Mercurial > hg > CbC > CbC_llvm
comparison lib/CodeGen/LatencyPriorityQueue.cpp @ 0:95c75e76d11b LLVM3.4
LLVM 3.4
author | Kaito Tokumori <e105711@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 12 Dec 2013 13:56:28 +0900 |
parents | |
children | 54457678186b |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:95c75e76d11b |
---|---|
1 //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===// | |
2 // | |
3 // The LLVM Compiler Infrastructure | |
4 // | |
5 // This file is distributed under the University of Illinois Open Source | |
6 // License. See LICENSE.TXT for details. | |
7 // | |
8 //===----------------------------------------------------------------------===// | |
9 // | |
10 // This file implements the LatencyPriorityQueue class, which is a | |
11 // SchedulingPriorityQueue that schedules using latency information to | |
12 // reduce the length of the critical path through the basic block. | |
13 // | |
14 //===----------------------------------------------------------------------===// | |
15 | |
16 #define DEBUG_TYPE "scheduler" | |
17 #include "llvm/CodeGen/LatencyPriorityQueue.h" | |
18 #include "llvm/Support/Debug.h" | |
19 #include "llvm/Support/raw_ostream.h" | |
20 using namespace llvm; | |
21 | |
22 bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const { | |
23 // The isScheduleHigh flag allows nodes with wraparound dependencies that | |
24 // cannot easily be modeled as edges with latencies to be scheduled as | |
25 // soon as possible in a top-down schedule. | |
26 if (LHS->isScheduleHigh && !RHS->isScheduleHigh) | |
27 return false; | |
28 if (!LHS->isScheduleHigh && RHS->isScheduleHigh) | |
29 return true; | |
30 | |
31 unsigned LHSNum = LHS->NodeNum; | |
32 unsigned RHSNum = RHS->NodeNum; | |
33 | |
34 // The most important heuristic is scheduling the critical path. | |
35 unsigned LHSLatency = PQ->getLatency(LHSNum); | |
36 unsigned RHSLatency = PQ->getLatency(RHSNum); | |
37 if (LHSLatency < RHSLatency) return true; | |
38 if (LHSLatency > RHSLatency) return false; | |
39 | |
40 // After that, if two nodes have identical latencies, look to see if one will | |
41 // unblock more other nodes than the other. | |
42 unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum); | |
43 unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum); | |
44 if (LHSBlocked < RHSBlocked) return true; | |
45 if (LHSBlocked > RHSBlocked) return false; | |
46 | |
47 // Finally, just to provide a stable ordering, use the node number as a | |
48 // deciding factor. | |
49 return RHSNum < LHSNum; | |
50 } | |
51 | |
52 | |
53 /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor | |
54 /// of SU, return it, otherwise return null. | |
55 SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) { | |
56 SUnit *OnlyAvailablePred = 0; | |
57 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); | |
58 I != E; ++I) { | |
59 SUnit &Pred = *I->getSUnit(); | |
60 if (!Pred.isScheduled) { | |
61 // We found an available, but not scheduled, predecessor. If it's the | |
62 // only one we have found, keep track of it... otherwise give up. | |
63 if (OnlyAvailablePred && OnlyAvailablePred != &Pred) | |
64 return 0; | |
65 OnlyAvailablePred = &Pred; | |
66 } | |
67 } | |
68 | |
69 return OnlyAvailablePred; | |
70 } | |
71 | |
72 void LatencyPriorityQueue::push(SUnit *SU) { | |
73 // Look at all of the successors of this node. Count the number of nodes that | |
74 // this node is the sole unscheduled node for. | |
75 unsigned NumNodesBlocking = 0; | |
76 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); | |
77 I != E; ++I) { | |
78 if (getSingleUnscheduledPred(I->getSUnit()) == SU) | |
79 ++NumNodesBlocking; | |
80 } | |
81 NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking; | |
82 | |
83 Queue.push_back(SU); | |
84 } | |
85 | |
86 | |
87 // scheduledNode - As nodes are scheduled, we look to see if there are any | |
88 // successor nodes that have a single unscheduled predecessor. If so, that | |
89 // single predecessor has a higher priority, since scheduling it will make | |
90 // the node available. | |
91 void LatencyPriorityQueue::scheduledNode(SUnit *SU) { | |
92 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); | |
93 I != E; ++I) { | |
94 AdjustPriorityOfUnscheduledPreds(I->getSUnit()); | |
95 } | |
96 } | |
97 | |
98 /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just | |
99 /// scheduled. If SU is not itself available, then there is at least one | |
100 /// predecessor node that has not been scheduled yet. If SU has exactly ONE | |
101 /// unscheduled predecessor, we want to increase its priority: it getting | |
102 /// scheduled will make this node available, so it is better than some other | |
103 /// node of the same priority that will not make a node available. | |
104 void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) { | |
105 if (SU->isAvailable) return; // All preds scheduled. | |
106 | |
107 SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU); | |
108 if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return; | |
109 | |
110 // Okay, we found a single predecessor that is available, but not scheduled. | |
111 // Since it is available, it must be in the priority queue. First remove it. | |
112 remove(OnlyAvailablePred); | |
113 | |
114 // Reinsert the node into the priority queue, which recomputes its | |
115 // NumNodesSolelyBlocking value. | |
116 push(OnlyAvailablePred); | |
117 } | |
118 | |
119 SUnit *LatencyPriorityQueue::pop() { | |
120 if (empty()) return NULL; | |
121 std::vector<SUnit *>::iterator Best = Queue.begin(); | |
122 for (std::vector<SUnit *>::iterator I = llvm::next(Queue.begin()), | |
123 E = Queue.end(); I != E; ++I) | |
124 if (Picker(*Best, *I)) | |
125 Best = I; | |
126 SUnit *V = *Best; | |
127 if (Best != prior(Queue.end())) | |
128 std::swap(*Best, Queue.back()); | |
129 Queue.pop_back(); | |
130 return V; | |
131 } | |
132 | |
133 void LatencyPriorityQueue::remove(SUnit *SU) { | |
134 assert(!Queue.empty() && "Queue is empty!"); | |
135 std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(), SU); | |
136 if (I != prior(Queue.end())) | |
137 std::swap(*I, Queue.back()); | |
138 Queue.pop_back(); | |
139 } | |
140 | |
141 #ifdef NDEBUG | |
142 void LatencyPriorityQueue::dump(ScheduleDAG *DAG) const {} | |
143 #else | |
144 void LatencyPriorityQueue::dump(ScheduleDAG *DAG) const { | |
145 LatencyPriorityQueue q = *this; | |
146 while (!q.empty()) { | |
147 SUnit *su = q.pop(); | |
148 dbgs() << "Height " << su->getHeight() << ": "; | |
149 su->dump(DAG); | |
150 } | |
151 } | |
152 #endif |