comparison lib/Target/SystemZ/SystemZInstrDFP.td @ 121:803732b1fca8

LLVM 5.0
author kono
date Fri, 27 Oct 2017 17:07:41 +0900
parents
children c2174574ed3a
comparison
equal deleted inserted replaced
120:1172e4bd9c6f 121:803732b1fca8
1 //==- SystemZInstrDFP.td - Floating-point SystemZ instructions -*- tblgen-*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The instructions in this file implement SystemZ decimal floating-point
11 // arithmetic. These instructions are inot currently used for code generation,
12 // are provided for use with the assembler and disassembler only. If LLVM
13 // ever supports decimal floating-point types (_Decimal64 etc.), they can
14 // also be used for code generation for those types.
15 //
16 //===----------------------------------------------------------------------===//
17
18 //===----------------------------------------------------------------------===//
19 // Move instructions
20 //===----------------------------------------------------------------------===//
21
22 // Load and test.
23 let Defs = [CC] in {
24 def LTDTR : UnaryRRE<"ltdtr", 0xB3D6, null_frag, FP64, FP64>;
25 def LTXTR : UnaryRRE<"ltxtr", 0xB3DE, null_frag, FP128, FP128>;
26 }
27
28
29 //===----------------------------------------------------------------------===//
30 // Conversion instructions
31 //===----------------------------------------------------------------------===//
32
33 // Convert floating-point values to narrower representations. The destination
34 // of LDXTR is a 128-bit value, but only the first register of the pair is used.
35 def LEDTR : TernaryRRFe<"ledtr", 0xB3D5, FP32, FP64>;
36 def LDXTR : TernaryRRFe<"ldxtr", 0xB3DD, FP128, FP128>;
37
38 // Extend floating-point values to wider representations.
39 def LDETR : BinaryRRFd<"ldetr", 0xB3D4, FP64, FP32>;
40 def LXDTR : BinaryRRFd<"lxdtr", 0xB3DC, FP128, FP64>;
41
42 // Convert a signed integer value to a floating-point one.
43 def CDGTR : UnaryRRE<"cdgtr", 0xB3F1, null_frag, FP64, GR64>;
44 def CXGTR : UnaryRRE<"cxgtr", 0xB3F9, null_frag, FP128, GR64>;
45 let Predicates = [FeatureFPExtension] in {
46 def CDGTRA : TernaryRRFe<"cdgtra", 0xB3F1, FP64, GR64>;
47 def CXGTRA : TernaryRRFe<"cxgtra", 0xB3F9, FP128, GR64>;
48 def CDFTR : TernaryRRFe<"cdftr", 0xB951, FP64, GR32>;
49 def CXFTR : TernaryRRFe<"cxftr", 0xB959, FP128, GR32>;
50 }
51
52 // Convert an unsigned integer value to a floating-point one.
53 let Predicates = [FeatureFPExtension] in {
54 def CDLGTR : TernaryRRFe<"cdlgtr", 0xB952, FP64, GR64>;
55 def CXLGTR : TernaryRRFe<"cxlgtr", 0xB95A, FP128, GR64>;
56 def CDLFTR : TernaryRRFe<"cdlftr", 0xB953, FP64, GR32>;
57 def CXLFTR : TernaryRRFe<"cxlftr", 0xB95B, FP128, GR32>;
58 }
59
60 // Convert a floating-point value to a signed integer value.
61 let Defs = [CC] in {
62 def CGDTR : BinaryRRFe<"cgdtr", 0xB3E1, GR64, FP64>;
63 def CGXTR : BinaryRRFe<"cgxtr", 0xB3E9, GR64, FP128>;
64 let Predicates = [FeatureFPExtension] in {
65 def CGDTRA : TernaryRRFe<"cgdtra", 0xB3E1, GR64, FP64>;
66 def CGXTRA : TernaryRRFe<"cgxtra", 0xB3E9, GR64, FP128>;
67 def CFDTR : TernaryRRFe<"cfdtr", 0xB941, GR32, FP64>;
68 def CFXTR : TernaryRRFe<"cfxtr", 0xB949, GR32, FP128>;
69 }
70 }
71
72 // Convert a floating-point value to an unsigned integer value.
73 let Defs = [CC] in {
74 let Predicates = [FeatureFPExtension] in {
75 def CLGDTR : TernaryRRFe<"clgdtr", 0xB942, GR64, FP64>;
76 def CLGXTR : TernaryRRFe<"clgxtr", 0xB94A, GR64, FP128>;
77 def CLFDTR : TernaryRRFe<"clfdtr", 0xB943, GR32, FP64>;
78 def CLFXTR : TernaryRRFe<"clfxtr", 0xB94B, GR32, FP128>;
79 }
80 }
81
82 // Convert a packed value to a floating-point one.
83 def CDSTR : UnaryRRE<"cdstr", 0xB3F3, null_frag, FP64, GR64>;
84 def CXSTR : UnaryRRE<"cxstr", 0xB3FB, null_frag, FP128, GR128>;
85 def CDUTR : UnaryRRE<"cdutr", 0xB3F2, null_frag, FP64, GR64>;
86 def CXUTR : UnaryRRE<"cxutr", 0xB3FA, null_frag, FP128, GR128>;
87
88 // Convert a floating-point value to a packed value.
89 def CSDTR : BinaryRRFd<"csdtr", 0xB3E3, GR64, FP64>;
90 def CSXTR : BinaryRRFd<"csxtr", 0xB3EB, GR128, FP128>;
91 def CUDTR : UnaryRRE<"cudtr", 0xB3E2, null_frag, GR64, FP64>;
92 def CUXTR : UnaryRRE<"cuxtr", 0xB3EA, null_frag, GR128, FP128>;
93
94 // Convert from/to memory values in the zoned format.
95 let Predicates = [FeatureDFPZonedConversion] in {
96 def CDZT : BinaryRSL<"cdzt", 0xEDAA, FP64>;
97 def CXZT : BinaryRSL<"cxzt", 0xEDAB, FP128>;
98 def CZDT : StoreBinaryRSL<"czdt", 0xEDA8, FP64>;
99 def CZXT : StoreBinaryRSL<"czxt", 0xEDA9, FP128>;
100 }
101
102 // Convert from/to memory values in the packed format.
103 let Predicates = [FeatureDFPPackedConversion] in {
104 def CDPT : BinaryRSL<"cdpt", 0xEDAE, FP64>;
105 def CXPT : BinaryRSL<"cxpt", 0xEDAF, FP128>;
106 def CPDT : StoreBinaryRSL<"cpdt", 0xEDAC, FP64>;
107 def CPXT : StoreBinaryRSL<"cpxt", 0xEDAD, FP128>;
108 }
109
110 // Perform floating-point operation.
111 let Defs = [CC, R1L, F0Q], Uses = [R0L, F4Q] in
112 def PFPO : SideEffectInherentE<"pfpo", 0x010A>;
113
114
115 //===----------------------------------------------------------------------===//
116 // Unary arithmetic
117 //===----------------------------------------------------------------------===//
118
119 // Round to an integer, with the second operand (M3) specifying the rounding
120 // mode. M4 can be set to 4 to suppress detection of inexact conditions.
121 def FIDTR : TernaryRRFe<"fidtr", 0xB3D7, FP64, FP64>;
122 def FIXTR : TernaryRRFe<"fixtr", 0xB3DF, FP128, FP128>;
123
124 // Extract biased exponent.
125 def EEDTR : UnaryRRE<"eedtr", 0xB3E5, null_frag, FP64, FP64>;
126 def EEXTR : UnaryRRE<"eextr", 0xB3ED, null_frag, FP128, FP128>;
127
128 // Extract significance.
129 def ESDTR : UnaryRRE<"esdtr", 0xB3E7, null_frag, FP64, FP64>;
130 def ESXTR : UnaryRRE<"esxtr", 0xB3EF, null_frag, FP128, FP128>;
131
132
133 //===----------------------------------------------------------------------===//
134 // Binary arithmetic
135 //===----------------------------------------------------------------------===//
136
137 // Addition.
138 let Defs = [CC] in {
139 let isCommutable = 1 in {
140 def ADTR : BinaryRRFa<"adtr", 0xB3D2, null_frag, FP64, FP64, FP64>;
141 def AXTR : BinaryRRFa<"axtr", 0xB3DA, null_frag, FP128, FP128, FP128>;
142 }
143 let Predicates = [FeatureFPExtension] in {
144 def ADTRA : TernaryRRFa<"adtra", 0xB3D2, FP64, FP64, FP64>;
145 def AXTRA : TernaryRRFa<"axtra", 0xB3DA, FP128, FP128, FP128>;
146 }
147 }
148
149 // Subtraction.
150 let Defs = [CC] in {
151 def SDTR : BinaryRRFa<"sdtr", 0xB3D3, null_frag, FP64, FP64, FP64>;
152 def SXTR : BinaryRRFa<"sxtr", 0xB3DB, null_frag, FP128, FP128, FP128>;
153 let Predicates = [FeatureFPExtension] in {
154 def SDTRA : TernaryRRFa<"sdtra", 0xB3D3, FP64, FP64, FP64>;
155 def SXTRA : TernaryRRFa<"sxtra", 0xB3DB, FP128, FP128, FP128>;
156 }
157 }
158
159 // Multiplication.
160 let isCommutable = 1 in {
161 def MDTR : BinaryRRFa<"mdtr", 0xB3D0, null_frag, FP64, FP64, FP64>;
162 def MXTR : BinaryRRFa<"mxtr", 0xB3D8, null_frag, FP128, FP128, FP128>;
163 }
164 let Predicates = [FeatureFPExtension] in {
165 def MDTRA : TernaryRRFa<"mdtra", 0xB3D0, FP64, FP64, FP64>;
166 def MXTRA : TernaryRRFa<"mxtra", 0xB3D8, FP128, FP128, FP128>;
167 }
168
169 // Division.
170 def DDTR : BinaryRRFa<"ddtr", 0xB3D1, null_frag, FP64, FP64, FP64>;
171 def DXTR : BinaryRRFa<"dxtr", 0xB3D9, null_frag, FP128, FP128, FP128>;
172 let Predicates = [FeatureFPExtension] in {
173 def DDTRA : TernaryRRFa<"ddtra", 0xB3D1, FP64, FP64, FP64>;
174 def DXTRA : TernaryRRFa<"dxtra", 0xB3D9, FP128, FP128, FP128>;
175 }
176
177 // Quantize.
178 def QADTR : TernaryRRFb<"qadtr", 0xB3F5, FP64, FP64, FP64>;
179 def QAXTR : TernaryRRFb<"qaxtr", 0xB3FD, FP128, FP128, FP128>;
180
181 // Reround.
182 def RRDTR : TernaryRRFb<"rrdtr", 0xB3F7, FP64, FP64, FP64>;
183 def RRXTR : TernaryRRFb<"rrxtr", 0xB3FF, FP128, FP128, FP128>;
184
185 // Shift significand left/right.
186 def SLDT : BinaryRXF<"sldt", 0xED40, null_frag, FP64, FP64, null_frag, 0>;
187 def SLXT : BinaryRXF<"slxt", 0xED48, null_frag, FP128, FP128, null_frag, 0>;
188 def SRDT : BinaryRXF<"srdt", 0xED41, null_frag, FP64, FP64, null_frag, 0>;
189 def SRXT : BinaryRXF<"srxt", 0xED49, null_frag, FP128, FP128, null_frag, 0>;
190
191 // Insert biased exponent.
192 def IEDTR : BinaryRRFb<"iedtr", 0xB3F6, null_frag, FP64, FP64, FP64>;
193 def IEXTR : BinaryRRFb<"iextr", 0xB3FE, null_frag, FP128, FP128, FP128>;
194
195
196 //===----------------------------------------------------------------------===//
197 // Comparisons
198 //===----------------------------------------------------------------------===//
199
200 // Compare.
201 let Defs = [CC] in {
202 def CDTR : CompareRRE<"cdtr", 0xB3E4, null_frag, FP64, FP64>;
203 def CXTR : CompareRRE<"cxtr", 0xB3EC, null_frag, FP128, FP128>;
204 }
205
206 // Compare and signal.
207 let Defs = [CC] in {
208 def KDTR : CompareRRE<"kdtr", 0xB3E0, null_frag, FP64, FP64>;
209 def KXTR : CompareRRE<"kxtr", 0xB3E8, null_frag, FP128, FP128>;
210 }
211
212 // Compare biased exponent.
213 let Defs = [CC] in {
214 def CEDTR : CompareRRE<"cedtr", 0xB3F4, null_frag, FP64, FP64>;
215 def CEXTR : CompareRRE<"cextr", 0xB3FC, null_frag, FP128, FP128>;
216 }
217
218 // Test Data Class.
219 let Defs = [CC] in {
220 def TDCET : TestRXE<"tdcet", 0xED50, null_frag, FP32>;
221 def TDCDT : TestRXE<"tdcdt", 0xED54, null_frag, FP64>;
222 def TDCXT : TestRXE<"tdcxt", 0xED58, null_frag, FP128>;
223 }
224
225 // Test Data Group.
226 let Defs = [CC] in {
227 def TDGET : TestRXE<"tdget", 0xED51, null_frag, FP32>;
228 def TDGDT : TestRXE<"tdgdt", 0xED55, null_frag, FP64>;
229 def TDGXT : TestRXE<"tdgxt", 0xED59, null_frag, FP128>;
230 }
231