Mercurial > hg > CbC > CbC_llvm
comparison lib/Target/SystemZ/SystemZInstrDFP.td @ 121:803732b1fca8
LLVM 5.0
author | kono |
---|---|
date | Fri, 27 Oct 2017 17:07:41 +0900 |
parents | |
children | c2174574ed3a |
comparison
equal
deleted
inserted
replaced
120:1172e4bd9c6f | 121:803732b1fca8 |
---|---|
1 //==- SystemZInstrDFP.td - Floating-point SystemZ instructions -*- tblgen-*-==// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 // | |
10 // The instructions in this file implement SystemZ decimal floating-point | |
11 // arithmetic. These instructions are inot currently used for code generation, | |
12 // are provided for use with the assembler and disassembler only. If LLVM | |
13 // ever supports decimal floating-point types (_Decimal64 etc.), they can | |
14 // also be used for code generation for those types. | |
15 // | |
16 //===----------------------------------------------------------------------===// | |
17 | |
18 //===----------------------------------------------------------------------===// | |
19 // Move instructions | |
20 //===----------------------------------------------------------------------===// | |
21 | |
22 // Load and test. | |
23 let Defs = [CC] in { | |
24 def LTDTR : UnaryRRE<"ltdtr", 0xB3D6, null_frag, FP64, FP64>; | |
25 def LTXTR : UnaryRRE<"ltxtr", 0xB3DE, null_frag, FP128, FP128>; | |
26 } | |
27 | |
28 | |
29 //===----------------------------------------------------------------------===// | |
30 // Conversion instructions | |
31 //===----------------------------------------------------------------------===// | |
32 | |
33 // Convert floating-point values to narrower representations. The destination | |
34 // of LDXTR is a 128-bit value, but only the first register of the pair is used. | |
35 def LEDTR : TernaryRRFe<"ledtr", 0xB3D5, FP32, FP64>; | |
36 def LDXTR : TernaryRRFe<"ldxtr", 0xB3DD, FP128, FP128>; | |
37 | |
38 // Extend floating-point values to wider representations. | |
39 def LDETR : BinaryRRFd<"ldetr", 0xB3D4, FP64, FP32>; | |
40 def LXDTR : BinaryRRFd<"lxdtr", 0xB3DC, FP128, FP64>; | |
41 | |
42 // Convert a signed integer value to a floating-point one. | |
43 def CDGTR : UnaryRRE<"cdgtr", 0xB3F1, null_frag, FP64, GR64>; | |
44 def CXGTR : UnaryRRE<"cxgtr", 0xB3F9, null_frag, FP128, GR64>; | |
45 let Predicates = [FeatureFPExtension] in { | |
46 def CDGTRA : TernaryRRFe<"cdgtra", 0xB3F1, FP64, GR64>; | |
47 def CXGTRA : TernaryRRFe<"cxgtra", 0xB3F9, FP128, GR64>; | |
48 def CDFTR : TernaryRRFe<"cdftr", 0xB951, FP64, GR32>; | |
49 def CXFTR : TernaryRRFe<"cxftr", 0xB959, FP128, GR32>; | |
50 } | |
51 | |
52 // Convert an unsigned integer value to a floating-point one. | |
53 let Predicates = [FeatureFPExtension] in { | |
54 def CDLGTR : TernaryRRFe<"cdlgtr", 0xB952, FP64, GR64>; | |
55 def CXLGTR : TernaryRRFe<"cxlgtr", 0xB95A, FP128, GR64>; | |
56 def CDLFTR : TernaryRRFe<"cdlftr", 0xB953, FP64, GR32>; | |
57 def CXLFTR : TernaryRRFe<"cxlftr", 0xB95B, FP128, GR32>; | |
58 } | |
59 | |
60 // Convert a floating-point value to a signed integer value. | |
61 let Defs = [CC] in { | |
62 def CGDTR : BinaryRRFe<"cgdtr", 0xB3E1, GR64, FP64>; | |
63 def CGXTR : BinaryRRFe<"cgxtr", 0xB3E9, GR64, FP128>; | |
64 let Predicates = [FeatureFPExtension] in { | |
65 def CGDTRA : TernaryRRFe<"cgdtra", 0xB3E1, GR64, FP64>; | |
66 def CGXTRA : TernaryRRFe<"cgxtra", 0xB3E9, GR64, FP128>; | |
67 def CFDTR : TernaryRRFe<"cfdtr", 0xB941, GR32, FP64>; | |
68 def CFXTR : TernaryRRFe<"cfxtr", 0xB949, GR32, FP128>; | |
69 } | |
70 } | |
71 | |
72 // Convert a floating-point value to an unsigned integer value. | |
73 let Defs = [CC] in { | |
74 let Predicates = [FeatureFPExtension] in { | |
75 def CLGDTR : TernaryRRFe<"clgdtr", 0xB942, GR64, FP64>; | |
76 def CLGXTR : TernaryRRFe<"clgxtr", 0xB94A, GR64, FP128>; | |
77 def CLFDTR : TernaryRRFe<"clfdtr", 0xB943, GR32, FP64>; | |
78 def CLFXTR : TernaryRRFe<"clfxtr", 0xB94B, GR32, FP128>; | |
79 } | |
80 } | |
81 | |
82 // Convert a packed value to a floating-point one. | |
83 def CDSTR : UnaryRRE<"cdstr", 0xB3F3, null_frag, FP64, GR64>; | |
84 def CXSTR : UnaryRRE<"cxstr", 0xB3FB, null_frag, FP128, GR128>; | |
85 def CDUTR : UnaryRRE<"cdutr", 0xB3F2, null_frag, FP64, GR64>; | |
86 def CXUTR : UnaryRRE<"cxutr", 0xB3FA, null_frag, FP128, GR128>; | |
87 | |
88 // Convert a floating-point value to a packed value. | |
89 def CSDTR : BinaryRRFd<"csdtr", 0xB3E3, GR64, FP64>; | |
90 def CSXTR : BinaryRRFd<"csxtr", 0xB3EB, GR128, FP128>; | |
91 def CUDTR : UnaryRRE<"cudtr", 0xB3E2, null_frag, GR64, FP64>; | |
92 def CUXTR : UnaryRRE<"cuxtr", 0xB3EA, null_frag, GR128, FP128>; | |
93 | |
94 // Convert from/to memory values in the zoned format. | |
95 let Predicates = [FeatureDFPZonedConversion] in { | |
96 def CDZT : BinaryRSL<"cdzt", 0xEDAA, FP64>; | |
97 def CXZT : BinaryRSL<"cxzt", 0xEDAB, FP128>; | |
98 def CZDT : StoreBinaryRSL<"czdt", 0xEDA8, FP64>; | |
99 def CZXT : StoreBinaryRSL<"czxt", 0xEDA9, FP128>; | |
100 } | |
101 | |
102 // Convert from/to memory values in the packed format. | |
103 let Predicates = [FeatureDFPPackedConversion] in { | |
104 def CDPT : BinaryRSL<"cdpt", 0xEDAE, FP64>; | |
105 def CXPT : BinaryRSL<"cxpt", 0xEDAF, FP128>; | |
106 def CPDT : StoreBinaryRSL<"cpdt", 0xEDAC, FP64>; | |
107 def CPXT : StoreBinaryRSL<"cpxt", 0xEDAD, FP128>; | |
108 } | |
109 | |
110 // Perform floating-point operation. | |
111 let Defs = [CC, R1L, F0Q], Uses = [R0L, F4Q] in | |
112 def PFPO : SideEffectInherentE<"pfpo", 0x010A>; | |
113 | |
114 | |
115 //===----------------------------------------------------------------------===// | |
116 // Unary arithmetic | |
117 //===----------------------------------------------------------------------===// | |
118 | |
119 // Round to an integer, with the second operand (M3) specifying the rounding | |
120 // mode. M4 can be set to 4 to suppress detection of inexact conditions. | |
121 def FIDTR : TernaryRRFe<"fidtr", 0xB3D7, FP64, FP64>; | |
122 def FIXTR : TernaryRRFe<"fixtr", 0xB3DF, FP128, FP128>; | |
123 | |
124 // Extract biased exponent. | |
125 def EEDTR : UnaryRRE<"eedtr", 0xB3E5, null_frag, FP64, FP64>; | |
126 def EEXTR : UnaryRRE<"eextr", 0xB3ED, null_frag, FP128, FP128>; | |
127 | |
128 // Extract significance. | |
129 def ESDTR : UnaryRRE<"esdtr", 0xB3E7, null_frag, FP64, FP64>; | |
130 def ESXTR : UnaryRRE<"esxtr", 0xB3EF, null_frag, FP128, FP128>; | |
131 | |
132 | |
133 //===----------------------------------------------------------------------===// | |
134 // Binary arithmetic | |
135 //===----------------------------------------------------------------------===// | |
136 | |
137 // Addition. | |
138 let Defs = [CC] in { | |
139 let isCommutable = 1 in { | |
140 def ADTR : BinaryRRFa<"adtr", 0xB3D2, null_frag, FP64, FP64, FP64>; | |
141 def AXTR : BinaryRRFa<"axtr", 0xB3DA, null_frag, FP128, FP128, FP128>; | |
142 } | |
143 let Predicates = [FeatureFPExtension] in { | |
144 def ADTRA : TernaryRRFa<"adtra", 0xB3D2, FP64, FP64, FP64>; | |
145 def AXTRA : TernaryRRFa<"axtra", 0xB3DA, FP128, FP128, FP128>; | |
146 } | |
147 } | |
148 | |
149 // Subtraction. | |
150 let Defs = [CC] in { | |
151 def SDTR : BinaryRRFa<"sdtr", 0xB3D3, null_frag, FP64, FP64, FP64>; | |
152 def SXTR : BinaryRRFa<"sxtr", 0xB3DB, null_frag, FP128, FP128, FP128>; | |
153 let Predicates = [FeatureFPExtension] in { | |
154 def SDTRA : TernaryRRFa<"sdtra", 0xB3D3, FP64, FP64, FP64>; | |
155 def SXTRA : TernaryRRFa<"sxtra", 0xB3DB, FP128, FP128, FP128>; | |
156 } | |
157 } | |
158 | |
159 // Multiplication. | |
160 let isCommutable = 1 in { | |
161 def MDTR : BinaryRRFa<"mdtr", 0xB3D0, null_frag, FP64, FP64, FP64>; | |
162 def MXTR : BinaryRRFa<"mxtr", 0xB3D8, null_frag, FP128, FP128, FP128>; | |
163 } | |
164 let Predicates = [FeatureFPExtension] in { | |
165 def MDTRA : TernaryRRFa<"mdtra", 0xB3D0, FP64, FP64, FP64>; | |
166 def MXTRA : TernaryRRFa<"mxtra", 0xB3D8, FP128, FP128, FP128>; | |
167 } | |
168 | |
169 // Division. | |
170 def DDTR : BinaryRRFa<"ddtr", 0xB3D1, null_frag, FP64, FP64, FP64>; | |
171 def DXTR : BinaryRRFa<"dxtr", 0xB3D9, null_frag, FP128, FP128, FP128>; | |
172 let Predicates = [FeatureFPExtension] in { | |
173 def DDTRA : TernaryRRFa<"ddtra", 0xB3D1, FP64, FP64, FP64>; | |
174 def DXTRA : TernaryRRFa<"dxtra", 0xB3D9, FP128, FP128, FP128>; | |
175 } | |
176 | |
177 // Quantize. | |
178 def QADTR : TernaryRRFb<"qadtr", 0xB3F5, FP64, FP64, FP64>; | |
179 def QAXTR : TernaryRRFb<"qaxtr", 0xB3FD, FP128, FP128, FP128>; | |
180 | |
181 // Reround. | |
182 def RRDTR : TernaryRRFb<"rrdtr", 0xB3F7, FP64, FP64, FP64>; | |
183 def RRXTR : TernaryRRFb<"rrxtr", 0xB3FF, FP128, FP128, FP128>; | |
184 | |
185 // Shift significand left/right. | |
186 def SLDT : BinaryRXF<"sldt", 0xED40, null_frag, FP64, FP64, null_frag, 0>; | |
187 def SLXT : BinaryRXF<"slxt", 0xED48, null_frag, FP128, FP128, null_frag, 0>; | |
188 def SRDT : BinaryRXF<"srdt", 0xED41, null_frag, FP64, FP64, null_frag, 0>; | |
189 def SRXT : BinaryRXF<"srxt", 0xED49, null_frag, FP128, FP128, null_frag, 0>; | |
190 | |
191 // Insert biased exponent. | |
192 def IEDTR : BinaryRRFb<"iedtr", 0xB3F6, null_frag, FP64, FP64, FP64>; | |
193 def IEXTR : BinaryRRFb<"iextr", 0xB3FE, null_frag, FP128, FP128, FP128>; | |
194 | |
195 | |
196 //===----------------------------------------------------------------------===// | |
197 // Comparisons | |
198 //===----------------------------------------------------------------------===// | |
199 | |
200 // Compare. | |
201 let Defs = [CC] in { | |
202 def CDTR : CompareRRE<"cdtr", 0xB3E4, null_frag, FP64, FP64>; | |
203 def CXTR : CompareRRE<"cxtr", 0xB3EC, null_frag, FP128, FP128>; | |
204 } | |
205 | |
206 // Compare and signal. | |
207 let Defs = [CC] in { | |
208 def KDTR : CompareRRE<"kdtr", 0xB3E0, null_frag, FP64, FP64>; | |
209 def KXTR : CompareRRE<"kxtr", 0xB3E8, null_frag, FP128, FP128>; | |
210 } | |
211 | |
212 // Compare biased exponent. | |
213 let Defs = [CC] in { | |
214 def CEDTR : CompareRRE<"cedtr", 0xB3F4, null_frag, FP64, FP64>; | |
215 def CEXTR : CompareRRE<"cextr", 0xB3FC, null_frag, FP128, FP128>; | |
216 } | |
217 | |
218 // Test Data Class. | |
219 let Defs = [CC] in { | |
220 def TDCET : TestRXE<"tdcet", 0xED50, null_frag, FP32>; | |
221 def TDCDT : TestRXE<"tdcdt", 0xED54, null_frag, FP64>; | |
222 def TDCXT : TestRXE<"tdcxt", 0xED58, null_frag, FP128>; | |
223 } | |
224 | |
225 // Test Data Group. | |
226 let Defs = [CC] in { | |
227 def TDGET : TestRXE<"tdget", 0xED51, null_frag, FP32>; | |
228 def TDGDT : TestRXE<"tdgdt", 0xED55, null_frag, FP64>; | |
229 def TDGXT : TestRXE<"tdgxt", 0xED59, null_frag, FP128>; | |
230 } | |
231 |