Mercurial > hg > CbC > CbC_llvm
comparison unittests/FuzzMutate/ReservoirSamplerTest.cpp @ 121:803732b1fca8
LLVM 5.0
author | kono |
---|---|
date | Fri, 27 Oct 2017 17:07:41 +0900 |
parents | |
children | c2174574ed3a |
comparison
equal
deleted
inserted
replaced
120:1172e4bd9c6f | 121:803732b1fca8 |
---|---|
1 //===- ReservoirSampler.cpp - Tests for the ReservoirSampler --------------===// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 | |
10 #include "llvm/FuzzMutate/Random.h" | |
11 #include "gtest/gtest.h" | |
12 #include <random> | |
13 | |
14 using namespace llvm; | |
15 | |
16 TEST(ReservoirSamplerTest, OneItem) { | |
17 std::mt19937 Rand; | |
18 auto Sampler = makeSampler(Rand, 7, 1); | |
19 ASSERT_FALSE(Sampler.isEmpty()); | |
20 ASSERT_EQ(7, Sampler.getSelection()); | |
21 } | |
22 | |
23 TEST(ReservoirSamplerTest, NoWeight) { | |
24 std::mt19937 Rand; | |
25 auto Sampler = makeSampler(Rand, 7, 0); | |
26 ASSERT_TRUE(Sampler.isEmpty()); | |
27 } | |
28 | |
29 TEST(ReservoirSamplerTest, Uniform) { | |
30 std::mt19937 Rand; | |
31 | |
32 // Run three chi-squared tests to check that the distribution is reasonably | |
33 // uniform. | |
34 std::vector<int> Items = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; | |
35 | |
36 int Failures = 0; | |
37 for (int Run = 0; Run < 3; ++Run) { | |
38 std::vector<int> Counts(Items.size(), 0); | |
39 | |
40 // We need $np_s > 5$ at minimum, but we're better off going a couple of | |
41 // orders of magnitude larger. | |
42 int N = Items.size() * 5 * 100; | |
43 for (int I = 0; I < N; ++I) { | |
44 auto Sampler = makeSampler(Rand, Items); | |
45 Counts[Sampler.getSelection()] += 1; | |
46 } | |
47 | |
48 // Knuth. TAOCP Vol. 2, 3.3.1 (8): | |
49 // $V = \frac{1}{n} \sum_{s=1}^{k} \left(\frac{Y_s^2}{p_s}\right) - n$ | |
50 double Ps = 1.0 / Items.size(); | |
51 double Sum = 0.0; | |
52 for (int Ys : Counts) | |
53 Sum += Ys * Ys / Ps; | |
54 double V = (Sum / N) - N; | |
55 | |
56 assert(Items.size() == 10 && "Our chi-squared values assume 10 items"); | |
57 // Since we have 10 items, there are 9 degrees of freedom and the table of | |
58 // chi-squared values is as follows: | |
59 // | |
60 // | p=1% | 5% | 25% | 50% | 75% | 95% | 99% | | |
61 // v=9 | 2.088 | 3.325 | 5.899 | 8.343 | 11.39 | 16.92 | 21.67 | | |
62 // | |
63 // Check that we're in the likely range of results. | |
64 //if (V < 2.088 || V > 21.67) | |
65 if (V < 2.088 || V > 21.67) | |
66 ++Failures; | |
67 } | |
68 EXPECT_LT(Failures, 3) << "Non-uniform distribution?"; | |
69 } |