Mercurial > hg > CbC > CbC_llvm
comparison lib/Analysis/LoopInfo.cpp @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 54457678186b |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:95c75e76d11b |
---|---|
1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 // | |
10 // This file defines the LoopInfo class that is used to identify natural loops | |
11 // and determine the loop depth of various nodes of the CFG. Note that the | |
12 // loops identified may actually be several natural loops that share the same | |
13 // header node... not just a single natural loop. | |
14 // | |
15 //===----------------------------------------------------------------------===// | |
16 | |
17 #include "llvm/Analysis/LoopInfo.h" | |
18 #include "llvm/ADT/DepthFirstIterator.h" | |
19 #include "llvm/ADT/SmallPtrSet.h" | |
20 #include "llvm/Analysis/Dominators.h" | |
21 #include "llvm/Analysis/LoopInfoImpl.h" | |
22 #include "llvm/Analysis/LoopIterator.h" | |
23 #include "llvm/Analysis/ValueTracking.h" | |
24 #include "llvm/Assembly/Writer.h" | |
25 #include "llvm/IR/Constants.h" | |
26 #include "llvm/IR/Instructions.h" | |
27 #include "llvm/IR/Metadata.h" | |
28 #include "llvm/Support/CFG.h" | |
29 #include "llvm/Support/CommandLine.h" | |
30 #include "llvm/Support/Debug.h" | |
31 #include <algorithm> | |
32 using namespace llvm; | |
33 | |
34 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. | |
35 template class llvm::LoopBase<BasicBlock, Loop>; | |
36 template class llvm::LoopInfoBase<BasicBlock, Loop>; | |
37 | |
38 // Always verify loopinfo if expensive checking is enabled. | |
39 #ifdef XDEBUG | |
40 static bool VerifyLoopInfo = true; | |
41 #else | |
42 static bool VerifyLoopInfo = false; | |
43 #endif | |
44 static cl::opt<bool,true> | |
45 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), | |
46 cl::desc("Verify loop info (time consuming)")); | |
47 | |
48 char LoopInfo::ID = 0; | |
49 INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true) | |
50 INITIALIZE_PASS_DEPENDENCY(DominatorTree) | |
51 INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true) | |
52 | |
53 // Loop identifier metadata name. | |
54 static const char *const LoopMDName = "llvm.loop"; | |
55 | |
56 //===----------------------------------------------------------------------===// | |
57 // Loop implementation | |
58 // | |
59 | |
60 /// isLoopInvariant - Return true if the specified value is loop invariant | |
61 /// | |
62 bool Loop::isLoopInvariant(Value *V) const { | |
63 if (Instruction *I = dyn_cast<Instruction>(V)) | |
64 return !contains(I); | |
65 return true; // All non-instructions are loop invariant | |
66 } | |
67 | |
68 /// hasLoopInvariantOperands - Return true if all the operands of the | |
69 /// specified instruction are loop invariant. | |
70 bool Loop::hasLoopInvariantOperands(Instruction *I) const { | |
71 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) | |
72 if (!isLoopInvariant(I->getOperand(i))) | |
73 return false; | |
74 | |
75 return true; | |
76 } | |
77 | |
78 /// makeLoopInvariant - If the given value is an instruciton inside of the | |
79 /// loop and it can be hoisted, do so to make it trivially loop-invariant. | |
80 /// Return true if the value after any hoisting is loop invariant. This | |
81 /// function can be used as a slightly more aggressive replacement for | |
82 /// isLoopInvariant. | |
83 /// | |
84 /// If InsertPt is specified, it is the point to hoist instructions to. | |
85 /// If null, the terminator of the loop preheader is used. | |
86 /// | |
87 bool Loop::makeLoopInvariant(Value *V, bool &Changed, | |
88 Instruction *InsertPt) const { | |
89 if (Instruction *I = dyn_cast<Instruction>(V)) | |
90 return makeLoopInvariant(I, Changed, InsertPt); | |
91 return true; // All non-instructions are loop-invariant. | |
92 } | |
93 | |
94 /// makeLoopInvariant - If the given instruction is inside of the | |
95 /// loop and it can be hoisted, do so to make it trivially loop-invariant. | |
96 /// Return true if the instruction after any hoisting is loop invariant. This | |
97 /// function can be used as a slightly more aggressive replacement for | |
98 /// isLoopInvariant. | |
99 /// | |
100 /// If InsertPt is specified, it is the point to hoist instructions to. | |
101 /// If null, the terminator of the loop preheader is used. | |
102 /// | |
103 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, | |
104 Instruction *InsertPt) const { | |
105 // Test if the value is already loop-invariant. | |
106 if (isLoopInvariant(I)) | |
107 return true; | |
108 if (!isSafeToSpeculativelyExecute(I)) | |
109 return false; | |
110 if (I->mayReadFromMemory()) | |
111 return false; | |
112 // The landingpad instruction is immobile. | |
113 if (isa<LandingPadInst>(I)) | |
114 return false; | |
115 // Determine the insertion point, unless one was given. | |
116 if (!InsertPt) { | |
117 BasicBlock *Preheader = getLoopPreheader(); | |
118 // Without a preheader, hoisting is not feasible. | |
119 if (!Preheader) | |
120 return false; | |
121 InsertPt = Preheader->getTerminator(); | |
122 } | |
123 // Don't hoist instructions with loop-variant operands. | |
124 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) | |
125 if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt)) | |
126 return false; | |
127 | |
128 // Hoist. | |
129 I->moveBefore(InsertPt); | |
130 Changed = true; | |
131 return true; | |
132 } | |
133 | |
134 /// getCanonicalInductionVariable - Check to see if the loop has a canonical | |
135 /// induction variable: an integer recurrence that starts at 0 and increments | |
136 /// by one each time through the loop. If so, return the phi node that | |
137 /// corresponds to it. | |
138 /// | |
139 /// The IndVarSimplify pass transforms loops to have a canonical induction | |
140 /// variable. | |
141 /// | |
142 PHINode *Loop::getCanonicalInductionVariable() const { | |
143 BasicBlock *H = getHeader(); | |
144 | |
145 BasicBlock *Incoming = 0, *Backedge = 0; | |
146 pred_iterator PI = pred_begin(H); | |
147 assert(PI != pred_end(H) && | |
148 "Loop must have at least one backedge!"); | |
149 Backedge = *PI++; | |
150 if (PI == pred_end(H)) return 0; // dead loop | |
151 Incoming = *PI++; | |
152 if (PI != pred_end(H)) return 0; // multiple backedges? | |
153 | |
154 if (contains(Incoming)) { | |
155 if (contains(Backedge)) | |
156 return 0; | |
157 std::swap(Incoming, Backedge); | |
158 } else if (!contains(Backedge)) | |
159 return 0; | |
160 | |
161 // Loop over all of the PHI nodes, looking for a canonical indvar. | |
162 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { | |
163 PHINode *PN = cast<PHINode>(I); | |
164 if (ConstantInt *CI = | |
165 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) | |
166 if (CI->isNullValue()) | |
167 if (Instruction *Inc = | |
168 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) | |
169 if (Inc->getOpcode() == Instruction::Add && | |
170 Inc->getOperand(0) == PN) | |
171 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) | |
172 if (CI->equalsInt(1)) | |
173 return PN; | |
174 } | |
175 return 0; | |
176 } | |
177 | |
178 /// isLCSSAForm - Return true if the Loop is in LCSSA form | |
179 bool Loop::isLCSSAForm(DominatorTree &DT) const { | |
180 for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { | |
181 BasicBlock *BB = *BI; | |
182 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) | |
183 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; | |
184 ++UI) { | |
185 User *U = *UI; | |
186 BasicBlock *UserBB = cast<Instruction>(U)->getParent(); | |
187 if (PHINode *P = dyn_cast<PHINode>(U)) | |
188 UserBB = P->getIncomingBlock(UI); | |
189 | |
190 // Check the current block, as a fast-path, before checking whether | |
191 // the use is anywhere in the loop. Most values are used in the same | |
192 // block they are defined in. Also, blocks not reachable from the | |
193 // entry are special; uses in them don't need to go through PHIs. | |
194 if (UserBB != BB && | |
195 !contains(UserBB) && | |
196 DT.isReachableFromEntry(UserBB)) | |
197 return false; | |
198 } | |
199 } | |
200 | |
201 return true; | |
202 } | |
203 | |
204 /// isLoopSimplifyForm - Return true if the Loop is in the form that | |
205 /// the LoopSimplify form transforms loops to, which is sometimes called | |
206 /// normal form. | |
207 bool Loop::isLoopSimplifyForm() const { | |
208 // Normal-form loops have a preheader, a single backedge, and all of their | |
209 // exits have all their predecessors inside the loop. | |
210 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); | |
211 } | |
212 | |
213 /// isSafeToClone - Return true if the loop body is safe to clone in practice. | |
214 /// Routines that reform the loop CFG and split edges often fail on indirectbr. | |
215 bool Loop::isSafeToClone() const { | |
216 // Return false if any loop blocks contain indirectbrs, or there are any calls | |
217 // to noduplicate functions. | |
218 for (Loop::block_iterator I = block_begin(), E = block_end(); I != E; ++I) { | |
219 if (isa<IndirectBrInst>((*I)->getTerminator())) | |
220 return false; | |
221 | |
222 if (const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator())) | |
223 if (II->hasFnAttr(Attribute::NoDuplicate)) | |
224 return false; | |
225 | |
226 for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) { | |
227 if (const CallInst *CI = dyn_cast<CallInst>(BI)) { | |
228 if (CI->hasFnAttr(Attribute::NoDuplicate)) | |
229 return false; | |
230 } | |
231 } | |
232 } | |
233 return true; | |
234 } | |
235 | |
236 MDNode *Loop::getLoopID() const { | |
237 MDNode *LoopID = 0; | |
238 if (isLoopSimplifyForm()) { | |
239 LoopID = getLoopLatch()->getTerminator()->getMetadata(LoopMDName); | |
240 } else { | |
241 // Go through each predecessor of the loop header and check the | |
242 // terminator for the metadata. | |
243 BasicBlock *H = getHeader(); | |
244 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) { | |
245 TerminatorInst *TI = (*I)->getTerminator(); | |
246 MDNode *MD = 0; | |
247 | |
248 // Check if this terminator branches to the loop header. | |
249 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) { | |
250 if (TI->getSuccessor(i) == H) { | |
251 MD = TI->getMetadata(LoopMDName); | |
252 break; | |
253 } | |
254 } | |
255 if (!MD) | |
256 return 0; | |
257 | |
258 if (!LoopID) | |
259 LoopID = MD; | |
260 else if (MD != LoopID) | |
261 return 0; | |
262 } | |
263 } | |
264 if (!LoopID || LoopID->getNumOperands() == 0 || | |
265 LoopID->getOperand(0) != LoopID) | |
266 return 0; | |
267 return LoopID; | |
268 } | |
269 | |
270 void Loop::setLoopID(MDNode *LoopID) const { | |
271 assert(LoopID && "Loop ID should not be null"); | |
272 assert(LoopID->getNumOperands() > 0 && "Loop ID needs at least one operand"); | |
273 assert(LoopID->getOperand(0) == LoopID && "Loop ID should refer to itself"); | |
274 | |
275 if (isLoopSimplifyForm()) { | |
276 getLoopLatch()->getTerminator()->setMetadata(LoopMDName, LoopID); | |
277 return; | |
278 } | |
279 | |
280 BasicBlock *H = getHeader(); | |
281 for (block_iterator I = block_begin(), IE = block_end(); I != IE; ++I) { | |
282 TerminatorInst *TI = (*I)->getTerminator(); | |
283 for (unsigned i = 0, ie = TI->getNumSuccessors(); i != ie; ++i) { | |
284 if (TI->getSuccessor(i) == H) | |
285 TI->setMetadata(LoopMDName, LoopID); | |
286 } | |
287 } | |
288 } | |
289 | |
290 bool Loop::isAnnotatedParallel() const { | |
291 MDNode *desiredLoopIdMetadata = getLoopID(); | |
292 | |
293 if (!desiredLoopIdMetadata) | |
294 return false; | |
295 | |
296 // The loop branch contains the parallel loop metadata. In order to ensure | |
297 // that any parallel-loop-unaware optimization pass hasn't added loop-carried | |
298 // dependencies (thus converted the loop back to a sequential loop), check | |
299 // that all the memory instructions in the loop contain parallelism metadata | |
300 // that point to the same unique "loop id metadata" the loop branch does. | |
301 for (block_iterator BB = block_begin(), BE = block_end(); BB != BE; ++BB) { | |
302 for (BasicBlock::iterator II = (*BB)->begin(), EE = (*BB)->end(); | |
303 II != EE; II++) { | |
304 | |
305 if (!II->mayReadOrWriteMemory()) | |
306 continue; | |
307 | |
308 // The memory instruction can refer to the loop identifier metadata | |
309 // directly or indirectly through another list metadata (in case of | |
310 // nested parallel loops). The loop identifier metadata refers to | |
311 // itself so we can check both cases with the same routine. | |
312 MDNode *loopIdMD = II->getMetadata("llvm.mem.parallel_loop_access"); | |
313 | |
314 if (!loopIdMD) | |
315 return false; | |
316 | |
317 bool loopIdMDFound = false; | |
318 for (unsigned i = 0, e = loopIdMD->getNumOperands(); i < e; ++i) { | |
319 if (loopIdMD->getOperand(i) == desiredLoopIdMetadata) { | |
320 loopIdMDFound = true; | |
321 break; | |
322 } | |
323 } | |
324 | |
325 if (!loopIdMDFound) | |
326 return false; | |
327 } | |
328 } | |
329 return true; | |
330 } | |
331 | |
332 | |
333 /// hasDedicatedExits - Return true if no exit block for the loop | |
334 /// has a predecessor that is outside the loop. | |
335 bool Loop::hasDedicatedExits() const { | |
336 // Each predecessor of each exit block of a normal loop is contained | |
337 // within the loop. | |
338 SmallVector<BasicBlock *, 4> ExitBlocks; | |
339 getExitBlocks(ExitBlocks); | |
340 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) | |
341 for (pred_iterator PI = pred_begin(ExitBlocks[i]), | |
342 PE = pred_end(ExitBlocks[i]); PI != PE; ++PI) | |
343 if (!contains(*PI)) | |
344 return false; | |
345 // All the requirements are met. | |
346 return true; | |
347 } | |
348 | |
349 /// getUniqueExitBlocks - Return all unique successor blocks of this loop. | |
350 /// These are the blocks _outside of the current loop_ which are branched to. | |
351 /// This assumes that loop exits are in canonical form. | |
352 /// | |
353 void | |
354 Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { | |
355 assert(hasDedicatedExits() && | |
356 "getUniqueExitBlocks assumes the loop has canonical form exits!"); | |
357 | |
358 SmallVector<BasicBlock *, 32> switchExitBlocks; | |
359 | |
360 for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) { | |
361 | |
362 BasicBlock *current = *BI; | |
363 switchExitBlocks.clear(); | |
364 | |
365 for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) { | |
366 // If block is inside the loop then it is not a exit block. | |
367 if (contains(*I)) | |
368 continue; | |
369 | |
370 pred_iterator PI = pred_begin(*I); | |
371 BasicBlock *firstPred = *PI; | |
372 | |
373 // If current basic block is this exit block's first predecessor | |
374 // then only insert exit block in to the output ExitBlocks vector. | |
375 // This ensures that same exit block is not inserted twice into | |
376 // ExitBlocks vector. | |
377 if (current != firstPred) | |
378 continue; | |
379 | |
380 // If a terminator has more then two successors, for example SwitchInst, | |
381 // then it is possible that there are multiple edges from current block | |
382 // to one exit block. | |
383 if (std::distance(succ_begin(current), succ_end(current)) <= 2) { | |
384 ExitBlocks.push_back(*I); | |
385 continue; | |
386 } | |
387 | |
388 // In case of multiple edges from current block to exit block, collect | |
389 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of | |
390 // duplicate edges. | |
391 if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) | |
392 == switchExitBlocks.end()) { | |
393 switchExitBlocks.push_back(*I); | |
394 ExitBlocks.push_back(*I); | |
395 } | |
396 } | |
397 } | |
398 } | |
399 | |
400 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one | |
401 /// block, return that block. Otherwise return null. | |
402 BasicBlock *Loop::getUniqueExitBlock() const { | |
403 SmallVector<BasicBlock *, 8> UniqueExitBlocks; | |
404 getUniqueExitBlocks(UniqueExitBlocks); | |
405 if (UniqueExitBlocks.size() == 1) | |
406 return UniqueExitBlocks[0]; | |
407 return 0; | |
408 } | |
409 | |
410 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | |
411 void Loop::dump() const { | |
412 print(dbgs()); | |
413 } | |
414 #endif | |
415 | |
416 //===----------------------------------------------------------------------===// | |
417 // UnloopUpdater implementation | |
418 // | |
419 | |
420 namespace { | |
421 /// Find the new parent loop for all blocks within the "unloop" whose last | |
422 /// backedges has just been removed. | |
423 class UnloopUpdater { | |
424 Loop *Unloop; | |
425 LoopInfo *LI; | |
426 | |
427 LoopBlocksDFS DFS; | |
428 | |
429 // Map unloop's immediate subloops to their nearest reachable parents. Nested | |
430 // loops within these subloops will not change parents. However, an immediate | |
431 // subloop's new parent will be the nearest loop reachable from either its own | |
432 // exits *or* any of its nested loop's exits. | |
433 DenseMap<Loop*, Loop*> SubloopParents; | |
434 | |
435 // Flag the presence of an irreducible backedge whose destination is a block | |
436 // directly contained by the original unloop. | |
437 bool FoundIB; | |
438 | |
439 public: | |
440 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : | |
441 Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {} | |
442 | |
443 void updateBlockParents(); | |
444 | |
445 void removeBlocksFromAncestors(); | |
446 | |
447 void updateSubloopParents(); | |
448 | |
449 protected: | |
450 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); | |
451 }; | |
452 } // end anonymous namespace | |
453 | |
454 /// updateBlockParents - Update the parent loop for all blocks that are directly | |
455 /// contained within the original "unloop". | |
456 void UnloopUpdater::updateBlockParents() { | |
457 if (Unloop->getNumBlocks()) { | |
458 // Perform a post order CFG traversal of all blocks within this loop, | |
459 // propagating the nearest loop from sucessors to predecessors. | |
460 LoopBlocksTraversal Traversal(DFS, LI); | |
461 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), | |
462 POE = Traversal.end(); POI != POE; ++POI) { | |
463 | |
464 Loop *L = LI->getLoopFor(*POI); | |
465 Loop *NL = getNearestLoop(*POI, L); | |
466 | |
467 if (NL != L) { | |
468 // For reducible loops, NL is now an ancestor of Unloop. | |
469 assert((NL != Unloop && (!NL || NL->contains(Unloop))) && | |
470 "uninitialized successor"); | |
471 LI->changeLoopFor(*POI, NL); | |
472 } | |
473 else { | |
474 // Or the current block is part of a subloop, in which case its parent | |
475 // is unchanged. | |
476 assert((FoundIB || Unloop->contains(L)) && "uninitialized successor"); | |
477 } | |
478 } | |
479 } | |
480 // Each irreducible loop within the unloop induces a round of iteration using | |
481 // the DFS result cached by Traversal. | |
482 bool Changed = FoundIB; | |
483 for (unsigned NIters = 0; Changed; ++NIters) { | |
484 assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm"); | |
485 | |
486 // Iterate over the postorder list of blocks, propagating the nearest loop | |
487 // from successors to predecessors as before. | |
488 Changed = false; | |
489 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), | |
490 POE = DFS.endPostorder(); POI != POE; ++POI) { | |
491 | |
492 Loop *L = LI->getLoopFor(*POI); | |
493 Loop *NL = getNearestLoop(*POI, L); | |
494 if (NL != L) { | |
495 assert(NL != Unloop && (!NL || NL->contains(Unloop)) && | |
496 "uninitialized successor"); | |
497 LI->changeLoopFor(*POI, NL); | |
498 Changed = true; | |
499 } | |
500 } | |
501 } | |
502 } | |
503 | |
504 /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below | |
505 /// their new parents. | |
506 void UnloopUpdater::removeBlocksFromAncestors() { | |
507 // Remove all unloop's blocks (including those in nested subloops) from | |
508 // ancestors below the new parent loop. | |
509 for (Loop::block_iterator BI = Unloop->block_begin(), | |
510 BE = Unloop->block_end(); BI != BE; ++BI) { | |
511 Loop *OuterParent = LI->getLoopFor(*BI); | |
512 if (Unloop->contains(OuterParent)) { | |
513 while (OuterParent->getParentLoop() != Unloop) | |
514 OuterParent = OuterParent->getParentLoop(); | |
515 OuterParent = SubloopParents[OuterParent]; | |
516 } | |
517 // Remove blocks from former Ancestors except Unloop itself which will be | |
518 // deleted. | |
519 for (Loop *OldParent = Unloop->getParentLoop(); OldParent != OuterParent; | |
520 OldParent = OldParent->getParentLoop()) { | |
521 assert(OldParent && "new loop is not an ancestor of the original"); | |
522 OldParent->removeBlockFromLoop(*BI); | |
523 } | |
524 } | |
525 } | |
526 | |
527 /// updateSubloopParents - Update the parent loop for all subloops directly | |
528 /// nested within unloop. | |
529 void UnloopUpdater::updateSubloopParents() { | |
530 while (!Unloop->empty()) { | |
531 Loop *Subloop = *llvm::prior(Unloop->end()); | |
532 Unloop->removeChildLoop(llvm::prior(Unloop->end())); | |
533 | |
534 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); | |
535 if (Loop *Parent = SubloopParents[Subloop]) | |
536 Parent->addChildLoop(Subloop); | |
537 else | |
538 LI->addTopLevelLoop(Subloop); | |
539 } | |
540 } | |
541 | |
542 /// getNearestLoop - Return the nearest parent loop among this block's | |
543 /// successors. If a successor is a subloop header, consider its parent to be | |
544 /// the nearest parent of the subloop's exits. | |
545 /// | |
546 /// For subloop blocks, simply update SubloopParents and return NULL. | |
547 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { | |
548 | |
549 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and | |
550 // is considered uninitialized. | |
551 Loop *NearLoop = BBLoop; | |
552 | |
553 Loop *Subloop = 0; | |
554 if (NearLoop != Unloop && Unloop->contains(NearLoop)) { | |
555 Subloop = NearLoop; | |
556 // Find the subloop ancestor that is directly contained within Unloop. | |
557 while (Subloop->getParentLoop() != Unloop) { | |
558 Subloop = Subloop->getParentLoop(); | |
559 assert(Subloop && "subloop is not an ancestor of the original loop"); | |
560 } | |
561 // Get the current nearest parent of the Subloop exits, initially Unloop. | |
562 NearLoop = | |
563 SubloopParents.insert(std::make_pair(Subloop, Unloop)).first->second; | |
564 } | |
565 | |
566 succ_iterator I = succ_begin(BB), E = succ_end(BB); | |
567 if (I == E) { | |
568 assert(!Subloop && "subloop blocks must have a successor"); | |
569 NearLoop = 0; // unloop blocks may now exit the function. | |
570 } | |
571 for (; I != E; ++I) { | |
572 if (*I == BB) | |
573 continue; // self loops are uninteresting | |
574 | |
575 Loop *L = LI->getLoopFor(*I); | |
576 if (L == Unloop) { | |
577 // This successor has not been processed. This path must lead to an | |
578 // irreducible backedge. | |
579 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); | |
580 FoundIB = true; | |
581 } | |
582 if (L != Unloop && Unloop->contains(L)) { | |
583 // Successor is in a subloop. | |
584 if (Subloop) | |
585 continue; // Branching within subloops. Ignore it. | |
586 | |
587 // BB branches from the original into a subloop header. | |
588 assert(L->getParentLoop() == Unloop && "cannot skip into nested loops"); | |
589 | |
590 // Get the current nearest parent of the Subloop's exits. | |
591 L = SubloopParents[L]; | |
592 // L could be Unloop if the only exit was an irreducible backedge. | |
593 } | |
594 if (L == Unloop) { | |
595 continue; | |
596 } | |
597 // Handle critical edges from Unloop into a sibling loop. | |
598 if (L && !L->contains(Unloop)) { | |
599 L = L->getParentLoop(); | |
600 } | |
601 // Remember the nearest parent loop among successors or subloop exits. | |
602 if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L)) | |
603 NearLoop = L; | |
604 } | |
605 if (Subloop) { | |
606 SubloopParents[Subloop] = NearLoop; | |
607 return BBLoop; | |
608 } | |
609 return NearLoop; | |
610 } | |
611 | |
612 //===----------------------------------------------------------------------===// | |
613 // LoopInfo implementation | |
614 // | |
615 bool LoopInfo::runOnFunction(Function &) { | |
616 releaseMemory(); | |
617 LI.Analyze(getAnalysis<DominatorTree>().getBase()); | |
618 return false; | |
619 } | |
620 | |
621 /// updateUnloop - The last backedge has been removed from a loop--now the | |
622 /// "unloop". Find a new parent for the blocks contained within unloop and | |
623 /// update the loop tree. We don't necessarily have valid dominators at this | |
624 /// point, but LoopInfo is still valid except for the removal of this loop. | |
625 /// | |
626 /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without | |
627 /// checking first is illegal. | |
628 void LoopInfo::updateUnloop(Loop *Unloop) { | |
629 | |
630 // First handle the special case of no parent loop to simplify the algorithm. | |
631 if (!Unloop->getParentLoop()) { | |
632 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. | |
633 for (Loop::block_iterator I = Unloop->block_begin(), | |
634 E = Unloop->block_end(); I != E; ++I) { | |
635 | |
636 // Don't reparent blocks in subloops. | |
637 if (getLoopFor(*I) != Unloop) | |
638 continue; | |
639 | |
640 // Blocks no longer have a parent but are still referenced by Unloop until | |
641 // the Unloop object is deleted. | |
642 LI.changeLoopFor(*I, 0); | |
643 } | |
644 | |
645 // Remove the loop from the top-level LoopInfo object. | |
646 for (LoopInfo::iterator I = LI.begin();; ++I) { | |
647 assert(I != LI.end() && "Couldn't find loop"); | |
648 if (*I == Unloop) { | |
649 LI.removeLoop(I); | |
650 break; | |
651 } | |
652 } | |
653 | |
654 // Move all of the subloops to the top-level. | |
655 while (!Unloop->empty()) | |
656 LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end()))); | |
657 | |
658 return; | |
659 } | |
660 | |
661 // Update the parent loop for all blocks within the loop. Blocks within | |
662 // subloops will not change parents. | |
663 UnloopUpdater Updater(Unloop, this); | |
664 Updater.updateBlockParents(); | |
665 | |
666 // Remove blocks from former ancestor loops. | |
667 Updater.removeBlocksFromAncestors(); | |
668 | |
669 // Add direct subloops as children in their new parent loop. | |
670 Updater.updateSubloopParents(); | |
671 | |
672 // Remove unloop from its parent loop. | |
673 Loop *ParentLoop = Unloop->getParentLoop(); | |
674 for (Loop::iterator I = ParentLoop->begin();; ++I) { | |
675 assert(I != ParentLoop->end() && "Couldn't find loop"); | |
676 if (*I == Unloop) { | |
677 ParentLoop->removeChildLoop(I); | |
678 break; | |
679 } | |
680 } | |
681 } | |
682 | |
683 void LoopInfo::verifyAnalysis() const { | |
684 // LoopInfo is a FunctionPass, but verifying every loop in the function | |
685 // each time verifyAnalysis is called is very expensive. The | |
686 // -verify-loop-info option can enable this. In order to perform some | |
687 // checking by default, LoopPass has been taught to call verifyLoop | |
688 // manually during loop pass sequences. | |
689 | |
690 if (!VerifyLoopInfo) return; | |
691 | |
692 DenseSet<const Loop*> Loops; | |
693 for (iterator I = begin(), E = end(); I != E; ++I) { | |
694 assert(!(*I)->getParentLoop() && "Top-level loop has a parent!"); | |
695 (*I)->verifyLoopNest(&Loops); | |
696 } | |
697 | |
698 // Verify that blocks are mapped to valid loops. | |
699 for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(), | |
700 E = LI.BBMap.end(); I != E; ++I) { | |
701 assert(Loops.count(I->second) && "orphaned loop"); | |
702 assert(I->second->contains(I->first) && "orphaned block"); | |
703 } | |
704 } | |
705 | |
706 void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { | |
707 AU.setPreservesAll(); | |
708 AU.addRequired<DominatorTree>(); | |
709 } | |
710 | |
711 void LoopInfo::print(raw_ostream &OS, const Module*) const { | |
712 LI.print(OS); | |
713 } | |
714 | |
715 //===----------------------------------------------------------------------===// | |
716 // LoopBlocksDFS implementation | |
717 // | |
718 | |
719 /// Traverse the loop blocks and store the DFS result. | |
720 /// Useful for clients that just want the final DFS result and don't need to | |
721 /// visit blocks during the initial traversal. | |
722 void LoopBlocksDFS::perform(LoopInfo *LI) { | |
723 LoopBlocksTraversal Traversal(*this, LI); | |
724 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), | |
725 POE = Traversal.end(); POI != POE; ++POI) ; | |
726 } |