutlinedFunction OF(FunctionList.size(), Parent.OccurrenceCount, Seq, | |
965 MInfo); | |
966 unsigned Benefit = OF.getBenefit(); | |
967 | |
968 // Is it better to outline this candidate than not? | |
969 if (Benefit < 1) { | |
970 // Outlining this candidate would take more instructions than not | |
971 // outlining. | |
972 // Emit a remark explaining why we didn't outline this candidate. | |
973 std::pair<MachineBasicBlock::iterator, MachineBasicBlock::iterator> C = | |
974 RepeatedSequenceLocs[0]; | |
975 MachineOptimizationRemarkEmitter MORE( | |
976 *(C.first->getParent()->getParent()), nullptr); | |
977 MORE.emit([&]() { | |
978 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", | |
979 C.first->getDebugLoc(), | |
980 C.first->getParent()); | |
981 R << "Did not outline " << NV("Length", StringLen) << " instructions" | |
982 << " from " << NV("NumOccurrences", RepeatedSequenceLocs.size()) | |
983 << " locations." | |
984 << " Instructions from outlining all occurrences (" | |
985 << NV("OutliningCost", OF.getOutliningCost()) << ")" | |
986 << " >= Unoutlined instruction count (" | |
987 << NV("NotOutliningCost", StringLen * OF.getOccurrenceCount()) << ")" | |
988 << " (Also found at: "; | |
989 | |
990 // Tell the user the other places the candidate was found. | |
991 for (unsigned i = 1, e = RepeatedSequenceLocs.size(); i < e; i++) { | |
992 R << NV((Twine("OtherStartLoc") + Twine(i)).str(), | |
993 RepeatedSequenceLocs[i].first->getDebugLoc()); | |
994 if (i != e - 1) | |
995 R << ", "; | |
996 } | |
997 | |
998 R << ")"; | |
999 return R; | |
1000 }); | |
1001 | |
1002 // Move to the next candidate. | |
1003 continue; | |
1004 } | |
1005 | |
1006 if (StringLen > MaxLen) | |
1007 MaxLen = StringLen; | |
1008 | |
1009 // At this point, the candidate class is seen as beneficial. Set their | |
1010 // benefit values and save them in the candidate list. | |
1011 std::vector<std::shared_ptr<Candidate>> CandidatesForFn; | |
1012 for (Candidate &C : CandidatesForRepeatedSeq) { | |
1013 C.Benefit = Benefit; | |
1014 C.MInfo = MInfo; | |
1015 std::shared_ptr<Candidate> Cptr = std::make_shared<Candidate>(C); | |
1016 CandidateList.push_back(Cptr); | |
1017 CandidatesForFn.push_back(Cptr); | |
1018 } | |
1019 | |
1020 FunctionList.push_back(OF); | |
1021 FunctionList.back().Candidates = CandidatesForFn; | |
1022 | |
1023 // Move to the next function. | |
1024 Parent.IsInTree = false; | |
1025 } | |
1026 | |
1027 return MaxLen; | |
1028 } | |
1029 | |
1030 // Remove C from the candidate space, and update its OutlinedFunction. | |
1031 void MachineOutliner::prune(Candidate &C, | |
1032 std::vector<OutlinedFunction> &FunctionList) { | |
1033 // Get the OutlinedFunction associated with this Candidate. | |
1034 OutlinedFunction &F = FunctionList[C.FunctionIdx]; | |
1035 | |
1036 // Update C's associated function's occurrence count. | |
1037 F.decrement(); | |
1038 | |
1039 // Remove C from the CandidateList. | |
1040 C.InCandidateList = false; | |
1041 | |
1042 DEBUG(dbgs() << "- Removed a Candidate \n"; | |
1043 dbgs() << "--- Num fns left for candidate: " << F.getOccurrenceCount() | |
1044 << "\n"; | |
1045 dbgs() << "--- Candidate's functions's benefit: " << F.getBenefit() | |
1046 << "\n";); | |
1047 } | |
1048 | |
1049 void MachineOutliner::pruneOverlaps( | |
1050 std::vector<std::shared_ptr<Candidate>> &CandidateList, | |
1051 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper, | |
1052 unsigned MaxCandidateLen, const TargetInstrInfo &TII) { | |
1053 | |
1054 // Return true if this candidate became unbeneficial for outlining in a | |
1055 // previous step. | |
1056 auto ShouldSkipCandidate = [&FunctionList, this](Candidate &C) { | |
1057 | |
1058 // Check if the candidate was removed in a previous step. | |
1059 if (!C.InCandidateList) | |
1060 return true; | |
1061 | |
1062 // C must be alive. Check if we should remove it. | |
1063 if (FunctionList[C.FunctionIdx].getBenefit() < 1) { | |
1064 prune(C, FunctionList); | |
1065 return true; | |
1066 } | |
1067 | |
1068 // C is in the list, and F is still beneficial. | |
1069 return false; | |
1070 }; | |
1071 | |
1072 // TODO: Experiment with interval trees or other interval-checking structures | |
1073 // to lower the time complexity of this function. | |
1074 // TODO: Can we do better than the simple greedy choice? | |
1075 // Check for overlaps in the range. | |
1076 // This is O(MaxCandidateLen * CandidateList.size()). | |
1077 for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et; | |
1078 It++) { | |
1079 Candidate &C1 = **It; | |
1080 | |
1081 // If C1 was already pruned, or its function is no longer beneficial for | |
1082 // outlining, move to the next candidate. | |
1083 if (ShouldSkipCandidate(C1)) | |
1084 continue; | |
1085 | |
1086 // The minimum start index of any candidate that could overlap with this | |
1087 // one. | |
1088 unsigned FarthestPossibleIdx = 0; | |
1089 | |
1090 // Either the index is 0, or it's at most MaxCandidateLen indices away. | |
1091 if (C1.getStartIdx() > MaxCandidateLen) | |
1092 FarthestPossibleIdx = C1.getStartIdx() - MaxCandidateLen; | |
1093 | |
1094 // Compare against the candidates in the list that start at at most | |
1095 // FarthestPossibleIdx indices away from C1. There are at most | |
1096 // MaxCandidateLen of these. | |
1097 for (auto Sit = It + 1; Sit != Et; Sit++) { | |
1098 Candidate &C2 = **Sit; | |
1099 | |
1100 // Is this candidate too far away to overlap? | |
1101 if (C2.getStartIdx() < FarthestPossibleIdx) | |
1102 break; | |
1103 | |
1104 // If C2 was already pruned, or its function is no longer beneficial for | |
1105 // outlining, move to the next candidate. | |
1106 if (ShouldSkipCandidate(C2)) | |
1107 continue; | |
1108 | |
1109 // Do C1 and C2 overlap? | |
1110 // | |
1111 // Not overlapping: | |
1112 // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices | |
1113 // | |
1114 // We sorted our candidate list so C2Start <= C1Start. We know that | |
1115 // C2End > C2Start since each candidate has length >= 2. Therefore, all we | |
1116 // have to check is C2End < C2Start to see if we overlap. | |
1117 if (C2.getEndIdx() < C1.getStartIdx()) | |
1118 continue; | |
1119 | |
1120 // C1 and C2 overlap. | |
1121 // We need to choose the better of the two. | |
1122 // | |
1123 // Approximate this by picking the one which would have saved us the | |
1124 // most instructions before any pruning. | |
1125 | |
1126 // Is C2 a better candidate? | |
1127 if (C2.Benefit > C1.Benefit) { | |
1128 // Yes, so prune C1. Since C1 is dead, we don't have to compare it | |
1129 // against anything anymore, so break. | |
1130 prune(C1, FunctionList); | |
1131 break; | |
1132 } | |
1133 | |
1134 // Prune C2 and move on to the next candidate. | |
1135 prune(C2, FunctionList); | |
1136 } | |
1137 } | |
1138 } | |
1139 | |
1140 unsigned MachineOutliner::buildCandidateList( | |
1141 std::vector<std::shared_ptr<Candidate>> &CandidateList, | |
1142 std::vector<OutlinedFunction> &FunctionList, SuffixTree &ST, | |
1143 InstructionMapper &Mapper, const TargetInstrInfo &TII) { | |
1144 | |
1145 std::vector<unsigned> CandidateSequence; // Current outlining candidate. | |
1146 unsigned MaxCandidateLen = 0; // Length of the longest candidate. | |
1147 | |
1148 MaxCandidateLen = | |
1149 findCandidates(ST, TII, Mapper, CandidateList, FunctionList); | |
1150 | |
1151 // Sort the candidates in decending order. This will simplify the outlining | |
1152 // process when we have to remove the candidates from the mapping by | |
1153 // allowing us to cut them out without keeping track of an offset. | |
1154 std::stable_sort( | |
1155 CandidateList.begin(), CandidateList.end(), | |
1156 [](const std::shared_ptr<Candidate> &LHS, | |
1157 const std::shared_ptr<Candidate> &RHS) { return *LHS < *RHS; }); | |
1158 | |
1159 return MaxCandidateLen; | |
1160 } | |
1161 | |
1162 MachineFunction * | |
1163 MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF, | |
1164 InstructionMapper &Mapper) { | |
1165 | |
1166 // Create the function name. This should be unique. For now, just hash the | |
1167 // module name and include it in the function name plus the number of this | |
1168 // function. | |
1169 std::ostringstream NameStream; | |
1170 NameStream << "OUTLINED_FUNCTION_" << OF.Name; | |
1171 | |
1172 // Create the function using an IR-level function. | |
1173 LLVMContext &C = M.getContext(); | |
1174 Function *F = dyn_cast<Function>( | |
1175 M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C))); | |
1176 assert(F && "Function was null!"); | |
1177 | |
1178 // NOTE: If this is linkonceodr, then we can take advantage of linker deduping | |
1179 // which gives us better results when we outline from linkonceodr functions. | |
1180 F->setLinkage(GlobalValue::PrivateLinkage); | |
1181 F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); | |
1182 | |
1183 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); | |
1184 IRBuilder<> Builder(EntryBB); | |
1185 Builder.CreateRetVoid(); | |
1186 | |
1187 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); | |
1188 MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); | |
1189 MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); | |
1190 const TargetSubtargetInfo &STI = MF.getSubtarget(); | |
1191 const TargetInstrInfo &TII = *STI.getInstrInfo(); | |
1192 | |
1193 // Insert the new function into the module. | |
1194 MF.insert(MF.begin(), &MBB); | |
1195 | |
1196 TII.insertOutlinerPrologue(MBB, MF, OF.MInfo); | |
1197 | |
1198 // Copy over the instructions for the function using the integer mappings in | |
1199 // its sequence. | |
1200 for (unsigned Str : OF.Sequence) { | |
1201 MachineInstr *NewMI = | |
1202 MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second); | |
1203 NewMI->dropMemRefs(); | |
1204 | |
1205 // Don't keep debug information for outlined instructions. | |
1206 // FIXME: This means outlined functions are currently undebuggable. | |
1207 NewMI->setDebugLoc(DebugLoc()); | |
1208 MBB.insert(MBB.end(), NewMI); | |
1209 } | |
1210 | |
1211 TII.insertOutlinerEpilogue(MBB, MF, OF.MInfo); | |
1212 | |
1213 return &MF; | |
1214 } | |
1215 | |
1216 bool MachineOutliner::outline( | |
1217 Module &M, const ArrayRef<std::shared_ptr<Candidate>> &CandidateList, | |
1218 std::vector<OutlinedFunction> &FunctionList, InstructionMapper &Mapper) { | |
1219 | |
1220 bool OutlinedSomething = false; | |
1221 // Replace the candidates with calls to their respective outlined functions. | |
1222 for (const std::shared_ptr<Candidate> &Cptr : CandidateList) { | |
1223 Candidate &C = *Cptr; | |
1224 // Was the candidate removed during pruneOverlaps? | |
1225 if (!C.InCandidateList) | |
1226 continue; | |
1227 | |
1228 // If not, then look at its OutlinedFunction. | |
1229 OutlinedFunction &OF = FunctionList[C.FunctionIdx]; | |
1230 | |
1231 // Was its OutlinedFunction made unbeneficial during pruneOverlaps? | |
1232 if (OF.getBenefit() < 1) | |
1233 continue; | |
1234 | |
1235 // If not, then outline it. | |
1236 assert(C.getStartIdx() < Mapper.InstrList.size() && | |
1237 "Candidate out of bounds!"); | |
1238 MachineBasicBlock *MBB = (*Mapper.InstrList[C.getStartIdx()]).getParent(); | |
1239 MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.getStartIdx()]; | |
1240 unsigned EndIdx = C.getEndIdx(); | |
1241 | |
1242 assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!"); | |
1243 MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; | |
1244 assert(EndIt != MBB->end() && "EndIt out of bounds!"); | |
1245 | |
1246 EndIt++; // Erase needs one past the end index. | |
1247 | |
1248 // Does this candidate have a function yet? | |
1249 if (!OF.MF) { | |
1250 OF.MF = createOutlinedFunction(M, OF, Mapper); | |
1251 MachineBasicBlock *MBB = &*OF.MF->begin(); | |
1252 | |
1253 // Output a remark telling the user that an outlined function was created, | |
1254 // and explaining where it came from. | |
1255 MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); | |
1256 MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", | |
1257 MBB->findDebugLoc(MBB->begin()), MBB); | |
1258 R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) | |
1259 << " instructions by " | |
1260 << "outlining " << NV("Length", OF.Sequence.size()) << " instructions " | |
1261 << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) | |
1262 << " locations. " | |
1263 << "(Found at: "; | |
1264 | |
1265 // Tell the user the other places the candidate was found. | |
1266 for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { | |
1267 | |
1268 // Skip over things that were pruned. | |
1269 if (!OF.Candidates[i]->InCandidateList) | |
1270 continue; | |
1271 | |
1272 R << NV( | |
1273 (Twine("StartLoc") + Twine(i)).str(), | |
1274 Mapper.InstrList[OF.Candidates[i]->getStartIdx()]->getDebugLoc()); | |
1275 if (i != e - 1) | |
1276 R << ", "; | |
1277 } | |
1278 | |
1279 R << ")"; | |
1280 | |
1281 MORE.emit(R); | |
1282 FunctionsCreated++; | |
1283 } | |
1284 | |
1285 MachineFunction *MF = OF.MF; | |
1286 const TargetSubtargetInfo &STI = MF->getSubtarget(); | |
1287 const TargetInstrInfo &TII = *STI.getInstrInfo(); | |
1288 | |
1289 // Insert a call to the new function and erase the old sequence. | |
1290 TII.insertOutlinedCall(M, *MBB, StartIt, *MF, C.MInfo); | |
1291 StartIt = Mapper.InstrList[C.getStartIdx()]; | |
1292 MBB->erase(StartIt, EndIt); | |
1293 | |
1294 OutlinedSomething = true; | |
1295 | |
1296 // Statistics. | |
1297 NumOutlined++; | |
1298 } | |
1299 | |
1300 DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); | |
1301 | |
1302 return OutlinedSomething; | |
1303 } | |
1304 | |
1305 bool MachineOutliner::runOnModule(Module &M) { | |
1306 | |
1307 // Is there anything in the module at all? | |
1308 if (M.empty()) | |
1309 return false; | |
1310 | |
1311 MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>(); | |
1312 const TargetSubtargetInfo &STI = | |
1313 MMI.getOrCreateMachineFunction(*M.begin()).getSubtarget(); | |
1314 const TargetRegisterInfo *TRI = STI.getRegisterInfo(); | |
1315 const TargetInstrInfo *TII = STI.getInstrInfo(); | |
1316 | |
1317 InstructionMapper Mapper; | |
1318 | |
1319 // Build instruction mappings for each function in the module. | |
1320 for (Function &F : M) { | |
1321 MachineFunction &MF = MMI.getOrCreateMachineFunction(F); | |
1322 | |
1323 // Is the function empty? Safe to outline from? | |
1324 if (F.empty() || | |
1325 !TII->isFunctionSafeToOutlineFrom(MF, OutlineFromLinkOnceODRs)) | |
1326 continue; | |
1327 | |
1328 // If it is, look at each MachineBasicBlock in the function. | |
1329 for (MachineBasicBlock &MBB : MF) { | |
1330 | |
1331 // Is there anything in MBB? | |
1332 if (MBB.empty()) | |
1333 continue; | |
1334 | |
1335 // If yes, map it. | |
1336 Mapper.convertToUnsignedVec(MBB, *TRI, *TII); | |
1337 } | |
1338 } | |
1339 | |
1340 // Construct a suffix tree, use it to find candidates, and then outline them. | |
1341 SuffixTree ST(Mapper.UnsignedVec); | |
1342 std::vector<std::shared_ptr<Candidate>> CandidateList; | |
1343 std::vector<OutlinedFunction> FunctionList; | |
1344 | |
1345 // Find all of the outlining candidates. | |
1346 unsigned MaxCandidateLen = | |
1347 buildCandidateList(CandidateList, FunctionList, ST, Mapper, *TII); | |
1348 | |
1349 // Remove candidates that overlap with other candidates. | |
1350 pruneOverlaps(CandidateList, FunctionList, Mapper, MaxCandidateLen, *TII); | |
1351 | |
1352 // Outline each of the candidates and return true if something was outlined. | |
1353 return outline(M, CandidateList, FunctionList, Mapper); | |
1354 } |