comparison lib/Analysis/LoopInfo.cpp @ 0:95c75e76d11b LLVM3.4

LLVM 3.4
author Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp>
date Thu, 12 Dec 2013 13:56:28 +0900
parents
children 54457678186b
comparison
equal deleted inserted replaced
-1:000000000000 0:95c75e76d11b
1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/Dominators.h"
21 #include "llvm/Analysis/LoopInfoImpl.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Assembly/Writer.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Metadata.h"
28 #include "llvm/Support/CFG.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include <algorithm>
32 using namespace llvm;
33
34 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
35 template class llvm::LoopBase<BasicBlock, Loop>;
36 template class llvm::LoopInfoBase<BasicBlock, Loop>;
37
38 // Always verify loopinfo if expensive checking is enabled.
39 #ifdef XDEBUG
40 static bool VerifyLoopInfo = true;
41 #else
42 static bool VerifyLoopInfo = false;
43 #endif
44 static cl::opt<bool,true>
45 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo),
46 cl::desc("Verify loop info (time consuming)"));
47
48 char LoopInfo::ID = 0;
49 INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true)
50 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
51 INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true)
52
53 // Loop identifier metadata name.
54 static const char *const LoopMDName = "llvm.loop";
55
56 //===----------------------------------------------------------------------===//
57 // Loop implementation
58 //
59
60 /// isLoopInvariant - Return true if the specified value is loop invariant
61 ///
62 bool Loop::isLoopInvariant(Value *V) const {
63 if (Instruction *I = dyn_cast<Instruction>(V))
64 return !contains(I);
65 return true; // All non-instructions are loop invariant
66 }
67
68 /// hasLoopInvariantOperands - Return true if all the operands of the
69 /// specified instruction are loop invariant.
70 bool Loop::hasLoopInvariantOperands(Instruction *I) const {
71 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
72 if (!isLoopInvariant(I->getOperand(i)))
73 return false;
74
75 return true;
76 }
77
78 /// makeLoopInvariant - If the given value is an instruciton inside of the
79 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
80 /// Return true if the value after any hoisting is loop invariant. This
81 /// function can be used as a slightly more aggressive replacement for
82 /// isLoopInvariant.
83 ///
84 /// If InsertPt is specified, it is the point to hoist instructions to.
85 /// If null, the terminator of the loop preheader is used.
86 ///
87 bool Loop::makeLoopInvariant(Value *V, bool &Changed,
88 Instruction *InsertPt) const {
89 if (Instruction *I = dyn_cast<Instruction>(V))
90 return makeLoopInvariant(I, Changed, InsertPt);
91 return true; // All non-instructions are loop-invariant.
92 }
93
94 /// makeLoopInvariant - If the given instruction is inside of the
95 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
96 /// Return true if the instruction after any hoisting is loop invariant. This
97 /// function can be used as a slightly more aggressive replacement for
98 /// isLoopInvariant.
99 ///
100 /// If InsertPt is specified, it is the point to hoist instructions to.
101 /// If null, the terminator of the loop preheader is used.
102 ///
103 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed,
104 Instruction *InsertPt) const {
105 // Test if the value is already loop-invariant.
106 if (isLoopInvariant(I))
107 return true;
108 if (!isSafeToSpeculativelyExecute(I))
109 return false;
110 if (I->mayReadFromMemory())
111 return false;
112 // The landingpad instruction is immobile.
113 if (isa<LandingPadInst>(I))
114 return false;
115 // Determine the insertion point, unless one was given.
116 if (!InsertPt) {
117 BasicBlock *Preheader = getLoopPreheader();
118 // Without a preheader, hoisting is not feasible.
119 if (!Preheader)
120 return false;
121 InsertPt = Preheader->getTerminator();
122 }
123 // Don't hoist instructions with loop-variant operands.
124 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
125 if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt))
126 return false;
127
128 // Hoist.
129 I->moveBefore(InsertPt);
130 Changed = true;
131 return true;
132 }
133
134 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
135 /// induction variable: an integer recurrence that starts at 0 and increments
136 /// by one each time through the loop. If so, return the phi node that
137 /// corresponds to it.
138 ///
139 /// The IndVarSimplify pass transforms loops to have a canonical induction
140 /// variable.
141 ///
142 PHINode *Loop::getCanonicalInductionVariable() const {
143 BasicBlock *H = getHeader();
144
145 BasicBlock *Incoming = 0, *Backedge = 0;
146 pred_iterator PI = pred_begin(H);
147 assert(PI != pred_end(H) &&
148 "Loop must have at least one backedge!");
149 Backedge = *PI++;
150 if (PI == pred_end(H)) return 0; // dead loop
151 Incoming = *PI++;
152 if (PI != pred_end(H)) return 0; // multiple backedges?
153
154 if (contains(Incoming)) {
155 if (contains(Backedge))
156 return 0;
157 std::swap(Incoming, Backedge);
158 } else if (!contains(Backedge))
159 return 0;
160
161 // Loop over all of the PHI nodes, looking for a canonical indvar.
162 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
163 PHINode *PN = cast<PHINode>(I);
164 if (ConstantInt *CI =
165 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
166 if (CI->isNullValue())
167 if (Instruction *Inc =
168 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
169 if (Inc->getOpcode() == Instruction::Add &&
170 Inc->getOperand(0) == PN)
171 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
172 if (CI->equalsInt(1))
173 return PN;
174 }
175 return 0;
176 }
177
178 /// isLCSSAForm - Return true if the Loop is in LCSSA form
179 bool Loop::isLCSSAForm(DominatorTree &DT) const {
180 for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
181 BasicBlock *BB = *BI;
182 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I)
183 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
184 ++UI) {
185 User *U = *UI;
186 BasicBlock *UserBB = cast<Instruction>(U)->getParent();
187 if (PHINode *P = dyn_cast<PHINode>(U))
188 UserBB = P->getIncomingBlock(UI);
189
190 // Check the current block, as a fast-path, before checking whether
191 // the use is anywhere in the loop. Most values are used in the same
192 // block they are defined in. Also, blocks not reachable from the
193 // entry are special; uses in them don't need to go through PHIs.
194 if (UserBB != BB &&
195 !contains(UserBB) &&
196 DT.isReachableFromEntry(UserBB))
197 return false;
198 }
199 }
200
201 return true;
202 }
203
204 /// isLoopSimplifyForm - Return true if the Loop is in the form that
205 /// the LoopSimplify form transforms loops to, which is sometimes called
206 /// normal form.
207 bool Loop::isLoopSimplifyForm() const {
208 // Normal-form loops have a preheader, a single backedge, and all of their
209 // exits have all their predecessors inside the loop.
210 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
211 }
212
213 /// isSafeToClone - Return true if the loop body is safe to clone in practice.
214 /// Routines that reform the loop CFG and split edges often fail on indirectbr.
215 bool Loop::isSafeToClone() const {
216 // Return false if any loop blocks contain indirectbrs, or there are any calls
217 // to noduplicate functions.
218 for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
219 if (isa<IndirectBrInst>((*I)->getTerminator()))
220 return false;
221
222 if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator()))
223 if (II->hasFnAttr(Attribute::NoDuplicate))
224 return false;
225
226 for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) {
227 if (const CallInst *CI = dyn_cast<CallInst>(BI)) {
228 if (CI->hasFnAttr(Attribute::NoDuplicate))
229 return false;
230 }
231 }
232 }
233 return true;
234 }
235
236 MDNode *Loop::getLoopID() const {
237 MDNode *LoopID = 0;
238 if (isLoopSimplifyForm()) {
239 LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName);
240 } else {
241 // Go through each predecessor of the loop header and check the
242 // terminator for the metadata.
243 BasicBlock *H = getHeader();
244 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
245 TerminatorInst *TI = (*I)->getTerminator();
246 MDNode *MD = 0;
247
248 // Check if this terminator branches to the loop header.
249 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
250 if (TI->getSuccessor(i) == H) {
251 MD = TI->getMetadata(LoopMDName);
252 break;
253 }
254 }
255 if (!MD)
256 return 0;
257
258 if (!LoopID)
259 LoopID = MD;
260 else if (MD != LoopID)
261 return 0;
262 }
263 }
264 if (!LoopID || LoopID->getNumOperands() == 0 ||
265 LoopID->getOperand(0) != LoopID)
266 return 0;
267 return LoopID;
268 }
269
270 void Loop::setLoopID(MDNode *LoopID) const {
271 assert(LoopID && "Loop ID should not be null");
272 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand");
273 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself");
274
275 if (isLoopSimplifyForm()) {
276 getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID);
277 return;
278 }
279
280 BasicBlock *H = getHeader();
281 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) {
282 TerminatorInst *TI = (*I)->getTerminator();
283 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) {
284 if (TI->getSuccessor(i) == H)
285 TI->setMetadata(LoopMDName, LoopID);
286 }
287 }
288 }
289
290 bool Loop::isAnnotatedParallel() const {
291 MDNode *desiredLoopIdMetadata = getLoopID();
292
293 if (!desiredLoopIdMetadata)
294 return false;
295
296 // The loop branch contains the parallel loop metadata. In order to ensure
297 // that any parallel-loop-unaware optimization pass hasn't added loop-carried
298 // dependencies (thus converted the loop back to a sequential loop), check
299 // that all the memory instructions in the loop contain parallelism metadata
300 // that point to the same unique "loop id metadata" the loop branch does.
301 for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) {
302 for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end();
303 II != EE; II++) {
304
305 if (!II->mayReadOrWriteMemory())
306 continue;
307
308 // The memory instruction can refer to the loop identifier metadata
309 // directly or indirectly through another list metadata (in case of
310 // nested parallel loops). The loop identifier metadata refers to
311 // itself so we can check both cases with the same routine.
312 MDNode *loopIdMD = II->getMetadata("llvm.mem.parallel_loop_access");
313
314 if (!loopIdMD)
315 return false;
316
317 bool loopIdMDFound = false;
318 for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) {
319 if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) {
320 loopIdMDFound = true;
321 break;
322 }
323 }
324
325 if (!loopIdMDFound)
326 return false;
327 }
328 }
329 return true;
330 }
331
332
333 /// hasDedicatedExits - Return true if no exit block for the loop
334 /// has a predecessor that is outside the loop.
335 bool Loop::hasDedicatedExits() const {
336 // Each predecessor of each exit block of a normal loop is contained
337 // within the loop.
338 SmallVector<BasicBlock *, 4> ExitBlocks;
339 getExitBlocks(ExitBlocks);
340 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
341 for (pred_iterator PI = pred_begin(ExitBlocks[i]),
342 PE = pred_end(ExitBlocks[i]); PI != PE; ++PI)
343 if (!contains(*PI))
344 return false;
345 // All the requirements are met.
346 return true;
347 }
348
349 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
350 /// These are the blocks _outside of the current loop_ which are branched to.
351 /// This assumes that loop exits are in canonical form.
352 ///
353 void
354 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
355 assert(hasDedicatedExits() &&
356 "getUniqueExitBlocks assumes the loop has canonical form exits!");
357
358 SmallVector<BasicBlock *, 32> switchExitBlocks;
359
360 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) {
361
362 BasicBlock *current = *BI;
363 switchExitBlocks.clear();
364
365 for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) {
366 // If block is inside the loop then it is not a exit block.
367 if (contains(*I))
368 continue;
369
370 pred_iterator PI = pred_begin(*I);
371 BasicBlock *firstPred = *PI;
372
373 // If current basic block is this exit block's first predecessor
374 // then only insert exit block in to the output ExitBlocks vector.
375 // This ensures that same exit block is not inserted twice into
376 // ExitBlocks vector.
377 if (current != firstPred)
378 continue;
379
380 // If a terminator has more then two successors, for example SwitchInst,
381 // then it is possible that there are multiple edges from current block
382 // to one exit block.
383 if (std::distance(succ_begin(current), succ_end(current)) <= 2) {
384 ExitBlocks.push_back(*I);
385 continue;
386 }
387
388 // In case of multiple edges from current block to exit block, collect
389 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
390 // duplicate edges.
391 if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
392 == switchExitBlocks.end()) {
393 switchExitBlocks.push_back(*I);
394 ExitBlocks.push_back(*I);
395 }
396 }
397 }
398 }
399
400 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
401 /// block, return that block. Otherwise return null.
402 BasicBlock *Loop::getUniqueExitBlock() const {
403 SmallVector<BasicBlock *, 8> UniqueExitBlocks;
404 getUniqueExitBlocks(UniqueExitBlocks);
405 if (UniqueExitBlocks.size() == 1)
406 return UniqueExitBlocks[0];
407 return 0;
408 }
409
410 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
411 void Loop::dump() const {
412 print(dbgs());
413 }
414 #endif
415
416 //===----------------------------------------------------------------------===//
417 // UnloopUpdater implementation
418 //
419
420 namespace {
421 /// Find the new parent loop for all blocks within the "unloop" whose last
422 /// backedges has just been removed.
423 class UnloopUpdater {
424 Loop *Unloop;
425 LoopInfo *LI;
426
427 LoopBlocksDFS DFS;
428
429 // Map unloop's immediate subloops to their nearest reachable parents. Nested
430 // loops within these subloops will not change parents. However, an immediate
431 // subloop's new parent will be the nearest loop reachable from either its own
432 // exits *or* any of its nested loop's exits.
433 DenseMap<Loop*, Loop*> SubloopParents;
434
435 // Flag the presence of an irreducible backedge whose destination is a block
436 // directly contained by the original unloop.
437 bool FoundIB;
438
439 public:
440 UnloopUpdater(Loop *UL, LoopInfo *LInfo) :
441 Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {}
442
443 void updateBlockParents();
444
445 void removeBlocksFromAncestors();
446
447 void updateSubloopParents();
448
449 protected:
450 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop);
451 };
452 } // end anonymous namespace
453
454 /// updateBlockParents - Update the parent loop for all blocks that are directly
455 /// contained within the original "unloop".
456 void UnloopUpdater::updateBlockParents() {
457 if (Unloop->getNumBlocks()) {
458 // Perform a post order CFG traversal of all blocks within this loop,
459 // propagating the nearest loop from sucessors to predecessors.
460 LoopBlocksTraversal Traversal(DFS, LI);
461 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
462 POE = Traversal.end(); POI != POE; ++POI) {
463
464 Loop *L = LI->getLoopFor(*POI);
465 Loop *NL = getNearestLoop(*POI, L);
466
467 if (NL != L) {
468 // For reducible loops, NL is now an ancestor of Unloop.
469 assert((NL != Unloop && (!NL || NL->contains(Unloop))) &&
470 "uninitialized successor");
471 LI->changeLoopFor(*POI, NL);
472 }
473 else {
474 // Or the current block is part of a subloop, in which case its parent
475 // is unchanged.
476 assert((FoundIB || Unloop->contains(L)) && "uninitialized successor");
477 }
478 }
479 }
480 // Each irreducible loop within the unloop induces a round of iteration using
481 // the DFS result cached by Traversal.
482 bool Changed = FoundIB;
483 for (unsigned NIters = 0; Changed; ++NIters) {
484 assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm");
485
486 // Iterate over the postorder list of blocks, propagating the nearest loop
487 // from successors to predecessors as before.
488 Changed = false;
489 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(),
490 POE = DFS.endPostorder(); POI != POE; ++POI) {
491
492 Loop *L = LI->getLoopFor(*POI);
493 Loop *NL = getNearestLoop(*POI, L);
494 if (NL != L) {
495 assert(NL != Unloop && (!NL || NL->contains(Unloop)) &&
496 "uninitialized successor");
497 LI->changeLoopFor(*POI, NL);
498 Changed = true;
499 }
500 }
501 }
502 }
503
504 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below
505 /// their new parents.
506 void UnloopUpdater::removeBlocksFromAncestors() {
507 // Remove all unloop's blocks (including those in nested subloops) from
508 // ancestors below the new parent loop.
509 for (Loop::block_iterator BI = Unloop->block_begin(),
510 BE = Unloop->block_end(); BI != BE; ++BI) {
511 Loop *OuterParent = LI->getLoopFor(*BI);
512 if (Unloop->contains(OuterParent)) {
513 while (OuterParent->getParentLoop() != Unloop)
514 OuterParent = OuterParent->getParentLoop();
515 OuterParent = SubloopParents[OuterParent];
516 }
517 // Remove blocks from former Ancestors except Unloop itself which will be
518 // deleted.
519 for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent;
520 OldParent = OldParent->getParentLoop()) {
521 assert(OldParent && "new loop is not an ancestor of the original");
522 OldParent->removeBlockFromLoop(*BI);
523 }
524 }
525 }
526
527 /// updateSubloopParents - Update the parent loop for all subloops directly
528 /// nested within unloop.
529 void UnloopUpdater::updateSubloopParents() {
530 while (!Unloop->empty()) {
531 Loop *Subloop = *llvm::prior(Unloop->end());
532 Unloop->removeChildLoop(llvm::prior(Unloop->end()));
533
534 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop");
535 if (Loop *Parent = SubloopParents[Subloop])
536 Parent->addChildLoop(Subloop);
537 else
538 LI->addTopLevelLoop(Subloop);
539 }
540 }
541
542 /// getNearestLoop - Return the nearest parent loop among this block's
543 /// successors. If a successor is a subloop header, consider its parent to be
544 /// the nearest parent of the subloop's exits.
545 ///
546 /// For subloop blocks, simply update SubloopParents and return NULL.
547 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) {
548
549 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
550 // is considered uninitialized.
551 Loop *NearLoop = BBLoop;
552
553 Loop *Subloop = 0;
554 if (NearLoop != Unloop && Unloop->contains(NearLoop)) {
555 Subloop = NearLoop;
556 // Find the subloop ancestor that is directly contained within Unloop.
557 while (Subloop->getParentLoop() != Unloop) {
558 Subloop = Subloop->getParentLoop();
559 assert(Subloop && "subloop is not an ancestor of the original loop");
560 }
561 // Get the current nearest parent of the Subloop exits, initially Unloop.
562 NearLoop =
563 SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second;
564 }
565
566 succ_iterator I = succ_begin(BB), E = succ_end(BB);
567 if (I == E) {
568 assert(!Subloop && "subloop blocks must have a successor");
569 NearLoop = 0; // unloop blocks may now exit the function.
570 }
571 for (; I != E; ++I) {
572 if (*I == BB)
573 continue; // self loops are uninteresting
574
575 Loop *L = LI->getLoopFor(*I);
576 if (L == Unloop) {
577 // This successor has not been processed. This path must lead to an
578 // irreducible backedge.
579 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB");
580 FoundIB = true;
581 }
582 if (L != Unloop && Unloop->contains(L)) {
583 // Successor is in a subloop.
584 if (Subloop)
585 continue; // Branching within subloops. Ignore it.
586
587 // BB branches from the original into a subloop header.
588 assert(L->getParentLoop() == Unloop && "cannot skip into nested loops");
589
590 // Get the current nearest parent of the Subloop's exits.
591 L = SubloopParents[L];
592 // L could be Unloop if the only exit was an irreducible backedge.
593 }
594 if (L == Unloop) {
595 continue;
596 }
597 // Handle critical edges from Unloop into a sibling loop.
598 if (L && !L->contains(Unloop)) {
599 L = L->getParentLoop();
600 }
601 // Remember the nearest parent loop among successors or subloop exits.
602 if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L))
603 NearLoop = L;
604 }
605 if (Subloop) {
606 SubloopParents[Subloop] = NearLoop;
607 return BBLoop;
608 }
609 return NearLoop;
610 }
611
612 //===----------------------------------------------------------------------===//
613 // LoopInfo implementation
614 //
615 bool LoopInfo::runOnFunction(Function &) {
616 releaseMemory();
617 LI.Analyze(getAnalysis<DominatorTree>().getBase());
618 return false;
619 }
620
621 /// updateUnloop - The last backedge has been removed from a loop--now the
622 /// "unloop". Find a new parent for the blocks contained within unloop and
623 /// update the loop tree. We don't necessarily have valid dominators at this
624 /// point, but LoopInfo is still valid except for the removal of this loop.
625 ///
626 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without
627 /// checking first is illegal.
628 void LoopInfo::updateUnloop(Loop *Unloop) {
629
630 // First handle the special case of no parent loop to simplify the algorithm.
631 if (!Unloop->getParentLoop()) {
632 // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
633 for (Loop::block_iterator I = Unloop->block_begin(),
634 E = Unloop->block_end(); I != E; ++I) {
635
636 // Don't reparent blocks in subloops.
637 if (getLoopFor(*I) != Unloop)
638 continue;
639
640 // Blocks no longer have a parent but are still referenced by Unloop until
641 // the Unloop object is deleted.
642 LI.changeLoopFor(*I, 0);
643 }
644
645 // Remove the loop from the top-level LoopInfo object.
646 for (LoopInfo::iterator I = LI.begin();; ++I) {
647 assert(I != LI.end() && "Couldn't find loop");
648 if (*I == Unloop) {
649 LI.removeLoop(I);
650 break;
651 }
652 }
653
654 // Move all of the subloops to the top-level.
655 while (!Unloop->empty())
656 LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end())));
657
658 return;
659 }
660
661 // Update the parent loop for all blocks within the loop. Blocks within
662 // subloops will not change parents.
663 UnloopUpdater Updater(Unloop, this);
664 Updater.updateBlockParents();
665
666 // Remove blocks from former ancestor loops.
667 Updater.removeBlocksFromAncestors();
668
669 // Add direct subloops as children in their new parent loop.
670 Updater.updateSubloopParents();
671
672 // Remove unloop from its parent loop.
673 Loop *ParentLoop = Unloop->getParentLoop();
674 for (Loop::iterator I = ParentLoop->begin();; ++I) {
675 assert(I != ParentLoop->end() && "Couldn't find loop");
676 if (*I == Unloop) {
677 ParentLoop->removeChildLoop(I);
678 break;
679 }
680 }
681 }
682
683 void LoopInfo::verifyAnalysis() const {
684 // LoopInfo is a FunctionPass, but verifying every loop in the function
685 // each time verifyAnalysis is called is very expensive. The
686 // -verify-loop-info option can enable this. In order to perform some
687 // checking by default, LoopPass has been taught to call verifyLoop
688 // manually during loop pass sequences.
689
690 if (!VerifyLoopInfo) return;
691
692 DenseSet<const Loop*> Loops;
693 for (iterator I = begin(), E = end(); I != E; ++I) {
694 assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
695 (*I)->verifyLoopNest(&Loops);
696 }
697
698 // Verify that blocks are mapped to valid loops.
699 for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(),
700 E = LI.BBMap.end(); I != E; ++I) {
701 assert(Loops.count(I->second) && "orphaned loop");
702 assert(I->second->contains(I->first) && "orphaned block");
703 }
704 }
705
706 void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
707 AU.setPreservesAll();
708 AU.addRequired<DominatorTree>();
709 }
710
711 void LoopInfo::print(raw_ostream &OS, const Module*) const {
712 LI.print(OS);
713 }
714
715 //===----------------------------------------------------------------------===//
716 // LoopBlocksDFS implementation
717 //
718
719 /// Traverse the loop blocks and store the DFS result.
720 /// Useful for clients that just want the final DFS result and don't need to
721 /// visit blocks during the initial traversal.
722 void LoopBlocksDFS::perform(LoopInfo *LI) {
723 LoopBlocksTraversal Traversal(*this, LI);
724 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(),
725 POE = Traversal.end(); POI != POE; ++POI) ;
726 }